Skip to main content

Dark Adaptation is Impaired in Diabetics before Photopic Visual Losses Can be Seen

Can Hypoxia of Rods Contribute to Diabetic Retinopathy?

  • Chapter
Retinal Degenerative Diseases and Experimental Therapy

Abstract

The main theme of this volume is the inherited retinal degenerations, but the most important causes of blindness have a different aetiology, not directly related to genetic defects. Diabetes is the greatest cause of blindness in younger people, and even con sidering all age groups is as common a cause of blindness as Glaucoma and Age Related Maculopathy. Diabetes causes a retinopathy (DR) which is basically a vasculopathy1,2 and the cellular biology of DR has been recently linked to cytokines.3 Starting from this fact, it has been proposed that techniques of molecular biology which might be of use in the treatment of inherited degenerative diseases could also be applicable to DR. This paper is however concerned with a far simpler method of controlling DR, which is based on the physiology of the eye, the particular features of which have been known for half a century but not exploited in this connection. The basic idea is that anoxia early in DR will only develop during dark adaptation, occuring in long periods every night in sleep.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Frank, 1986, Diabetic retinopathy: current concepts of evaluation and treatment. Clinics in Endocrinology and Metabolism, 15:933–969.

    Article  PubMed  CAS  Google Scholar 

  2. N. Frank, 1995, Diabetic Retinopathy, In: Progress in Retinal and Eye Research, 14:361–392.

    Article  Google Scholar 

  3. L.P. Aiello, 1997, Vascular Endothelial Growth Factors. 20th-century mechanisms, 21st-century therapies, Invest. Ophthalmol. Vis. Sci. 38:1847–1652.

    Google Scholar 

  4. T.S. Kern and R.L. Engerman, 1996, Capillary lesions develop in retina rather than cerebral cortex in diabetes and experimental galactosemia, Arch. Ophthalmol. 114:306–310.

    PubMed  CAS  Google Scholar 

  5. W.A. Hagins, P.D. Ross, R.L. Tate, and S. Yoshikami, 1989, Transduction heats in retinal rods: Tests of the role of cGMP by pyroelectric calorimetry, Proc. Nat. Acad. Sci. USA. 86:1224–1228.

    Article  PubMed  CAS  Google Scholar 

  6. K.-W. Yau and D.A. Baylor, 1989, Visual Transduction, Annual Rev. Neurosci. 12:289–327.

    Article  CAS  Google Scholar 

  7. V.A. Alder, E.S.J. Cringle, and I.J. Constable, 1983, The retinal oxygen profile in Cats, Invest. Ophthalmol. Vis. Sci. 24:30–36.

    PubMed  CAS  Google Scholar 

  8. R.A. Linsenmeier, 1986, The effects of light and darkness on oxygen distribution and consumption in the cat retina, J. Gen. Physiol. 88:521–542.

    Article  PubMed  CAS  Google Scholar 

  9. R.A. Linsenmeier and R.D. Braun, 1992, Oxygen distribution and consumption in the cat retina during normotension and hypoxaemia. J. Gen. Physiol. 99:177–197.

    Article  PubMed  CAS  Google Scholar 

  10. L.M. Haugh, R.A. Linsenmeier, and T.K. Goldstick, 1990, Mathematical Models of the spatial distribution of retinal oxygen tension and consumption, including changes on illumination, Ann. Biomed. Eng. 18:10–36.

    Article  Google Scholar 

  11. J. Ahmed, R.D. Braun, R. Dunn Jr., and R.A. Linsenmeier, 1993, Oxygen distribution in the macaque retina. Invest. Ophthalmol. Vis. Sci. 34:516–521.

    PubMed  CAS  Google Scholar 

  12. R.D. Braun and R.A. Linsenmeier, 1995, Oxygen consumption in the inner and outer retina of the cat, Invest. Ophthalmol. Vis. Sci. 36:542–554.

    PubMed  CAS  Google Scholar 

  13. L.M. Haugh, L.A. Scheidt, E.R. Griff, and R.A. Linsenmeier, 1995, Light evoked oxygen responses in isolated Toad retina, Exp. Eye Res., 61:73–81.

    Article  Google Scholar 

  14. L.J. Frishman, F. Yamamoto, J. Bogucka, and R.H. Steinberg, 1992, Light-evoked changes in [K(+)]0 in proximal portion of light-adapted cat retina, J. Neurophysiol. 67:1201–1212.

    PubMed  CAS  Google Scholar 

  15. R.F. Miller and J.E. Dowling, 1970, Intracellular responses of the Muller (glial) cells of the mudpuppy retina: their relationship to the b-wave of the electroretinogram, J. Neurophysiol. 33:323–341.

    PubMed  CAS  Google Scholar 

  16. E.A. Newman, 1985, Regulation of extracellular potassium by glial cells in the retina, Trends in Neuroscience 8:156–159.

    Article  CAS  Google Scholar 

  17. R.A. McFarland, J.N. Evans, and M.H. Halperin, 1941, Ophthalmic aspects of acute oxygen deficiency, Arch Ophthalmol NY. 26:886–913.

    Google Scholar 

  18. J. Mandlebaum, 1941, Dark adaptation; physiologic and clinical considerations Arch. Ophthalmol. 26:203–239.

    Google Scholar 

  19. A.M.P. Hamilton, M.W. Ulbig, and P.J. Polkinghorne, 1996, Management of Diabetic Retinopathy. BMJ press London pp 136.

    Google Scholar 

  20. Diabetic Retinopathy Research Group. Second Report, 1978, Amer. J. Ophthalmol. 85:82–106.

    Google Scholar 

  21. S.E. Simonsen, 1965, Electroretinographic study of diabetics; Preliminary Report, Acta Ophthalmologica, 43:841–843.

    Article  Google Scholar 

  22. T. Amemiya, 1977, Dark adaptation in diabetics. Ophthalmologica, 174:322–326.

    Article  PubMed  CAS  Google Scholar 

  23. D.B. Henson, and R.V. North, 1979. Dark adaptation in diabetes mellitus, Brit J. Ophthalmol. 63:539–541.

    CAS  Google Scholar 

  24. M.O. Scase, D.H. Foster, W.P. Honan, J.R. Heron, M.C. Guilliford, and J.H.B. Scarpello, 1990, Abnormalities in hue discrimination with very brief stimuli in diabetic patients, Clin. Vis. Sci. 6:49–57.

    Google Scholar 

  25. K. Frost-Larsen, H.W. Larsen, and S.E. Simonsen, 1981, The value of dark adaptation as a prognostic tool in diabetic retinopathy, Metabolic and Pediatric Ophthalmology, 5:39–44.

    PubMed  CAS  Google Scholar 

  26. E.B. Roeker, E. Pulos, G.H. Bresnick, and M. Severns, 1992, Characterisation of the electroretinographic scotopic b-wave amplitude in diabetic and normal subjects, Invest. Ophthalmol. Vis. Sci. 33:1575–1583.

    Google Scholar 

  27. D.V. De Alwys, J.P. Reffin, S.J. Tregear, L.G. Ripley, and A.G. Caswell, 1993, Should the management of diabetic retinopathy be based on the measurement of visual function rather than observations of retinal morphology? Invest. Ophthalmol. Vis. Sci. 34: ARVO Absts. #80 pg. 719.

    Google Scholar 

  28. V.C. Greenstein, S.R. Thomas, H. Blaustein, K. Koenig, and R.E. Carr, 1993, Effects of early diabetic retinopathy on rod system sensitivity, Optom. Vis. Sci. 70:18–23.

    Article  PubMed  CAS  Google Scholar 

  29. J.V. Lovasik and H. Kergoat, 1993, Electroretinographic results and ocular vascular perfusion in type 1 diabetes, Invest. Ophthalmol. Vis. Sci. 34:1731–1743.

    PubMed  CAS  Google Scholar 

  30. S.D. Tregear, P.J. Knowles, D.V. De Alwys, J.P. Reffin, L.G. Ripley, and A.G. Caswell, 1994, Colour vision deficits predict the development of sight-threatening disease in diabetic subjects with background retinopathy. Invest. Ophthalmol. Vis. Sci. 34;ARVO Absts. =81 pg. 719.

    Google Scholar 

  31. V.C. Greenstein, D.C. Hood, R. Ritch, D. Steinberger, and R.E. Carr, 1989, S(Blue) cone pathway vunerability in Retinitis pigmentosa, Diabetes, and Glaucoma. Invest. Ophthalmol. Vis. Sci. 30:1732–1737.

    PubMed  CAS  Google Scholar 

  32. A. Harris, O. Arend, R.P. Danis, D. Evans, S. Wolf, and B.J. Martin, 1996, Hyperoxia improves contrast sensitivity in early diabetic retinopathy, Brit, J. Ophthalmol. 80:209–213.

    CAS  Google Scholar 

  33. F. Dean, A. Dornhorst, and G.B. Arden, 1997. Partial reversal of protan and tritan colour defects with inhaled oxygen in insulin dependent diabetic subjects, Brit. J. Ophthalmol. 81:27–30.

    CAS  Google Scholar 

  34. R.A. Linsenmeier, R.D. Braun, M.A. McRipley, L.B. Padnick, and D.L. Tatchell, 1997. Retinal hypoxia in long term diabetic cats. Invest. Ophthalmol. Vis. Sci. 38: ARVO Abs. S77 #3569.

    Google Scholar 

  35. J.S. Tiedman, S.E. Kirk, and J.M. Beach, Inner retinal oxygen consumption increases during hyperglycaemia in diabetic patients, Invest. Ophthalmol. Vis. Sci. 38: ARVO Abs. S714.

    Google Scholar 

  36. S. Konno, G.T. Feke, A. Yashida, N. Fujio, D.G. Goger, and S.M. Buzney, 1996, Retinal blood flow changes in Type I Diabetes, Invest. Ophthalmol. Vis. Sci. 37:1140–1148.

    PubMed  CAS  Google Scholar 

  37. M.K. v.d. Enden, J.R. Nyengaard, E. Ostrow, J.H. Burgan, and J.R. Williamson, 1995, Elevated glucose levels increase retinal glycolysis and sorbitol pathway metabolism, Invest. Ophthalmol. Vis. Sci. 36:1675–1685.

    PubMed  Google Scholar 

  38. G.T. Feke and S.M. Buzney, 1994, Retinal circulatory abnormalities in type 1 diabetes. Invest. Ophthalmol. Vis. Sci. 35:2968–2975.

    PubMed  CAS  Google Scholar 

  39. J. Ditzel, 1979, Changes in red cell oxygen release capacity in diabetes mellitus. Fed. Proc. 38:2484–2488.

    PubMed  CAS  Google Scholar 

  40. W.G. Robison, J.L. Jacot, J.P. Glover, M.D. Basso, and T.C. Hohman, 1997, Aldose reductase Inhibitor intervention after significant diabetic-like capillary basement membrane thickening. Invest. Ophthalmol. Vis. Sci. 38:ARVO Abs S715 #3305.

    Google Scholar 

  41. K.M. Reiser, 1990, Non-enzymatic glycation of collagen in ageing and diabetes, Proc. Soc. Exp. Biol. Med. 196. 17–29.

    Google Scholar 

  42. W.D. Robison, N.M. Laver, and M.F. Lou, 1995, The role of aldose reductase in diabetic retinopathy: prevention and intervention studies, Progress in Retinal and Eye Research, 14:593–641.

    Article  Google Scholar 

  43. G.B. Arden, J.E. Wolf, and Y. Tsang, 1998, Does dark adaptation exacerbate diabetic retinopathy? Evidence and a linking hypothesis, Vision Res. 38:1723–1729.

    Article  PubMed  CAS  Google Scholar 

  44. W.A.H. Rushton, 1963, Increment threshold and dark adaptation, J. Opt. Soc. Amer. 3:104–109.

    Google Scholar 

  45. J. Stone and J. Maslim, 1997, Mechanisms of retinal angiogenesis. Progress in Retinal and Eye Research, 16. 157–181.

    Article  CAS  Google Scholar 

  46. H. Tanihara, M. Inatani, and Y. Honda, 1997, Growth factors and their receptors in the retina and pigment epithelium. In Progress in Retinal and Eye Research. 16:271–301.

    Article  CAS  Google Scholar 

  47. M.K. Mathews, C. Merges, D.S. McLeod, and G.A. Lutty, 1997, VEGFand vascular permeability changes in human DR, Invest. Ophthalmol. Vis. Sci. 38:2729–2741.

    PubMed  CAS  Google Scholar 

  48. T. Murata, K. Nakagawa, A. Khalil, T. Ishibashi, H. Inomata, and K. Sueshi, 1996, The relation between the expression of VEGF and the breakdown of BRB in diabetic rat retinas, Lab. Invest. 74:819–825.

    PubMed  CAS  Google Scholar 

  49. H. Sone, Y. Kawakami, Y. Okuday, Y. Sekine, S. Honmura, K. Matsuo, T. Seyawa, H. Suzuki, and K. Yamashita, 1997, Ocular VEGF levels in diabetic rats are elevated before observable retinal proliferative changes, Diabetologia, 40:726–730.

    Article  PubMed  CAS  Google Scholar 

  50. R.H. Amin, R.N. Frank, A. Kennedy, D. Eliott, J.E. Puklin, and G.W. Abrams, 1997, VEGF is present in glial cells of the retina and optic nerve of human subjects with non-proliferative diabetic retinopathy, Invest. Ophthalmol. Vis. Sci. 38:38.

    Google Scholar 

  51. J. Ambati. K.V. Chalan, D.K. Chawla, C.T. D’Angio, E.G. Guillet, S.S. Rose, R.E. Vanderlinde, and B.K. Ambati, 1997, Elevated gamma-aminobutyric acid, glutamate and VEGF levels in the vitreous of patients with PDR, Arch. Ophthalmoi. 115:1161–624.

    CAS  Google Scholar 

  52. A. Khalik, D. Jarvis, D. McLeod, and D. Boulton, 1996, Oxygen modulates the response of the retinal pigment epithelium to Basic Fibroblast Growth Factor and Epidermal factor by receptor regulation. Invest. Ophthalmol. Vis. Sci. 37:436–443.

    Google Scholar 

  53. V.A. Alder, E.S.J. Cringle, and M. Brown, 1987, The effect of regional retinal photocoagulation on vitreal oxygen tension. Invest. Ophthalmol. Vis. Sci. 28:1078–1085.

    PubMed  CAS  Google Scholar 

  54. C.J. Pournara, M. Tsacopoulos, K. Strommer, N. Gilodi, and P. Leuenberger, 1990, Scatter photocoagulation restores tissue hypoxia in experimental vasoproliferative microangiography in miniature pigs. Ophthalmology 97:1329–1333.

    Google Scholar 

  55. M.J. Mosely, S.C. Bayliss, and A.R. Fielder, 1988, Light transmission through the human eyelid: in vivo measurement, Ophthal. Physiol. Opt. 4:229–230.

    Google Scholar 

  56. K. Ando and D.F. Kripke, 1996, Light attenuation by the human eyelid. Biol. Psychiatry, 39:22–25.

    Article  PubMed  CAS  Google Scholar 

  57. J. Robinson, S.C. Bayliss, and A.R. Fielder, 1991, Transmission of light across the adult and neonatal eyelid in vivo, Vision Res. 31:1837–1840.

    Article  PubMed  CAS  Google Scholar 

  58. M.L. Crawford and R.E. Marc, 1976, Light transmission of cat and monkey eyelids, Vision Res. 16:323–324.

    Article  PubMed  CAS  Google Scholar 

  59. J.F. Cooper, 1996, A psychophysical method of measuring the attenuation of retinal illumination in humans caused by closing the eyelids, and the relationship of this to skin albedo. Project report submitted for B.Sc. City University, London,U.K.

    Google Scholar 

  60. W. Spileers, F. Falcao-Reis, C. Hogg, and G.B. Arden, 1993, A new Ganzfeld electroretinographic stimulator powered by red and green LEDs. Clin. Vis. Sci. 8:21–39.

    Google Scholar 

  61. G.B. Arden, J.E. Wolf, T. Berninger, C.R. Hogg, R. Tzekov, and G.E. Holder, 1998, S-cone ERGs elicited by a simple technique in normals and in tritanopes Vision Res. in the press

    Google Scholar 

  62. W.S. Stiles, 1959, Color vision: The approach through increment threshold sensitivity. Proc. Nat. Acad. Sci. 45:100–128.

    Article  Google Scholar 

  63. L. Adams, G.B. Arden, and Joan Behrman, 1969, Responses of human visual cortex following excitation of peripheral rods. Brit. J. Ophthalmol. 53:439–452.

    CAS  Google Scholar 

  64. D. Regan, 1972, Evoked Potentials in sensory physiology and clinical medicine, Chapman and Hall, Lond.

    Google Scholar 

  65. G.B. Arden and M. Hall, 1995, Does occupational exposure to Argon laser radiation decrease colour contrast sensitivity in UK Ophthalmologists? Eye, 9:686–696.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Kluwer Academic / Plenum Publishers

About this chapter

Cite this chapter

Arden, G.B., Wolf, J.E., Collier, J., Wolff, C., Rosenberg, M. (1999). Dark Adaptation is Impaired in Diabetics before Photopic Visual Losses Can be Seen. In: Hollyfield, J.G., Anderson, R.E., LaVail, M.M. (eds) Retinal Degenerative Diseases and Experimental Therapy. Springer, Boston, MA. https://doi.org/10.1007/978-0-585-33172-0_29

Download citation

  • DOI: https://doi.org/10.1007/978-0-585-33172-0_29

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46193-4

  • Online ISBN: 978-0-585-33172-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics