Skip to main content

Myelosuppressive Cytokines and Peptides

  • Chapter
Blood Cell Biochemistry

Part of the book series: Blood Cell Biochemistry ((BLBI,volume 7))

Abstract

The mature blood cells that fight infection and disease (neutrophilic granulocytes, monocytes/macrophages, lymphocytes, natural killer cells), allow us to breathe (erythrocytes), and prevent us from bleeding to death (platelets), which are thus imperative for maintenance of our health, are produced by hematopoietic stem and progenitor cells (Broxmeyer and Williams, 1988; Broxmeyer, 1992a, 1993). Regulation of blood cell production involves an interacting network of cytokine—cell interactions. Over 50 different cytokines have been identified that can influence blood cell production, at least in vitro (Broxmeyer and Williams, 1988; Broxmeyer, 1992a, 1993,1995a, 1996). This regulation can occur by stimulation, enhancement (augmentation), and/or suppression of the growth and differentiation of hematopoietic stem and progenitor cells. Hematopoietically active cytokines include the colony-stimulating factors (CSF) granulocyte (G)-CSF, macrophage (M)-CSF, GM-CSF, interleukin (IL-3), IL-5, and erythropoietin (Epo), and other interleukins, presently numbering 1 to 17. Non-CSF interleukins include potent costimulating cytokines: steel factor (SLF, or stem cell factor), and flt3/flk2 ligand (L), involved in synergistic stimulation of cell proliferation (Broxmeyer, 1992a,b, 1993, 1995a; Broxmeyer et al.,1991b, 1995a).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aglietta, M., Piacibello, W., Sanavio, F., Stacchini, A., Apra, F., Schena, M., Mossetti, C., Camino, F., CaligarisCappio, F., and Gavosto, F., 1989, Kinetics of human hemopoietic cells after in vivo administration of granulocyte—macrophage colony-stimulating factor, J. Clin. Invest. 83: 551–557.

    Article  PubMed  CAS  Google Scholar 

  • Ahija, S. K., Gao, J. L., and Murphy, P. M., 1994, Chemokine receptors and molecular mimicry, Immunol. Today 15: 281–286.

    Article  Google Scholar 

  • Anagnostou, A., Dainiak, N., and Najman, A. L. (eds.), 1991, Annals of the New York Academy of Sciences, Vol. 628: Negative Regulators of Hematopoiesis: Studies on Their Nature, Action and Potential Role in Cancer Therapy, New York Academy of Sciences, New York.

    Google Scholar 

  • Anderson, B. F., Baker, H. M., Dodson, E. J., Norris, G. E., Rumball, S. V., Waters, J. M., and Baker, E. N., 1987, Structure of human lactoferrin at 3.2-A resolution, Proc. Natl. Acad. Sci. U.S.A. 84: 1769–1773.

    Article  PubMed  CAS  Google Scholar 

  • Aronica, S. M., Mantel, C., Marshall, M. S., Saris, A., Cooper, S., Hague, N., Zhang, X. F., and Broxmeyer, H. E., 1995, Interferon-inducible protein 10 and macrophage inflammatory protein-la inhibit growth factor stimulation of Raf-1 kinase activity and protein synthesis in a human growth factor-dependent hematopoietic cell line, J. Biol. Chem. 270: 21998–22007.

    Article  PubMed  CAS  Google Scholar 

  • Attisano, L., Carcamo, J., Ventura, F., Weis, F. M. B., Massague, J., and Wrana, J. L., 1993, Identification of human activin and TGFl3 type 1 receptors that form heteromeric kinase complexes with type II receptors, Cell 75: 671–680.

    Article  PubMed  CAS  Google Scholar 

  • Avalos, B. R., Bartynski, K. J., Elder, P. J., Kotur, M. S., Burton, W. G., and Wilkie, N. M., 1994, The active monomeric form of macrophage inflammatory protein-la interacts with high-and low-affinity classes of receptors on human hematopoietic cells, Blood 84: 1790–1801.

    PubMed  CAS  Google Scholar 

  • Bagby, G. C., Jr., and Bennett, R. M., 1982, Feedback regulation of granulopoiesis: Polymerization of lactoferrin abrogates its ability to inhibit CSA production, Blood 60: 108–112.

    PubMed  CAS  Google Scholar 

  • Bagby, G. C., Dinarello, C. A., Wallace, P., Wagner, C., Hefeneider, S., and McCall, E., 1986, Interleukin-1 stimulates granulocyte—macrophage colony stimulating activity release by vascular endothelial cells, J. Clin. Invest. 78: 1316–1323.

    Article  PubMed  CAS  Google Scholar 

  • Bagby, G. C., Riga, V. D., Bennett, R. M., Van denbark, A. A., and Garewal, H. S., 1989, Interaction of lactoferrin, monocytes, and T-lymphocyte subsets in the regulation of steady-state granulopoiesis in vitro, J. Clin. Invest. 68: 56–63.

    Article  Google Scholar 

  • Baggiolini, M., DeWald, B., and Moser, B., 1994, Interleukin-8 and related chemotactic cytokines-CXC and CC chemokines, Adv. Immunol. 55: 97–179.

    Article  PubMed  CAS  Google Scholar 

  • Balla, G., Jacob, H. S., Balla, J., Rosenberg, M., Nath, K., Apple, F., Eaton, J. W., and Vercellotti, G. M., 1992, Ferritin: A cytoprotective antioxidant stratagem of endothelium, J. Biol. Chem. 267: 18148–18153.

    PubMed  CAS  Google Scholar 

  • Barber, K. E., Crosier, R. S., Gillis, S., and Watson, J. D., 1987a, Human granulocyte—macrophage progenitors and their sensitivity to cytotoxins: Analysis by limiting dilution, Blood 70: 1773–1776.

    PubMed  CAS  Google Scholar 

  • Barber, K. E., Crosier, R. S., and Watson, J. D., 1987b, The differential inhibition of hemopoietic growth factor activity by cytotoxins and interferon-y, J. Immunol. 139: 1108–1112.

    PubMed  CAS  Google Scholar 

  • Bennett, R. M., Bagby, G. C., and Davis, J., 1981, Calcium-dependent polymerization of lactoferrin, Biochem. Biophys. Res. Commun. 101: 88–95.

    Article  PubMed  CAS  Google Scholar 

  • Beutler, B., and Van Huffle, C., 1994, Unraveling function of the TNF ligand and receptor families, Science 264: 667–668.

    Article  PubMed  CAS  Google Scholar 

  • Bezault, J., Bhimani, R., Wiprovnick, J., and Furmanski, P., 1994, Human lactoferrin inhibits growth of solid tumors and development of experimental metastases in mice, Cancer Res. 54: 2310–2312.

    PubMed  CAS  Google Scholar 

  • Bodine, D. M., Crosier, P. S., and Clark, S. C., 1991, Effects of hematopoietic growth factors on the survival of primitive stem cells in liquid suspension culture, Blood 78: 914–920.

    PubMed  CAS  Google Scholar 

  • Bonewald, L. F., 1992, Can transforming growth factor beta be useful as a protective agent for pluripotent hematopoietic progenitor cells? Exp. Hematol. 20: 1249–1251.

    PubMed  CAS  Google Scholar 

  • Brown, P. D., Wakefield, L. M., Levinson, A. D., and Sporn, M. B., 1990, Physiochemical activation of recombinant latent transforming growth factor-beta’s 1, 2, and 3, Growth Factors 3: 35–43.

    Article  PubMed  CAS  Google Scholar 

  • Broxmeyer, H. E., 1982, Relationship of cell-cycle expression of la-like antigen determinants on normal and leukemia human granulocyte—macrophage progenitor cells to regulation in vitro by acidic isoferritins, J. Clin. Invest. 69: 632–642.

    Article  PubMed  CAS  Google Scholar 

  • Broxmeyer, H. E., 1989, Iron-binding proteins and the regulation of hematopoietic cell proliferation/differentiation, in Iron, Immunity, Cancer, and Inflammation ( M. deSousa and J. H. Brock, eds.), pp. 199–221, John Wiley Sons, Chichester.

    Google Scholar 

  • Broxmeyer, H. E., 1992a, Update: Biomolecule—cell interactions and the regulation of myelopoiesis, in Concise Reviews in Clinical and Experimental Hematology ( M. J. Murphy, Jr., ed.), pp. 119–149, Alpha Med Press, Dayton, OH.

    Google Scholar 

  • Broxmeyer, H. E., 1992b, Suppressor cytokines and regulation of myelopoiesis: Biology and possible clinical uses, Am. J. Pediatr. Hematol./Oncol. 14: 22–30.

    Article  CAS  Google Scholar 

  • Broxmeyer, H. E., 1992e, H-Ferritin: A regulatory cytokine that down modulates cell proliferation, J. Lab. Clin. Med. 120: 367–370.

    PubMed  CAS  Google Scholar 

  • Broxmeyer, H. E., 1993, Role of cytokines in hematopoiesis, in Clinical Aspects of Cytokines: Role in Pathogenesis, Diagnosis and Therapy ( J. J. Oppenheim, J. L. Rossio, and A. J. H. Gearing, eds.), pp. 201–206, Oxford University Press, New York.

    Google Scholar 

  • Broxmeyer, H. E., 1995a, Role of cytokines in hematopoiesis, in Human Cytokines: Their Role in Disease and Therapy ( B. B. Aggarwal and R. K. Puri, eds.), pp. 27–36, Blackwell Scientific Publications, Cambridge, MA.

    Google Scholar 

  • Broxmeyer, H. E., 1995b, The cell cycle as therapeutic target, Cancer Invest. 13: 617–624.

    Article  PubMed  CAS  Google Scholar 

  • Broxmeyer, H. E., 1996, Is interleukin 17, an inducible cytokine that stimulates production of other cytokines, merely a redundant player in a sea of other biomolecules? J. Exp. Med. 183 (in press).

    Google Scholar 

  • Broxmeyer, H. E., and Platzer, E.,1984, Lactoferrin acts on I-A and I-E/c antigen-positive subpopulations of mouse peritoneal macrophages in the absence of T-lymphocytes and other cell types to inhibit production of granulocyte—macrophage colony stimulatory factors in vitro, J. Immunol. 133: 306–314.

    Google Scholar 

  • Broxmeyer, H. E., and Williams, D. E., 1988, The production of myeloid blood cells and their regulation during health and disease, CRC Crit. Rev. Oncol./Hematol. 8: 173–226.

    Article  CAS  Google Scholar 

  • Broxmeyer, H. E., Mendelson, N., and Moore, M. A. S., 1977, Abnormal granulocyte feedback regulation of colony forming and colony stimulating activity-producing cells from patients with chronic myelogenous leukemia, Leukemia Res. 1: 3–12.

    Article  Google Scholar 

  • Broxmeyer, H. E., Smithyman, A., Eger, R. R., Meyers, P. A., and de Sousa, M., 1978, Identification of lactoferrin as the granulocyte-derived inhibitor of colony stimulating activity (CSA)-production, J. Exp. Med. 148: 1052 1067.

    Google Scholar 

  • Broxmeyer, H. E., de Sousa, M., Smithyman, A., Ralph, P., Hamilton, J., Kurland, J. I., and Bognacki, J., 1980, Specificity and modulation of the action of the lactoferrin, a negative feedback regulator of myelopoiesis, Blood 55: 324–333.

    PubMed  CAS  Google Scholar 

  • Broxmeyer, H. E., Bognacki, J., Dorner, M. H., and de Sousa, M., 1981, The identification of leukemia-associated inhibitory activity (LIA) as acidic isoferritins: A regulatory role for acidic isoferritins in the production of granulocytes and macrophages, J. Exp. Med. 153: 1426–1444.

    Article  PubMed  CAS  Google Scholar 

  • Broxmeyer, H. E., Bognacki, J., Ralph, P., Dorner, M. H., Lu, L., and Castro-Malaspina, H., 1982, Monocyte—macrophage derived acidic isoferritins: Normal feedback regulators of granulocyte—macrophage progenitor cells, Blood 60: 595–607.

    PubMed  CAS  Google Scholar 

  • Broxmeyer, H. E., Gentile, P., Bognacki, J., and Ralph, R., 1983a, Lactoferrin, transferrin and acidic isoferritins: Regulatory molecules with potential therapeutic value in leukemia, Blood Cells 9: 83–105.

    PubMed  CAS  Google Scholar 

  • Broxmeyer, H. E., Lu, L., Platzer, E. Feit, C., Juliano, L., and Rubin, B. Y., 1983b, Comparative analysis of the influences of human gamma, alpha and beta interferons on human multipotential (CFU-GEMM), erythroid (BFU-E) and granulocyte—macrophage (CFU-GM) progenitor cells, J. Immunol. 131: 1300–1305.

    CAS  Google Scholar 

  • Broxmeyer, H. E., Gentile, P., Cooper, S., Lu, L., Juliano, L., Piacibello, W., Meyers, P. A., and Cavanna, F., 1984, Functional activities of acidic isoferritins and lactoferrin in vitro and in vivo, Blood Cells 10: 397–426.

    PubMed  CAS  Google Scholar 

  • Broxmeyer, H. E., Juliano, L., Waheed, A., and Shadduck, R. K., 1985a, Release from mouse macrophages of acidic isoferritins that suppress hematopoietic progenitor cells is induced by purified L-cell colony stimulating factors and suppressed by human lactoferrin, J. Immunol. 135: 3224–3231.

    PubMed  CAS  Google Scholar 

  • Broxmeyer, H. E., Cooper, S., Rubin, B. Y., and Taylor, M. W., 1985b, The synergistic influence of human gamma-and alpha-interferons on suppression of hematopoietic progenitor cells is additive with the enhanced sensitivity of these cells to inhibition by interferons at low oxygen tension in vitro, J. Immunol. 135: 2502–2506.

    PubMed  CAS  Google Scholar 

  • Broxmeyer, H. E., Bicknell, D. C., Gillis, S., Harris, E. L., Pelus, L. M., and Sledge, G. W., Jr., 1986a, Lactoferrin: Affinity purification from human milk and polymorphonuclear neutrophils using monoclonal antibody (II2C) to human lactoferrin, development of an immunoradiometric assay using 1I2C, and myelopoietic regulation and receptor-binding characteristics, Blood Cells 11: 429–446.

    PubMed  CAS  Google Scholar 

  • Broxmeyer, H. E., Lu, L., Bicknell, D. C., Williams, D. E., Cooper, S., Levi, S., Salfeld, J., and Arosio, P., 1986b, The influence of purified recombinant human acidic and basic isoferritins on colony formation in vitro by granulocyte—macrophage and erythroid progenitor cells, Blood 68: 1257–1263.

    PubMed  CAS  Google Scholar 

  • Broxmeyer, H. E., Williams, D. E., Lu, L., Cooper, S., Anderson, S. L., Beyer, G. S., Hoffman, R., and Rubin, B. Y., 1986c, The suppressive influences of human tumor necrosis factor on bone marrow hematopoietic cells from normal donors and patients with leukemia: Synergism of tumor necrosis factor and gamma interferon, J. Immunol. 136: 4487–4495.

    PubMed  CAS  Google Scholar 

  • Broxmeyer, H. E., Piacibello, W., Juliano, L., Platzer, E., Berman, E., and Rubin, B. Y., 1986d, Gamma interferon induces colony forming cells of the human monoblast cell line U937 to respond to inhibition by lactoferrin, transferrin and acidic isoferritins, Exp. Hematol. 14: 35–43.

    PubMed  CAS  Google Scholar 

  • Broxmeyer, H. E., Williams, D. E., Hangoc, G., Cooper, S., Gentile, P., Shen, R.-N., Ralph, P., Gillis, S., and Bicknell, D. C., 1987a, The opposing action in vivo on murine myelopoiesis of purified preparations of lactoferrin and the colony stimulating factors, Blood Cells 13: 31–48.

    PubMed  CAS  Google Scholar 

  • Broxmeyer, H. E., Williams, D. E., Lu, L., Vadhan, S., Cooper, S., Bicknell, D. C., Ralph, P., Gutterman, J., and Tricot, G., 1987b, Biomolecules associated with suppression of myelopoiesis in normal conditions and during myeloid leukemia and other related disorders, in The Inhibitors of Hematopoiesis, Vol. 162 ( A. Najman, M. Guigon, N. C. Gorin, and J. Y. Mary, eds.), pp. 139–149, John Libbey Eurotext Limited, Paris.

    Google Scholar 

  • Broxmeyer, H. E., Cooper, S., Williams, D. E., Hangoc G., Gutterman, J. U., and Vadhan, S., 1988a, Effects of purified recombinant human granulocyte—macrophage colony stimulating factor on growth characteristics of bone marrow hematopoietic progenitor cells in patients on a phase I clinical trial, Exp. Hematol. 16: 594–602.

    PubMed  CAS  Google Scholar 

  • Broxmeyer, H. E., Williams, D. E., Geissler, K., Hangoc, G., Cooper, S., Levi, S., and Arosio, P., 1988b, Suppressive effects in vivo of purified recombinant human H-subunit (acidic) ferritin on murine myelopoiesis, Blood 73: 74–79.

    Google Scholar 

  • Broxmeyer, H. E., Lu, L., Cooper, S., Schwall, R. H., Mason, A. J., and Nikolics, K., 1988c, Selective and indirect modulation of human hematopoietic progenitor cell proliferation by recombinant human activin and inhibin, Proc. Natl. Acad. Sci. U.S.A. 85: 9052–9056.

    Article  PubMed  CAS  Google Scholar 

  • Broxmeyer, H. E., Cooper, S., and Vadhan-Raj, S., 1989a, Cell cycle status of erythroid (BFU-E) progenitor cells from the bone marrows of patients on a clinical trial with purified recombinant human granulocyte—macrophage colony-stimulating factor, Exp. Hematol. 17: 455–459.

    PubMed  CAS  Google Scholar 

  • Broxmeyer, H. E., Sherry, B., Lu, L., Cooper, S., Carow, C., Wolpe, S. D., and Cerami, A., 19896, Myelopoietic enhancing effects of murine macrophage inflammatory proteins 1 and 2 in vitro on colony formation by murine and human bone marrow granulocyte—macrophage progenitor cells, J. Exp. Med. 170: 1583–1594.

    Google Scholar 

  • Broxmeyer, H. E., Sherry, B., Lu, L., Cooper, S., Oh, K. O., Tekamp-Olson, R, Kwon, B. S., and Cerami, A., 1990, Enhancing and suppressing effects of recombinant murine macrophage inflammatory proteins on colony formation in vitro by bone marrow myeloid progenitor cells, Blood 76: 1110–1116.

    PubMed  CAS  Google Scholar 

  • Broxmeyer, H. E., Najman, A., and Dainiak, N., 1991a, Summary of meeting on negative regulators of hematopoiesis, Exp. Hematol. 19: 149–152.

    PubMed  CAS  Google Scholar 

  • Broxmeyer, H. E., Maze, R., Miyazawa, K., Carow, C., Hendrie, P. C., Cooper, S., Hangoc, G., Vadhan-Raj, S., and Lu, L., 1991b, The Kit receptor and its ligand, Steel factor, as regulators of hemopoiesis, Cancer Cells 3: 480–487.

    Google Scholar 

  • Broxmeyer, H. E., Sherry, B., Cooper, S., Ruscetti, F. W., Williams, D. E., Arosio, P., Kwon, B. S., and Cerami, A., 1991e, Macrophage inflammatory protein (MIP)-Iß abrogates the capacity of MIP-la to suppress myeloid progenitor cell growth, J. Immunol. 147: 2586–2594.

    PubMed  CAS  Google Scholar 

  • Broxmeyer, H. E., Cooper, S., Levi, S., and Arosio, P., 1991d, Mutated recombinant human heavy-chain ferritins and myelosuppression in vitro and in vivo: A link between ferritin ferroxidase activity and biological function, Proc. Natl. Acad. Sci. U.S.A. 88: 770–774.

    Article  PubMed  CAS  Google Scholar 

  • Broxmeyer, H. E., Bicknell, D. C., Cooper, S., Sledge, G., Jr., Williams, D. E., McGuire, W. A., and Coates, T. D., 1991e, Qualitative functional deficiency of affinity purified lactoferrin from neutrophils and patients with chronic myelogenous leukemia, and lactoferrin/H-ferritin cell-interactions in a patient with lactoferrindeficiency with normal numbers of circulating leukocytes, Pathobiology 59: 26–35.

    Article  PubMed  CAS  Google Scholar 

  • Broxmeyer, H. E., Sherry, B., Cooper, S., Lu, L., Maze, R., Beckmann, M. R, Cerami, A., and Ralph, R, 1993a, Comparative analysis of the suppressive effects of the human macrophage inflammatory protein family of cytokines (chemokines) on proliferation of human myeloid progenitor cells, J. Immunol. 150: 3448–3458.

    PubMed  CAS  Google Scholar 

  • Broxmeyer, H. E., Benninger, L., Hague, N., Hendrie, R, Cooper, S., Mantel, C., Cometta, K., Vadhan-Raj, S., Sarris, A., and Lu, L., 1993b, Suppressive effects of the chemokine (macrophage inflammatory protein) family of cytokines on proliferation of normal and leukemia myeloid cell proliferation, in Coloque INSERM, Vol. 229: The Negative Regulation of Hematopoiesis from Fundamental Aspects to Clinical Applications ( M. Guigon, F. M. Lemoine, N. Dainiak, A. Schechter, and A. Najman, eds.), pp. 141–154, John Libbey Eurotext, Paris.

    Google Scholar 

  • Broxmeyer, H. E., Mantel, C., Cooper, S., Kreisberg, R., and Moore, R. N., 1993e, Administration of macrophage inflammatory protein la, lactoferrin or H-ferritin to mice or rats induces a common non-species specific low molecular weight inhibitor active in vitro and in vivo: Biochemical, biological and antigenic characterization, Blood 82: 181a.

    Google Scholar 

  • Broxmeyer, H. E., Benninger, L., Patel, S. R., Benjamin, R. S., and Vadhan-Raj, S., 1994, Kinetic responses of human marrow myeloid progenitor cells to in vivo treatment of patients with G-CSF is different from that with GM-CSF, Exp. Hematol. 22: 100–102.

    PubMed  CAS  Google Scholar 

  • Broxmeyer, H. E., Lu, L., Cooper, S., Ruggieri, L., Li, Z. H., and Lyman, S. D., 1995a, Flt-3-ligand stimulates/costimulates the growth of myeloid stem/progenitor cells, Exp. Hematol. 23: 1121–1129.

    PubMed  CAS  Google Scholar 

  • Broxmeyer, H. E., Cooper, S., Li, Z. H., Lu, L., Song, H-O., Kwon, B. S., Warren, R. E., and Donner, D. B., 1995b, Myeloid progenitor cell regulatory effects of vascular endothelial cell growth factor, a ligand for the tyrosine kinase receptor Flk-I, Int. J. Hematol. 62: 203–215.

    Article  PubMed  CAS  Google Scholar 

  • Broxmeyer, H. E., Cooper, S., Hague, N., Benninger, L., Sarris, A., Cornetta, K., Vadhan-Raj, S., Hendrie, P., and Mantel, C., 1995c, Human chemokines: Enhancement of specific activities and effects in vitro on normal and leukemic progenitors and a factor dependent cell line and in vivo in mice, Ann. Hematol. 71: 235–246.

    Article  PubMed  CAS  Google Scholar 

  • Broxmeyer, H. E., Benninger, L., Cooper, S., Hague, N., Benjamin, R. S., and Vadhan-Raj, S., 1995d, Effects of in vivo treatment with PIXY321 (GM-CSF/IL-3 fusion protein) on proliferation kinetics of bone marrow and blood myeloid progenitor cells in patients with sarcoma, Exp. Hematol. 23: 335–340.

    PubMed  CAS  Google Scholar 

  • Broxmeyer, H. E., Cooper, S., Maione, T., Gordon, M., and Daly, T., 1995e, Myeloprotective effects of the chemokines interleukin-8 and platelet factor 4 in a mouse model of cytosine arabinoside (ARA-C) chemotherapy, Expo. Hematol. 23: 900.

    Google Scholar 

  • Broxmeyer, H. E., Cooper, S., Cacalano, G., Hague, N. L., Balish, E., and Moore, M. W., 1995f, Interleukin-8 is a myelosuppressive regulatory cytokine in vivo: Evidence from mice lacking the murine IL-8 receptor homolog, Blood 86 (Suppl. 1): 422.

    Google Scholar 

  • Broxmeyer, H. E., Hague, N. L., Sledge, G. W., Jr., Rasmussen, H., and Gordon, M. S., 1995g, Suppression of marrow and mobilization of blood myeloid progenitors in vivo by BB10010, a genetically engineered variant of human macrophage inflammatory protein (MIP)-la, in a phase 1 clinical trial in patients with relapsed/ refractory breast cancer, Blood 86 (Suppl. 1): 12a.

    Google Scholar 

  • Broxmeyer, H. E., Cooper, S., Li, Z.-H., Lu, L., Wang, M-H., Sarris, A., Chang, M.-S., Donner, D. B., and Leonard, E. J., 1996, Macrophage-stimulating protein, a ligand for the RON tyrosine kinase receptor, suppresses myeloid progenitor cell proliferation in vitro and synergizes in this effect with vascular endothelial cell growth factor and members of the chemokine family, including ENA-78, Ann. Hematol. (in press).

    Google Scholar 

  • Cacalano, G., Lee, J., Kikly, K., Ryan, A. M., Pitts-Meek, S., Hultgren, B., Wood, W. I., and Moore, M. W., 1994, Neutrophil and B cell expansion in mice that lack the murine IL-8 receptor homolog, Science 265: 682–684.

    Article  PubMed  CAS  Google Scholar 

  • Carlino, J. A., Higley, H. R., Creson, J. R., Avis, R. D., Ogawa, Y., and Ellingsworth, L. R., 1992, Transforming growth factor ßl systematically modulates granuloid, erythroid, lymphoid, and thrombocytic cells in mice, Exp. Hematol. 20: 943–950.

    PubMed  CAS  Google Scholar 

  • Cashman, J. D., Eaves, A. C., Raines, E. W., Ross, R., and Eaves, C. J., 1990, Mechanisms that regulate the cell cycle status of very primitive hematopoietic cells in long-term human marrow cultures. I. Stimulatory role of a variety of mesenchymal cell activators and inhibitory role of TGF-ß, Blood 75: 96–101.

    PubMed  CAS  Google Scholar 

  • Cerretti, D. P., Kozlosky, C. J., Bos, T. V., Nelson, N., Gearing, D. P., and Beckmann, M. P., 1993, Molecular characterization of receptors for human interleukin-8, GRO/melanoma growth-stimulatory activity and neutrophil activating peptide-2, Mol. Immunol. 30: 359–367.

    Article  PubMed  CAS  Google Scholar 

  • Chaudhuri, A., Zbrzezna, V., Polyakova, J., Pogo, O., Hesselgesser, J., and Horuk, R., 1994, Expression of the duffy antigen in K562 cells. Evidence that it is the human erythrocyte chemokine receptor, J. Biol. Chem. 269: 7835–7838.

    PubMed  CAS  Google Scholar 

  • Chen, L. T., Lu, L., and Broxmeyer, H. E., 1987, Effects of purified iron-saturated human lactoferrin on spleen morphology in mice infected with Friend virus complex, Am. J. Pathol. 126: 285–292.

    PubMed  CAS  Google Scholar 

  • Clark-Lewis, I., Kim, K.-S., Rajarathnam, K., Gong, J-H., Dewald, B., Moser, B., Baggiolini, M., and Sykes, B. D., 1995, Structure—activity relationships of chemokines, J. Leuk. Biol. 57: 703–711.

    CAS  Google Scholar 

  • Clements, J. M., Craig, S., Gearing, A. J. H., Hunter, M. G., Heyworth, C. M., Dexter, T. M., and Lord, B. I., 1992, Biological and structural properties of MIP-la expressed in yeast, Cytokine 4: 76–82.

    Article  PubMed  CAS  Google Scholar 

  • Clore, G. M., and Gronenborn, A. M., 1995, Three-dimensional structures of a and 0 chemokines, FASEB J. 9: 57–62.

    PubMed  CAS  Google Scholar 

  • Cooper, S., Mantel, C., and Broxmeyer, H. E., 1994, Myelosuppressive effects in vivo with very low dosages of monomeric recombinant murine macrophage inflammatory protein-la, Exp. Hematol. 22: 186–193.

    PubMed  CAS  Google Scholar 

  • Dainiak, N., Guigon, M., Broxmeyer, H. E., Lemoine, F., and Najman, A., 1994, Meeting on negative regulation of hematopoietic cell growth and differentiation, Exp. Hematol. 22: 399–405.

    PubMed  CAS  Google Scholar 

  • Daly, T. J., LaRosa, G. J., Dolich, S., Maione, T. E., Cooper, S., and Broxmeyer, H. E., 1995, High activity suppression of myeloid progenitor proliferation by chimeric mutants of IL-8 and PF4, J. Biol. Chem. 270: 23282–23292.

    Article  PubMed  CAS  Google Scholar 

  • Daopin, S., Piez, K. A., Ogawa, Y., and Davies, D. R., 1992, Crystal structure of transforming growth factor-132: An unusual fold for the superfamily, Science 257: 369–373.

    Article  PubMed  CAS  Google Scholar 

  • Darnell, J. E., Jr., Kerr, I. M., and Stark, G. R., 1994, Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins, Science 264: 1415–1421.

    Article  PubMed  CAS  Google Scholar 

  • Datto, M. B., Li, Y., Panus, J. F., Howe, D. J., Xiong, Y., and Wang, X. F., 1995, Transforming growth factor ß induces the cyclin-dependent kinase inhibitor p21 through a p53-independent mechanism, Proc. Natl. Acad. Sci. U.S.A. 92: 5545–5549.

    Article  PubMed  CAS  Google Scholar 

  • Davis, R. J., 1994, MAPKs: New JNK expands the group, Trends Biochem. Sci. 19: 470–474.

    Article  PubMed  CAS  Google Scholar 

  • de Vos, S., Brach, M. A., Asano, Y., Ludwig, W. D., Bettelheim, P., Gruss, H. J., and Herrmann, F., 1993, Transforming growth factor-131 interferes with the proliferation-inducing activity of stem cell factor in myelogenous leukemia blasts through functional dow-regulation of the c-kit proto-oncogene product, Cancer Res. 53: 3638–3642.

    PubMed  CAS  Google Scholar 

  • De Vries, C., Escobedo, J. A., Ueno, H., Houck, K., Ferrara, N., and Williams, L. T., 1992, The fms-like tyrosine kinase, a receptor for vascular endothelial growth factor, Science 255: 989–991.

    Article  PubMed  Google Scholar 

  • Diaz-Meco, M. T., Dominguez, I., Sanz, L., Municio, M. M., Berra, E., Comet, M. E., de Herreros, A. G., Johansen, T., and Moscat, J., 1992, Phospholipase C-mediated hydrolysis of phosphatidylcholine is a target of transforming growth factor 131 inhibitory signals, Mol. Cell. Biol. 12: 302–308.

    PubMed  CAS  Google Scholar 

  • Dubois, C. M., Ruscetti, F. W., Stankova, J., and Keller, J. R., 1994, Transforming growth factor-0 regulates c-kit message stability and cell-surface protein expression in hematopoietic progenitors, Blood 83: 3138–3145.

    PubMed  CAS  Google Scholar 

  • Duma, E. M., Foster, J. S., and Moore, R. N., 1988, Bradykinin sensitization of CSF-1-responsive murine mononuclear phagocyte precursors to prostaglandin E, J. Immunol. 141: 3186–3189.

    PubMed  CAS  Google Scholar 

  • Dunlop, D. J., Wright, E. G., Lorimore, S., Graham, G. J., Holyoake, T., Kerr, D. J., Wolpe, S. D., and Pragnell, I. B., 1992, Demonstration of stem cell inhibition and myeloprotective effects of SCI/rhMIP-la in vivo, Blood 79: 2221–2225.

    PubMed  CAS  Google Scholar 

  • Eaves, C. J., Cashman, J. D., Wolpe, S.D., and Eaves, A. C., 1993, Unresponsiveness of primitive chronic myeloid leukemia cells to macrophage inflammatory protein la, an inhibitor of primitive normal; hematopoietic cells, Proc. Natl. Acad. Sci. U.S.A. 90: 12015–12019.

    Article  PubMed  CAS  Google Scholar 

  • Ebner, R., Cheng, R. H., Lawler, S., Zioncheck, T., and Derynck, R., 1993a, Determination of type I receptor specificity by the type II receptors for TGF-13 or activin, Science 262: 900–902.

    Article  PubMed  CAS  Google Scholar 

  • Ebner, R., Chen, R. H., Shum, L., Lawler, S., Zioncheck, T. F., Lee, A., Lopez, A. R., and Derynck, R., 1993b

    Google Scholar 

  • Cloning of a type I TGF-3 receptor and its effect on the TGF-ß binding to the type II receptor, Science 260:1344–1348.

    Google Scholar 

  • Ewen, M. E., Sluss, H. K., Whitehouse, L. L., and Livingston, D. M., 1993, TGF(3 inhibition of Cdk4 synthesis is linked to cell cycle arrest, Cell 74: 1009–1020.

    Article  PubMed  CAS  Google Scholar 

  • Fan, K., Ruan, Q., Sensenbrenner, L., and Chen, B., 1992, Transforming growth factor-ßl bifunctionally regulates murine macrophage proliferation, Blood 79: 1679–1685.

    PubMed  CAS  Google Scholar 

  • Favaloro, E. J., 1993, Differential expression of surface antigens on activated endothelism, Immunol. Cell Biol. 71: 571–581.

    Article  PubMed  CAS  Google Scholar 

  • Ferrajoli, A., Talpoz, M., Zipf, T. F., Hirsch-Ginsberg, C., Estey, E., Wolpe, S. D., and Estrov, Z., 1994, Inhibition of acute myelogenous leukemia progenitor proliferation by macrophage inflammatory protein 1-a, Leukemia 8: 798–805.

    PubMed  CAS  Google Scholar 

  • Franzen, P., ten Dijke, P., Ichijo, H., Yamashita, H., Schulz, P., Heldin, C. H., and Miyazono, K., 1993, Cloning of a TGF-ß type I receptor that forms a heteromeric complex with the TGF-ß type II receptor, Cell 75: 681–692.

    Article  PubMed  CAS  Google Scholar 

  • Furmanski, P., and Li, Z. P., 1990, Multiple forms of lactoferrin in normal and leukemic human granulocytes, Exp. Hematol. 18: 932–935.

    PubMed  CAS  Google Scholar 

  • Furmanski, P., Li, Z. P., Fortuna, M. B., Swamy, C. H. V. B., and Das, M. R., 1989, Multiple molecular forms of human lactoferrin, J. Exp. Med. 170: 415–429.

    Article  PubMed  CAS  Google Scholar 

  • Gabrilove, J. L., Wong, G., Bollenbacher, E., White, K., Kojima, S., and Wilson, E. L., 1993, Basic fibroblast growth factor counteracts the suppressive effect of transforming growth factor-ßl on human myeloid progenitor cells, Blood 81: 909–915.

    PubMed  CAS  Google Scholar 

  • Ganser, A., Carlo-Stella, C., Greher, J., Volkers, B., and Hoelzer, D., 1987, Effect of recombinant interferons alpha and gamma on human bone marrow-derived megakaryocytic progenitor cells, Blood 70: 1173–1179.

    PubMed  CAS  Google Scholar 

  • Garre, C., Bianchi-Scarra, G., Sirito, M., Musso, M., and Ravazzolo, R., 1992, Lactoferrin binding sites and nuclear localization in K562(s) cells, J. Cell Physiol. 153: 477–482.

    Article  PubMed  CAS  Google Scholar 

  • Geng, Y., and Weinberg, R. A., 1993, Transforming growth factor ß effects on expression of G cyclins and cyclindependent protein kinases, Proc. Natl. Acad. Sci. U.S.A. 90: 10315–10319.

    Article  PubMed  CAS  Google Scholar 

  • Gentile, P., and Broxmeyer, H. E., 1983, Suppression of mouse myelopoiesis by administration of human lactoferrin in vivo and the comparative action of human transferrin, Blood 61: 982–993.

    PubMed  CAS  Google Scholar 

  • Gentile, P. S., and Pelus, L. M., 1987, In vivo modulation of myelopoiesis by prostaglandin E2. II. Inhibition of granulocyte—macrophage progenitor cell (CFU-GM) cell-cycle rate, Exp. Hematol. 15: 119–126.

    CAS  Google Scholar 

  • Gentile, P. S., and Pelus, L. M., 1988, In vivo modulation of myelopoiesis by prostaglandin E2 IV. Prostaglandin E2 induction of myelopoietic inhibitor activity, J. Immunol. 141: 2714–2720.

    CAS  Google Scholar 

  • Gentile, P., Byer, D., and Pelus, L. M., 1983, In vivo modulation of murine myelopoiesis following intravenous administration of prostaglandin E2, Blood 62: 1100–1107.

    CAS  Google Scholar 

  • Gentile, P. S., Mantel, C. R., and Broxmeyer, H. E., 1989, Purification to apparent homogeneity of a new myelopoietic inhibitory factor produced in response to in vivo administration of human lactoferrin or recombinant H-subunit ferritin, Blood 74: 228a.

    Google Scholar 

  • Gewirtz, A. M., Calabretta, B., Rucinski, B., Niewiarowski, S., and Xu, W. Y., 1989, Inhibition of human megakaryopoiesis in vitro by platelet factor 4 (PF4) and a synthetic COOH-terminal PF4 peptide, J. Clin. Invest. 83: 1477–1486.

    Article  PubMed  CAS  Google Scholar 

  • Goey, H., Keller, J. R., Back, T., Longo, D. L., Ruscetti, F. W., and Wiltrout, R. H., 1989, Inhibition of early murine hemopoietic progenitor cell proliferation after in vivo locoregional administration of transforming growth factor-ßl, J. Immunol. 143: 877–880.

    PubMed  CAS  Google Scholar 

  • Graham, G. J., Wright, E. G., Hewick, R., Wolpe, S.D., Wilkie, N. M., Donaldson, D., Lorimore, S., and Pragnell, I. B., 1990, Identification and characterization of an inhibitor of haemopoietic stem cell proliferation, Nature 344: 442–444.

    Article  PubMed  CAS  Google Scholar 

  • Graham, G. J., Freshney, M. G., Donaldson, D., and Pragnell, I. B., 1992, Purification and biochemical characterization of human and murine stem cell inhibitors (SCI), Growth Factors 7: 151–160.

    Article  PubMed  CAS  Google Scholar 

  • Graham, G. J., Zhou, L., Weatherbee, J. A., Tsang, M. L. S., Napolitano, M., Leonard, W. J., and Pragnell, I. B., 1993, Characterization of a receptor for macrophage inflammatory protein la and related proteins on human and murine cells, Cell Growth Differ. 4: 137–146.

    PubMed  CAS  Google Scholar 

  • Graham, G. J., MacKenzie, J., Lowe, S., Tsang, M. L. S.. Weatherbee, J. A., Issacson, A., Medicherla, J., Fang, F., Wilkinson, P. C., and Pragnell, I. B., 1994, Aggregation of the chemokine MIP-la is a dynamic and reversible phenomenon, J. Biol. Chem. 269: 4974–4978.

    PubMed  CAS  Google Scholar 

  • Gruss, H. J., and Dower, S. K., 1995, Tumor necrosis factor ligand superfamily: Involvement in the pathology of malignant lymphomas, Blood 85: 3378–3404.

    PubMed  CAS  Google Scholar 

  • Grzegorzewski, K., Ruscetti, F. W., Usui, N., Damia, G., Longo, D. L., Carlino, J. A., Keller, J. R., and Wiltrout, R. H., 1994, Recombinant transforming growth factor 31 and 32 protect mice from acutely lethal doses of 5-fluorouracil and doxorubicin, J. Exp. Med. 180: 1047–1057.

    Article  PubMed  CAS  Google Scholar 

  • Guigon, M., and Bonnet, D., 1995, Inhibitory peptides in hematopoiesis, Exp. Hematol. 23: 477–481.

    PubMed  CAS  Google Scholar 

  • Guigon, M., Lemoine, F. M., Dainiak, N., Schechter, A., and Najman, A. (eds.), 1993, Colloque INSERM, Vol. 229:The Negative Regulation of Hematopoiesis from Fundamental Aspects to Clinical Applications, pp. 3–492, John Libbey Eurotext, Paris.

    Google Scholar 

  • Hampson, J., Ponting, I. L. O., Cook, N., Vodinelich, L., Redmond, S., Roberts, A. B., and Dexter, T. M.,1989, The effects of TGF3 on haematopoietic cells, Growth Factors 1: 193–202.

    Google Scholar 

  • Han, Z. C., Maurer, A. M., Bellucci, S., Wan, H. Y., Kroviarski, Y., Bertrand, O., and Caen, J. P., 1992, Inhibitory effects of platelet factor 4 (PF4) on the growth of human erythroleukemia cells: Proposed mechanisms of action of PF4, J. Lab. Clin. Med. 120: 645–660.

    PubMed  CAS  Google Scholar 

  • Hangoc, G., Lu, L., Oliff, A., Hu, W., Bicknell, D. C., Williams, D. E., Gillis, S., and Broxmeyer, H. E., 1987a, Modulation of Friend virus infectivity in mice by purified human lactoferrin and purified recombinant murine interleukin-3, Leukemia 1: 762–764.

    PubMed  CAS  Google Scholar 

  • Hangoc, G., Lu, L., and Broxmeyer, H. E., 1987b, The comparative enhancing effects of prostaglandin E1 on colony formation by erythroid progenitor (BFU-E) cells from bone marrow of mice differing in the FV-2 locus, Leukemia Res. 11: 501–507.

    Article  CAS  Google Scholar 

  • Hangoc, G., Carow, C. E., Schwall, R., Mason, A. J., and Broxmeyer, H. E., 1992, Effects in vivo of recombinant human inhibin on myelopoiesis in mice, Exp. Hematol. 20: 1243–1246.

    PubMed  CAS  Google Scholar 

  • Hannon, G. J., and Beach, D., 1994, p151NK4B is a potential effector of TGF-ß-induced cell cycle arrest, Nature 371: 257–261.

    Google Scholar 

  • Hatzfeld, J., Li, M. L., Brown, E. L., Sookdeo, H., Levesque, J. P., O’Toole, T., Gurney, C., Clark, S. C., and Hatzfeld, A., 1991, Release of early human hematopoietic progenitors from quiescence by antisense transforming growth factor ßl or Rb oligonucleotides, J. Exp. Med. 174: 925–929.

    Article  PubMed  CAS  Google Scholar 

  • He, J., and Furmanski, P., 1995, Sequence specificity and transcriptional activation in the binding of lactoferrin to DNA, Nature 373: 721–724.

    Article  PubMed  CAS  Google Scholar 

  • Heinrich, M. C., Dooley, D. C., and Keeble, W. W., 1995, Transforming growth factor 131 inhibits expression of the gene products for Steel factor and its receptor (c-kit), Blood 85: 1769–1780.

    PubMed  CAS  Google Scholar 

  • Hendrie, P. C., Miyazawa, K., Yang, Y. C., Langefield, C. D., and Broxmeyer, H. E., 1991, Mast cell growth factor (c-kit ligand) enhances cytokine stimulation of proliferation of human factor dependent cell line, M07e, Exp. Hematol. 19: 1031–1037.

    PubMed  CAS  Google Scholar 

  • Herskowitz, I., 1995, MAP kinase pathways in yeast: For mating and more, Cell 80: 187–197.

    Article  PubMed  CAS  Google Scholar 

  • Hino, M., Tojo, A., Miyazono, K., Urabe, A., and Takaku, F.,1988, Effects of type l3 transforming growth factors on haematopoietic progenitor cells, Br. J. Hammatol. 70: 143–147.

    Google Scholar 

  • Holmes, W. E., Lee, J., Kuang, W. J., Rice, G. C., and Wood, W. I., 1991, Structure and functional expression of a human interleukin-8 receptor, Science 253: 1278–1280.

    Article  PubMed  CAS  Google Scholar 

  • Horie, M., and Broxmeyer, H. E., 1993, Involvement of immediate-early gene expression in the synergistic effects of steel factor in combination with granulocyte—macrophage colony stimulating factor or interleukin-3 on proliferation of a human factor-dependent cell line, J. Biol. Chem. 268: 968–973.

    PubMed  CAS  Google Scholar 

  • Hunter, M. G., Bawden, L., Brotherton, D., Craig, S., Cribbes, S., Czaplewski, L. G., Dexter, T. M., Drummond, A. H., Gearing, A. H., Heyworth, C. M., Lord, B. I., McCourt, M., Varley, P. G., Wood, L. M., Edwards, R. M., and Lewis, P. S., 1995, BB-10010: An active variant of human macrophage inflammatory protein-la with improved pharmaceutical properties, Blood 86: 4400–4408.

    PubMed  CAS  Google Scholar 

  • Jacobsen, F. W., Rothe, M., Rusten, L., Goeddel, D. V., Smeland, E. B., Veiby, O. E, Slordal, L., and Jacobsen, S. E. W., 1994, Role of the 75-kDa tumor necrosis factor receptor: Inhibition of early hematopoiesis, Proc. Natl. Acad. Sci. U.S.A. 91: 10695–10699.

    Article  PubMed  CAS  Google Scholar 

  • Jacobsen, F. W., Dubois, C. M., Rusten, L. S., Vieby, O. P., and Jacobsen, S. E. W., 1995, Inhibition of stem cell factor-induced proliferation of primitive murine hematopoietic progenitor cells signaled through the 75kilodalton tumor necrosis factor receptor, J. Immunol. 154: 3732–3741.

    PubMed  CAS  Google Scholar 

  • Jacobsen, S. E. W., Keller, J. R., Ruscetti, F. W., Kondaiah, P., Roberts, A. B., and Falk, L. A., 1991a, Bidirectional effects of transforming growth factor ß (TGF-13) on colony-stimulating factor-induced human myelopoiesis in vitro: Differential effects of distinct TGF-(3 isoforms, Blood 78: 2239–2247.

    PubMed  CAS  Google Scholar 

  • Jacobsen, S. E. W., Ruscetti, F. W., Dubois, C. M., Lee, J., Boone, T. C., and Keller, J. C., 1991b, Transforming growth factor-3 trans-modulates the expression of colony stimulating factor receptors on murine hematopoietic progenitor cells lines, Blood 77: 1706–1716.

    PubMed  CAS  Google Scholar 

  • Jacobsen, S. E. W., Jacobsen, F. W., Fahiman, C., and Rusten, L. S., 1994, TNF-a, the great imitator; role of p55 and p75 TNF receptors in hematopoiesis, Stem Cells 12: 111–128.

    PubMed  Google Scholar 

  • Jansen, R., Damia, G., Usui, N., Keller, J., Futami, H., Goey, H., Back, T. T., Longo, D. L., Ruscetti, F. W., and Wiltrout, R. H., 1991, Effects of recombinant transforming growth factor-01 on hematologic recovery after treatment of mice with 5-fluorouracil, J. Immunol. 147: 3342–3347.

    PubMed  CAS  Google Scholar 

  • Keller, J. R., Mantel, C., Sing, G. K., Ellingsworth, L. R., Ruscetti, S. K., and Ruscetti, F. W., 1988, Transforming growth factor 01 selectively regulates early murine hematopoietic progenitors and inhibits the growth of IL-3dependent myeloid leukemia cell lines, J. Exp. Med. 168: 737–750.

    Article  PubMed  CAS  Google Scholar 

  • Keller, J. R., McNiece, I. K., Sill, K. T., Ellingsworth, L. R., Quesenberry, P. J., Sing, G. K., and Ruscetti, F. W., 1990, Transforming growth factor 0 directly regulates primitive murine hematopoietic cell proliferation, Blood 75: 596–602.

    PubMed  CAS  Google Scholar 

  • Keller, J. R., Jacobsen, S. E. W., Dubois, C. M., Hestdal, K., and Ruscetti, F. W., 1992, Transforming growth factor-(3: A bidirectional regulator of hematopoietic cell growth, Int. J. Cell Cloning 10: 2–11.

    Article  PubMed  CAS  Google Scholar 

  • Keller, J. R., Bartelmez, S. H., Sinicka, E., Ruscetti, F. W., Ortiz, M., Gooya, J. M., and Jacobsen, S. E. W., 1994, Distinct and overlapping direct effects of macrophage inflammatory protein-la and transforming growth factor 0 on hematopoietic progenitor/stem cell growth, Blood 84: 2175–2181.

    PubMed  CAS  Google Scholar 

  • Kelvin, D. J., Michiel, D. F., Johnston, J. A., Lloyd, A. R., Springer, H., Oppenheim, J. J., and Wang, J. M., 1993, Chemokines and serpentines: The molecular biology of chemokine receptors, J. Leukocyte Biol. 54: 604–612.

    PubMed  CAS  Google Scholar 

  • Khoury, E., Andre, C., Pontvert-Delucq, S., Drenou, B., Baillou, C., Guigon, M., Najman, A., and Lemoine, F. M., 1994, Tumor necrosis factor a (TNFa) downregulates c-kit protooncogene product expression in normal and acute myeloid leukemia CD34+ cells via p55 TNFa receptors, Blood 84: 2506–2514.

    PubMed  CAS  Google Scholar 

  • Kishi, K., Ellingsworth, L. R., and Ogawa, M., 1989, The suppressive effects of type 0 transforming growth factor (TGFP) on primitive murine hemopoietic progenitors are abrogated by interleukin-6 and granulocyte colony-stimulating factor, Leukemia 3: 687–691.

    PubMed  CAS  Google Scholar 

  • Koff, A., Ohtsuki, M., Polyak, K., Roberts, J. M., and Massague, J., 1993, Negative regulation of Gl in mammalian cells: Inhibition of cyclin 3-dependent kinase by TGF-(3, Science 260: 536–539.

    Article  PubMed  CAS  Google Scholar 

  • Kreisberg, R., Detrick, M. S., Osmand, A. P., and Moore, R. N., 1993, Cytokine mediation of the suppressive effect of ferritin on colony-stimulating factor-1 -dependent monocytopoiesis, J. Immunol. 150: 5094–5103.

    PubMed  CAS  Google Scholar 

  • Kulkarni, A. B., Huh, C. G., Becker, D., Geiser, A., Lyght, M., Flanders, K. C., Roberts, A. B., Sporn, M. B., Ward, J. M., and Karlsson, S., 1993, Transforming growth factor P1 null mutation in mice causes excessive inflammatory response and early death, Proc. Natl. Acad. Sci. U.S.A. 90: 770–774.

    Article  PubMed  CAS  Google Scholar 

  • Kurland, J., and Moore, M. A. S.,1977, Modulation of hemopoietis by prostaglandins, Exp. Hematol. 5: 357–373.

    Google Scholar 

  • Kurland, J., Bockman, R., Broxmeyer, H. E., and Moore, M. A. S., 1978a, Limitation of excessive myelopoiesis by the intrinsic modulation of macrophage-derived prostaglandin E, Science 199: 552–555.

    Article  PubMed  CAS  Google Scholar 

  • Kurland, J. I., Broxmeyer, H. E., Bockman, R. S., and Moore, M. A. S., 1978b, Role for the monocyte-macrophage colony stimulating factor and prostaglandin E in the positive and negative feedback control of myeloid stem cell proliferation, Blood 52: 388–407.

    CAS  Google Scholar 

  • Laterveer, L., Lindley, I. J. D., Hamilton, M. S., Willemze, R., and Fibbe, W. E., 1995, Interleukin-8 induces rapid mobilization of hematopoietic stem cells with radioprotective capacity and long-term myelolymphoid repopulating ability, Blood 85: 2269–2275.

    PubMed  CAS  Google Scholar 

  • Lemoli, R. M., Strife, A., Clarkson, B. D., Haley, J. D., and Gulati, S. C., 1992, TGF-beta 3 protects normal human hematopoietic progenitor cells treated with 4-hydroperoxycyclophosphamide in vitro, Exp. Hematol. 20: 1252–1256.

    CAS  Google Scholar 

  • Lin, H. Y., Wang, X. F., Ng-Eaton, E., Weinberg, R. A., and Lodish, H. F., 1992, Expression cloning of the TGF-0 type II receptor, a functional transmembrane serine/threonine kinase, Cell 68: 775–785.

    Article  PubMed  CAS  Google Scholar 

  • Lord, B. I., Dexter, T. M., Clements, J. M., Hunter, M. A., and Gearing, A. J. H., 1992, Macrophage inflammatory protein protects the cytotoxic effects of hydroxyurea in vivo, Blood 79: 2605–2609.

    CAS  Google Scholar 

  • Lord, B. I., Woolford, L. B., Wood, L. M., Czaplewski, L. G., McCourt, M., Hunter, M. G., and Edwards, R. M., 1995, Mobilization of early hematopoietic progenitor cells with BB-10010: A genetically engineered variant of human macrophage inflammatory protein-la, Blood 85: 3412–3415.

    PubMed  CAS  Google Scholar 

  • Lu, L., and Broxmeyer, H. E., 1985, Comparative influences of phytohemagglutin-stimulated leukocyte condi-tioned medium, hemin, prostaglandin E and low oxygen tension on colony formation by erythroid progenitor cells in normal human bone marrow, Exp. Hematol. 13: 989–993.

    CAS  Google Scholar 

  • Lu, L., Broxmeyer, H. E., Meyers, P. A., Moore, M. A. S., and Thaler, H. T., 1983, Association of cell cycle expression of Ia-like antigenic determinants on normal human multipotential (CFU-GEMM) and erythroid (BFU-E) progenitor cells with regulation in vitro by acidic isoferritins, Blood 61: 250–256.

    PubMed  CAS  Google Scholar 

  • Lu, L., Pelus, L. M., and Broxmeyer, H. E., 1984, Modulation of expression of Ia-antigens and the proliferation of human erythroid (BFU-E) and multipotential (CFU-GEMM) progenitor cells by prostaglandin E, Exp. Hematol. 12: 741–748.

    PubMed  CAS  Google Scholar 

  • Lu, L., Broxmeyer, H. E., Moore, M. A. S., Sheridan, A. P., and Gentile, P., 1985, Abnormalities in myelopoietic regulatory interactions with acidic isoferritins and lactoferrin in mice infected with Friend virus complex: Associations with altered expression of Ia-antigens on effector and responding cells, Blood 65: 91–99.

    PubMed  CAS  Google Scholar 

  • Lu, L., Pelus, L. M., Broxmeyer, H. E., Moore, M. A. S., Wachter, M., Walker, D., and Platzer, E., 1986a, Enhancement of the proliferation of human marrow erythroid (BFU-E) progenitor cells by prostaglandin E requires the participation of OKTs positive T-lymphocytes and is associated with the density expression of major histocompatibility complex class II antigens on BFU-E, Blood 68: 126–133.

    PubMed  CAS  Google Scholar 

  • Lu, L., Welte, K., Gabrilove, J. L., Hangoc, G., Bruno, E., Hoffman, R., and Broxmeyer, H. E., 1986b, Effects of recombinant human tumor necrosis factor alpha, recombinant human interferon-gamma and prostaglandin E on colony formation of human hematopoietic progenitor cells stimulated by natural human pluripotent colony stimulating factor, pluriopoietin-alpha and recombinant erythropoietin in serum-free cultures, Cancer Res. 46: 4357–4361.

    CAS  Google Scholar 

  • Lu, L., Hangoc, G., Chen, L. T., Shen, N. R., Oliff, A., and Broxmeyer, H. E., 1987a, The protective influence of lactoferrin on mice infected with the polycythemia inducing strain of the Friend virus complex, Cancer Res. 47: 4184–4188.

    PubMed  CAS  Google Scholar 

  • Lu, L., Pelus, L. M., Piacibello, W., Moore, M. A. S., Hu, W., and Broxmeyer, H. E., 1987b, Prostaglandin E acts at two levels to enhance colony formation in vitro by erythroid (BFU-E) progenitor cells, Exp. Hematol. 15: 765–771.

    PubMed  CAS  Google Scholar 

  • Lu, L., Walker, D., Broxmeyer, H. E., Hoffman, R., Hu, W., and Walker, E., I987s, Characterization of adult human marrow hematopoietic progenitors highly enriched by two-color sorting with My10 and major histocompatibility (MHC) class II monoclonal antibodies, J. Immunol. 139: 1823–1829.

    Google Scholar 

  • Lu, L., Shen, R-N., Zhou, S. Z., Srivastava, C., Harrington, M. A., Miyazawa, K., Wu, B., Lin, Z-H., Ruscetti, S., and Broxmeyer, H. E., 1991, Synergistic effect of human lactoferrin and recombinant murine interferon-gamma on disease progression in mice infected with the polycythemia-inducing strain of the Friend Virus Complex, Int. J. Hematol. 54: 117–124.

    PubMed  CAS  Google Scholar 

  • Lu, L., Xiao, M., Grigsby, S., Wang, W. X., Wu, B., Shen, R.-N., and Broxmeyer, H. E., 1993a, Comparative effects of suppressive cytokines on isolated single CD34+++ stem/progenitor cells from human bone marrow and umbilical cord blood plated with and without serum, Exp. Hematol. 21: 1442–1446.

    PubMed  CAS  Google Scholar 

  • Lu, L., Xiao, M., Shen, R.-N., Grigsby, S., and Broxmeyer, H. E., 1993b, Enrichment, characterization and responsiveness of single primitive CD34+++ human umbilical cord blood hematopoietic progenitor with high proliferative and replating potential, Blood 81: 41–48.

    PubMed  CAS  Google Scholar 

  • Maltman, J., Pragnell, I. B., and Graham, G. J., 1993, Transforming growth factor ß: Is it a down regulator of stem cell inhibition by macrophage inflammatory protein la? J. Exp. Med. 178: 925–932.

    Article  PubMed  CAS  Google Scholar 

  • Mantel, C., Kim, Y. J., Cooper, S., Kwon, B., and Broxmeyer, H. E., 1993, Polymerization of murine macrophage inflammatory protein-la inactivates its myelosuppressive effects in vitro. The active form is monomer, Proc. Natl. Acad. Sci. U.S.A. 90: 2232–2236.

    Article  PubMed  CAS  Google Scholar 

  • Mantel, C., Miyazawa, K., and Broxmeyer, H. E., 1994, Physical characteristics and polymerization during iron saturation of lactoferrin, a myelopoietic regulatory molecule with suppressor activity, in Lactoferrin: Structure and Function (T. W. Hutchens, B. Lonnerdal, and S. V. Rumball, eds.), pp. 121–132, Plenum Press, New York.

    Google Scholar 

  • Mantel, C., Aronica, S., Luo, Z., Marshall, M. S., Kim, Y. J., Cooper, S., Hague, N., and Broxmeyer, H. E., 1995

    Google Scholar 

  • Macrophage inflammatory protein la enhances growth-factor stimulated phospholipid turnover and increases cAMP levels in the human factor-dependent cell line, M07e, J. Immunol. 154: 2342–2350.

    Google Scholar 

  • Massague, J., 1992, Receptors for the TGF-ß family, Cell 69: 1067–1070.

    Article  PubMed  CAS  Google Scholar 

  • Matthews, W., Jordan, G. T., Gavin, M., Jenkins, N. A., Copeland, N. G., and Lemischka, I. R., 1991, A receptor tyrosine kinase eDNA isolated from a population of enriched primitive hematopoietic cells and exhibiting close genetic linkage to c-kit, Proc. Natl. Acad. Sci. U.S.A. 88: 9026–9030.

    Article  CAS  Google Scholar 

  • Mayani, H., Little, M. T., Dragowska, W., Thornberry, G., and Lansdorp, P. M., 1995, Differential effects of the hematopoietic inhibitors MIP-la, TGF-ß and TNF-a on cytokine-induced proliferation of subpopulations of CD34+ cells purified from cord blood and fetal liver, Exp. Hematol. 23: 422–427.

    PubMed  CAS  Google Scholar 

  • Maze, R., Sherry, B., Kwon, B. S., Cerami, A., and Broxmeyer, H. E., 1992, Myelosuppressive effects in vivo of purified recombinant murine macrophage inflammatory protein-1 alpha, J. Immunol. 149: 1004–1009.

    PubMed  CAS  Google Scholar 

  • Metcalf, D., 1995, The granulocyte—macrophage regulators: Reappraisal by gene inactivation, Exp. Hematol. 23: 569–572.

    PubMed  CAS  Google Scholar 

  • Metz-Boutique, M. H., Jolies, J., Mazurier, J., Schoentgen, F., Legrand, D., Spik, G., Montreuil, J., and Jolles, P., 1984, Human lactotransferrin: Amino acid sequence and structural comparisons with other transferrins, Eur. J. Biochem. 145: 659–676.

    Article  Google Scholar 

  • Michiel, D., 1993, Chemokines: The missing link, Biotechnology 11: 739.

    Article  PubMed  CAS  Google Scholar 

  • Migdalska, A., Molineux, G., Demuynck, H., Evans, G. S., Ruscetti, F., and Dexter, T. M., 1991, Growth inhibitory effects of transforming growth factor-ßi in vivo, Growth Factors 4: 239–245.

    Article  CAS  Google Scholar 

  • Millauer, B., Wizigmann-Voos, S., Schnurch, H., Martinez, R., Moller, N., Risau, W., and Ullrich, A., 1993, High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis, Cell 72: 835–846.

    Article  PubMed  CAS  Google Scholar 

  • Miller, K. L., Carlino, J. A., Ogawa, Y., Avis, P. D., and Carroll, K. G., 1992, Alterations in erythropoiesis in TGF-01-treated mice, Exp. Hematol. 20: 951–956.

    PubMed  CAS  Google Scholar 

  • Miller, M. D., and Krangel, M. S., 1992, Biology and biochemistry of the chemokines: A family of chemotactic and inflammatory cytokines, Crit. Rev. Immunol. 12: 17–46.

    PubMed  CAS  Google Scholar 

  • Miyazawa, K., Mantel, C., Lu, L., Morrison, D. C., and Broxmeyer, H. E., 1991, Lactoferrin—lipopolysaccharide interactions: Effects on lactoferrin binding to monocyte/macrophage differentiated HL-60 cells, J. Immunol. 146: 723–729.

    PubMed  CAS  Google Scholar 

  • Miyazono, K., Ichijo, H., and Heldin, C. H., 1993, Transforming growth factor-ß: Latent forms, binding proteins and receptors, Growth Factors 8: 11–22.

    Article  PubMed  CAS  Google Scholar 

  • Morikawa, K., Oseko, F., and Morikawa, S., 1994, H- and L-rich ferritins suppress antibody production, but not proliferation, of human B lymphocytes in vitro, Blood 83: 737–743.

    CAS  Google Scholar 

  • Moser, B., Schumacher, C., Tscharner, V. V., Clark-Lewis, I., and Baggiolini, M., 1991, Neutrophil-activating peptide 2 and gro/melanoma growth-stimulatory activity interact with neutrophil-activating peptide/ interleukin-8 receptors on human neutrophils, J. Biol. Chem. 266: 10666–10671.

    PubMed  CAS  Google Scholar 

  • Munger, K., Pietenpol, J. A., Pittelkow, M. R., Holt, J. T., and Moses, H. L., 1992, Transforming growth factor ßl regulation of c-myc expression, pRB phosphorylation, and cell cycle progression in keratinocytes, Cell Growth Differ. 3: 291–298.

    PubMed  CAS  Google Scholar 

  • Munker, R., and Koeffler, P., 1987, In vitro action of tumor necrosis factor on myeloid leukemia cells, Blood 69: 1102–1108.

    CAS  Google Scholar 

  • Murase, T., Hotta, T., Saito, H., and Ohno, R., 1987, Effect of recombinant human tumor necrosis factor on the colony growth of human leukemia progenitor cells and normal hematopoietic progenitor cells, Blood 69: 467–472.

    PubMed  CAS  Google Scholar 

  • Nagata, K., Tohda, S., Suzuki, T., and Nara, N., 1989, Effects of recombinant human tumor necrosis factor on the self-renewal capacity of leukemic blast progenitors in acute myeloblastic leukemia, Leukemia 3: 626–630.

    PubMed  CAS  Google Scholar 

  • Najman, A., Guigon, M., Gorin, N-C., and Mary, J-Y. (eds.), 1987, Colloque INSERM, Vol.162: The Inhibitors of Hematopoiesis, pp. 3–354, John Libbey Eurotext, London.

    Google Scholar 

  • Nara, N., Tohda, S., Nagata, K., Suzuki, T., and Yamashita, Y., 1989, Inhibition of the in vitro growth of blast progenitors from acute myeloblastic leukemia patients by transforming growth factor-(3 (TGF-13), Leukemia 3: 572–577.

    PubMed  CAS  Google Scholar 

  • Nelson, N. A., Kelly, R. C., and Johnson, R. A., 1982, Prostaglandins and the arachidonic acid cascade, Chem. Eng. News 60: 30–44.

    Article  CAS  Google Scholar 

  • Neote, K., Darbonne, W., Oges, J., Horuk, R., and Schall, T. J., 1993a, Identification of a promiscuous inflammatory peptide receptor on the surface of red blood cells, J. Biol. Chem. 268: 12247–12249.

    PubMed  CAS  Google Scholar 

  • Neote, K., DiGregorio, D., Mak, J. Y., Horuk, R., and Schall, T. J., 1993b, Molecular cloning, functional expression, and signalling characteristics of a c-c chemokine receptor, Cell 72: 415–425.

    Article  PubMed  CAS  Google Scholar 

  • Neote, K., Mak, J. Y., Kolakowski, L. F., and Schall, T. J., 1994, Functional and biochemical analysis of the cloned duffy antigen: identity with the red blood cell chemokine receptor, Blood 84: 44–52.

    PubMed  CAS  Google Scholar 

  • Oh, K. O., Zhou, Z., Kim, K. K., Samanta, H., Fraser, M., Kim, Y. J., Broxmeyer, H. E., and Kwon, B. S., 1991, Identification of cell surface receptors for murine macrophage inflammatory protein-la, J. Immunol. 147: 2978–2983.

    PubMed  CAS  Google Scholar 

  • Ottmann, O. G., and Pelus, L. M., 1988, Differential proliferation effects of transforming growth factor-ß on human hematopoietic progenitor cells, J. Immunol. 140: 2661–2665.

    PubMed  CAS  Google Scholar 

  • Paolini, J. F., Willard, D., Consler, T., Luther, M., and Krangel, M. S., 1994, The chemokines IL-8, monocyte chemoattractant protein-1, and I-309 are monomers at physiologically relevant concentrations, J. Immunol. 153: 2704–2717.

    PubMed  CAS  Google Scholar 

  • Patel, S. R., Evans, S., Dunne, K., Knight, G. C., Morgan, P. J., Varley, P. G., and Craig, S., 1993, Characterization of the quaternary structure and conformational properties of the human stem cell inhibitor protein LD78 in solution, Biochemistry 32: 5466–5471.

    Article  PubMed  CAS  Google Scholar 

  • Peetre, C., Gulberg, U., Nilsson, E., and Olsson, I., 1986, Effects of recombinant tumor necrosis factor on proliferation and differentiation of leukemic and normal hemopoietic cells in vitro, J. Clin. Invest. 78: 1694 1700.

    Google Scholar 

  • Pelech, S. L., and Charest, D. L., 1995, MAP kinase-dependent pathways in cell cycle control, Prog. Cell Cycle Res. Vol. 1 (L. Meijer, S. Guidet, and L. Tung, eds.), pp. 33–52, Plenum Press, New York.

    Google Scholar 

  • Pelus, L. M., 1982, Association between colony forming units-granulocyte macrophage expression of la-like (HLA-DR) antigen and control of granulocyte and macrophage production, J. Clin. Invest. 70: 568–578.

    Article  PubMed  CAS  Google Scholar 

  • Pelus, L. M., and Gentile, P. S., 1988, In vivo modulation of myelopoiesis by prostaglandin E2. III. Induction of suppressor cells in marrow and spleen capable of mediating inhibition of CFU-GM proliferation, Blood 71: 1633–1640.

    CAS  Google Scholar 

  • Pelus, L. M., Broxmeyer, H. E., Kurland, J. I., and Moore, M. A. S., 1979, Regulation of macrophage and granulocyte proliferation: Specificities of prostaglandin E and lactoferrin, J. Exp. Med. 150: 277–292.

    Article  CAS  Google Scholar 

  • Pelus, L. M., Broxmeyer, H. E., and Moore, M. A. S., 1981, Regulation of human myelopoiesis by prostaglandin E and lactoferrin, Cell Tissue Kinet. 14: 515–526.

    CAS  Google Scholar 

  • Pelus, L. M., Ottmann, O. G., and Nocka, K. H., 1988, Synergistic inhibition of human marrow granulocyte—macrophage progenitor cells by prostaglandin E and recombinant interferon-a, -13, and -y and an effect mediated by tumor necrosis factor, J. Immunol. 140: 479–484.

    PubMed  CAS  Google Scholar 

  • Pelus, L. M., King, A. G., Broxmeyer, H. E., Marsh, P. L., Petteway, S. R., and Bhatnager, P. K., 1994, In vivo modulation of hematopoiesis by a novel hematoregulatory peptide, Exp. Hematol. 22: 239–247.

    CAS  Google Scholar 

  • Penco, S., Pastroino, S., Bianchi-Scarra, G., and Garre, C., 1995, Lactoferrin down-modulates the activity of the granulocyte macrophage colony-stimulating factor promoter in interleukin-1 3 stimulated cells, J. Biol. Chem. 270: 12263–12268.

    Article  PubMed  CAS  Google Scholar 

  • Piacibello, W., Rubin, B. Y., and Broxmeyer, H. E., 1986, Prostaglandin E counteracts modulation of the gamma interferon induction of la antigens on U937 cells and induction of responsiveness of U937 colony forming cells to suppression by lactoferrin, transferrin, acidic isoferritins and prostaglandin E, Exp. Hematol. 14: 44–50.

    PubMed  CAS  Google Scholar 

  • Quinn, T. P., Peters, K. G., De Vries, C., Ferrara, N., and Williams, L. T., 1993, Fetal liver kinase 1 is a receptor for vascular endothelial growth factor and is selectively expressed in vascular endothelium, Proc. Natl. Acad. Sci. U.S.A. 90: 7533–7537.

    Article  PubMed  CAS  Google Scholar 

  • Rajaranthnam, K., Sykes, B. D., Kay, C. M., Dewald, B., Geiser, T., Baggiolini, M., and Clark-Lewis, I., 1994, Neutrophil activation by monomeric interleukin-8, Science 264: 90–92.

    Article  Google Scholar 

  • Roberts, A. B., and Sporn, M. B., 1993, Physiological actions and clinical applications of transforming growth factor-13 (TGF-13), Growth Factors 8: 1–9.

    Article  PubMed  CAS  Google Scholar 

  • Ruscetti, F. W., Jacobsen, S. E., Birchenall-Roberts, M., Broxmeyer, H. E., Engelman, G. L., Dubois, C., and Keller, J. R., 1990, Role of transforming growth factor 131 in regulation of hematopoiesis, Ann. N.Y. Acad. Sci. 628: 31–43.

    Article  Google Scholar 

  • Rusten, L. S., Jacobsen, F. W., Lessiauer, W., Loetscher, H., Smeland, E. B., and Jacobsen, S. E. W., 1994a, Bifunctional effects of tumor necrosis factor a (TNFa) on the growth of mature and primitive human hematopoietic progenitor cells: Involvement of p55 and p75 TNF receptors, Blood 83: 3152–3159.

    PubMed  CAS  Google Scholar 

  • Rusten, L. S., Smeland, E. B., Jacobsen, F. W., Lien, E., Lesslauer, W., Loetscher, H., Dubois, C. M., and Jacobsen, S. E. W., 1994b, Tumor necrosis factor-a inhibits stem cell factor-induced proliferation of human bone marrow progenitor cells in vitro, J. Clin. Invest. 94: 165–172.

    Article  CAS  Google Scholar 

  • Sarris, A. J., Broxmeyer, H. E., Wirthmueller, U., Karasavvas, N., Cooper, S., Lu, L., Krueger, J., and Ravetch, J. V., 1993, Human interferon inducible protein 10: Expression and purification of recombinant protein demonstrate inhibition of early human hematopoietic progenitors, J. Exp. Med. 178: 1127–1132.

    Article  PubMed  CAS  Google Scholar 

  • Sarris, A., Esgleyes-Ribot, T., Crow, M., Broxmeyer, H. E., Karasavvas, N., Grossman, D., Pugh, W., Grossman, D., Deisseroth, A., and Duvic, M., 1995, Cytokine loops involving interferony and IP-10, a cytokine chemotactic for CD4-positive lymphocytes: An explanation for the epidermo-tropisin of cutaneous T-cell lymphomas, Blood 86: 651–658.

    PubMed  CAS  Google Scholar 

  • Schall, T. J., 1991, Biology of the RANTES/SIS cytokine family, Cytokine 3: 165–183.

    Article  PubMed  CAS  Google Scholar 

  • Schlunegger, M. P., and Grutter, M. G., 1992, An unusual feature revealed by the crystal structure at 2.2A resolution of human transforming growth factor-32, Nature 358: 430–434.

    Article  PubMed  CAS  Google Scholar 

  • Schumacher, C., Clark-Lewis, I., Baggliolini, M., and Moser, B., 1992, High-and low-affinity binding of GROa and neutrophil-activating peptide 2 to interleukin 8 receptors on human neutrophils, Proc. Natl. Acad. Sci. U.S.A. 89: 10542–10546.

    Article  PubMed  CAS  Google Scholar 

  • Sen, G. C., and Lengyel, P., 1992, The interferon system: A bird’s eye view of its biochemistry, J. Biol. Chem. 267: 5017–5020.

    PubMed  CAS  Google Scholar 

  • Shull, M. M., Ormsby, I., Kier, A. B., Pawlowski, S., Diebold, R. J., Yin, M., Allen, R., Sidman, C., Proetzel, G., Calvin, D., Annunziata, N., and Doetschman, T., 1992, Targeted disruption of the mouse transforming growth factor-ßl gene results in multifocal inflammatory disease, Nature 359: 693–699.

    Article  PubMed  CAS  Google Scholar 

  • Sing, G. K., Keller, J. R., Ellingsworth, L. R., and Ruscetti, F. W., 1988, Transforming growth factor 3 selectively inhibits normal and leukemic human bone marrow cell growth in vitro, Blood 72: 1504–1511.

    CAS  Google Scholar 

  • Smith, C. A., Farrah, T., and Goodwin, R. G., 1994, The TNF receptor superfamily of cellular and viral proteins: Activation, costimulation and death, Cell 76: 959–962.

    Article  PubMed  CAS  Google Scholar 

  • Sott, C., Dorner, B., Karawajew, L., Herrmann, F., and Brach, M. A., 1994, Transforming growth factor-13 relieves stem cell factor-induced proliferation of myelogenous leukemia cells through inhibition of binding of the transcription factor NF-jun, Blood 84: 1950–1959.

    CAS  Google Scholar 

  • Steinmann, G., Broxmeyer, H. E., de Harven, E., and Moore, M. A. S., 1982, Immuno-electron microscopic tracing of lactoferrin, a regulator of myelopoiesis, into a subpopulation of human peripheral blood monocytes, Br. J. Haematol. 50: 75–84.

    Article  PubMed  CAS  Google Scholar 

  • Tauchi, T., Feng, G.-S., Shen, R., Song, H. Y., Donner, D., Pawson, T., and Broxmeyer, H. E., 1994a, SH2containing phosphotyrosine phosphatase Syp is a target of p210bcr-abl tyrosine kinase, J. Biol. Chem. 269: 15381–15387.

    PubMed  CAS  Google Scholar 

  • Tauchi, T., Marshall, M. S., Shen, R., Mantel, C., Feng, G. S., Pawson, T., and Broxmeyer, H. E., 1994b, The ubiquitously expressed Syp phosphatase interacts with c-kit and Grb2 in hematopoietic cells, J. Biol. Chem. 269: 25206–25211.

    PubMed  CAS  Google Scholar 

  • Tauchi, T., Boswell, H. S., Leibowitz, D., and Broxmeyer, H. E., 1994c, Coupling between p210 bcr-abl and Shc and Grb-2 adaptor proteins in hematopoietic cells permits growth factor receptor independent-link to Ras activation pathway, J. Exp. Med. 179: 167–175.

    Article  PubMed  CAS  Google Scholar 

  • Tauchi, T., Feng, G. S., Shen, R., Hoatlin, M., Bagby, G. C., Lu, L., and Broxmeyer, H. E., 1995, Involvement of SH2-containing phosphotyrosine phosphatase Syp in erythropoietin receptor signal transduction pathways, J. Biol. Chem. 270: 5631–5635.

    Article  PubMed  CAS  Google Scholar 

  • ten Dijke, P., Yamashita, H., Ichijo, H., Franzen, P., Laiho, M., Miyazono, K., and Heldin, C. H., 1994, Characterization of type 1 receptors for transforming growth factor-3 and activin, Science 264: 101–104.

    Article  PubMed  CAS  Google Scholar 

  • Terman, B. I., Dougher-Vermazen, M., Carrion, M. E., Dimitrov, D., Armellino, D. C., Gospodarowicz, D., and Bohlen, P., 1992, Identification of the KDR tyrosine kinase as a receptor for vascular endothelial cell growth factor, Biochem. Biophys. Res. Commun. 187: 1579–1586.

    Article  PubMed  CAS  Google Scholar 

  • Tessier, N., and Hoang, T., 1988, Transforming growth factor ß inhibits the proliferation of the blast cells of acute myeloblastic leukemia, Blood 72: 159–164.

    PubMed  CAS  Google Scholar 

  • Vadhan Raj, S., Broxmeyer, H. E., Hittelman, W. N., Papadopoulos, N. E., Chawla, S. P., Fenoglio, C., Cooper, S., Buescher, E. S., Frenck, R. W., Jr., Holian, A., Perkins, R. C., Scheule, R. K., Gutterman, J. U., Salem, P., and Benjamin, R. S., 1992, Abrogating chemotherapy-induced myelosuppression by recombinant granulocyte—macrophage colony-stimulating factor: Protection at the progenitor cell level, J. Clin. Oncol. 10: 1266–1277.

    PubMed  CAS  Google Scholar 

  • Van Damme, J., 1994, Interleukin-8 and related chemotactic cytokines, in The Cytokine Handbook ( A. Thomson, ed.), pp. 185–208, Academic Press, New York.

    Google Scholar 

  • Verfaille, C. M., Catanzarro, P. M., and Li, W. N., 1994, Macrophage inflammatory protein la, interleukin-3 and diffusible marrow stromal factors maintain human hematopoietic stem cells for at least eight weeks in vitro, J. Exp. Med. 179: 643–649.

    Article  Google Scholar 

  • Wang, J. M., McVicar, D. W., Oppenheim, J. J., and Kelvin, D. J., 1993, Identification of RANTES receptors on human monocytic cells: Competition for binding and desensitization by homologous chemotactic cytokines, J. Exp. Med. 177: 699–705.

    Article  PubMed  CAS  Google Scholar 

  • Wang, X. F., Lin, H. Y., Ng-Eaton, E., Downward, J., Lodish, H. E, and Weinberg, R. A., 1991, Expression cloning and characterization of the TGF-R type III receptor, Cell 67: 797–805.

    Article  PubMed  CAS  Google Scholar 

  • Williams, D. E., Cooper, S., and Broxmeyer, H. E., 1988, The effects of hematopoietic suppressor molecules on the in vitro proliferation of purified murine granulocyte—macrophage progenitor cells (CFU-GM), Cancer Res. 48: 1548–1550.

    PubMed  CAS  Google Scholar 

  • Williams, N., 1979, Preferential inhibition of murine macrophage colony formation by prostaglandin E, Blood 53: 1089–1094.

    PubMed  CAS  Google Scholar 

  • Wrana, J. L., Attisano, L., Carcamo, J., Zentella, A., Doody, J., Laiho, M., Wang, X. F., and Massague, J., 1992, TGF(3 signals through a heteromeric protein kinase receptor complex, Cell 71: 1003–1014.

    Article  PubMed  CAS  Google Scholar 

  • Wrana, J. L., Attisano, L., Wieser, R., Ventura, F., and Massague, J., 1994, Mechanism of activation of the TGF-ß receptor, Nature 370: 341–347.

    Article  PubMed  CAS  Google Scholar 

  • Yamamura, Y., Hattori, T., Ohmoto, Y., and Takatsuki K., 1992, Identification and characterization of specific receptors for the LD78 cytokine, Int. J. Hematol. 55: 131–137.

    PubMed  CAS  Google Scholar 

  • Yi, T., and Ihle, J. N., 1993, Association of hematopoietic cell phosphatase with c-Kit after stimulation with c-Kit ligand, Mol. Cell. Biol. 13: 3350–3358.

    PubMed  CAS  Google Scholar 

  • Yi, T., Mui, A. L. F., Krystal, G., and Ihle, J. N., 1993, Hematopoietic cell phosphatase associates with the interleukin-3 (IL-3) receptor ß chain and down-regulates IL-3-induced tyrosine phosphorylation and mito-genesis, Mol. Cell. Biol. 13: 7577–7586.

    PubMed  CAS  Google Scholar 

  • Yi, T., Zhang, J., Miura, O., and Ihle, J. N., 1995, Hematopoietic cell phosphatase associates with erythropoietin (Epo) receptor after Epo-induced receptor tyrosine phosphorylation: Identification of potential binding sites, Blood 85: 87–95.

    PubMed  CAS  Google Scholar 

  • Yip-Schneider, M. T., Horie, M., and Broxmeyer, H. E., 1995, Transcriptional induction of pim-1 protein kinase expression by interferon gamma and post-transcriptional effects upon co-stimulation with Steel factor, Blood 85: 3494–3502.

    PubMed  CAS  Google Scholar 

  • Youn, B. S., Jong, I-K., Broxmeyer, H. E., Cooper, S., Jenkins, N. A., Gilbert, D. J., Copeland, N. G., Elick, T. A., Fraser, M. J., Jr., and Kwon, B. S., 1995, A novel chemokine MRP-2 inhibits colony formation of bone marrow myeloid progenitors, J. Immunol. 155: 2661–2667.

    PubMed  CAS  Google Scholar 

  • Yu, J., Shao, L., Lemas, V., Yu, A. L., Vaughan, J., Rivier, J., and Vale, W., 1987, Importance of FSH-releasing protein and inhibin in erythrodifferentiation, Nature 330: 24–31.

    Article  Google Scholar 

  • Zucali, J. R., Broxmeyer, H. E., Levy, D., and Morse, C., 1989, Lactoferrin decreases monocyte induced fibroblast production of myeloid colony stimulating activity by suppressing monocyte release of interleukin 1, Blood 74: 1531–1536.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Broxmeyer, H.E. (1996). Myelosuppressive Cytokines and Peptides. In: Whetton, A.D., Gordon, J. (eds) Blood Cell Biochemistry. Blood Cell Biochemistry, vol 7. Springer, Boston, MA. https://doi.org/10.1007/978-0-585-31728-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-0-585-31728-1_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-7052-0

  • Online ISBN: 978-0-585-31728-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics