Advertisement

Semantics of Abstract Argument Systems

  • Pietro Baroni
  • Massimiliano Giacomin
Chapter

An abstract argument system or argumentation framework, as introduced in a seminal paper by Dung [13], is simply a pair

Keywords

Argumentation Framework Complete Extension Attack Relation Prefer Extension Stable Extension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baroni, P., Giacomin, M.: Characterizing defeat graphs where argumentation semantics agree. In: G. Simari, P. Torroni (eds.) Proc. 1st Int. Workshop on Argumentation and Non-Monotonic Reasoning (ARGNMR07), pp. 33–48. Tempe, AZ (2007)Google Scholar
  2. 2.
    Baroni, P., Giacomin, M.: On principle-based evaluation of extension-based argumentation semantics. Artif. Intell. (Special issue on Argumentation in A.I.) 171(10/15), 675–700 (2007)MathSciNetGoogle Scholar
  3. 3.
    Baroni, P., Giacomin, M.: Resolution-based argumentation semantics. In: P. Besnard, S. Doutre, A. Hunter (eds.) Proc. 2nd Int. Conf. on Computational Models of Argument (COMMA 2008), pp. 25–36. IOS Press, Toulouse, F (2008)Google Scholar
  4. 4.
    Baroni, P., Giacomin, M.: Skepticism relations for comparing argumentation semantics. accepted for publication on Int. J. Approx. Reason. (2008)Google Scholar
  5. 5.
    Baroni, P., Giacomin, M.: A systematic classification of argumentation frameworks where semantics agree. In: P. Besnard, S. Doutre, A. Hunter (eds.) Proc. 2nd Int. Conf. on Computational Models of Argument (COMMA 2008), pp. 37–48. IOS Press, Toulouse, F (2008)Google Scholar
  6. 6.
    Baroni, P., Giacomin, M., Guida, G.: Towards a formalization of skepticism in extension-based argumentation semantics. In: Proc. 4th Workshop on Computational Models of Natural Argument (CMNA 2004), pp. 47–52. Valencia, Spain (2004)Google Scholar
  7. 7.
    Baroni, P., Giacomin, M., Guida, G.: SCC-recursiveness: a general schema for argumentation semantics. Artif. Intell. 168(1-2), 165–210 (2005)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Caminada, M.: Semi-stable semantics. In: P.E. Dunne, T. Bench-Capon (eds.) Proc. 1st Int. Conf. on Computational Models of Argument (COMMA 2006), pp. 121–130. IOS Press, Liverpool, UK (2006)Google Scholar
  9. 9.
    Caminada, M., Amgoud, L.: An axiomatic account of formal argumentation. In: Proc. 20th National Conf. on Artificial Intelligence (AAAI-05), pp. 608–613. AAAI Press, Menlo Park, CA (2005)Google Scholar
  10. 10.
    Coste-Marquis, S., Devred, C., Marquis, P.: Prudent semantics for argumentation frameworks. In: Proc. 17th IEEE Int. Conf. on Tools with Artificial Intelligence (ICTAI 2005), pp. 568–572. IEEE Computer Society, Hong Kong, China (2005)CrossRefGoogle Scholar
  11. 11.
    Coste-Marquis, S., Devred, C., Marquis, P.: Symmetric argumentation frameworks. In: Proc. 8th European Conf. on Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU 2005), pp. 317–328. Barcelona, E (2005)Google Scholar
  12. 12.
    Dung, P.M.: Negations as hypotheses: An abductive foundation for logic programming. In: K. Furukawa (ed.) Proc. 8th Int. Conf. on Logic Programming (ICLP 91), pp. 3–17. MIT Press, Paris, F (1991)Google Scholar
  13. 13.
    Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming, and n-person games. Artif. Intell. 77(2), 321–357 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Dung, P.M., Mancarella, P., Toni, F.: A dialectic procedure for sceptical, assumption-based argumentation. In: P.E. Dunne, T. Bench-Capon (eds.) Proc. 1st Int. Conf. on Computational Models of Argument (COMMA 2006), pp. 145–156. IOS Press, Liverpool, UK (2006)Google Scholar
  15. 15.
    Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: R.A. Kowalski, K. Bowen (eds.) Proc. 5th Int. Conf. on Logic Programming (ICLP 88), pp. 1070–1080. MIT Press, Cambridge, Massachusetts (1988)Google Scholar
  16. 16.
    Pollock, J.L.: How to reason defeasibly. Artif. Intell. 57(1), 1–42 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Pollock, J.L.: Justification and defeat. Artif. Intell. 67(2), 377–407 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Prakken, H., Vreeswijk, G.A.W.: Logics for defeasible argumentation. In: D.M. Gabbay, F. Guenthner (eds.) Handbook of Philosophical Logic, Second Edition. Kluwer Academic Publishers, Dordrecht (2001)Google Scholar
  19. 19.
    Reiter, R.: A logic for default reasoning. Artif. Intell. 13(1–2), 81–132 (1980)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    van Gelder, A., Ross, K., Schlipf, J.S.: The well-founded semantics for general logic programs. J. ACM 38(3), 620–650 (1991)zbMATHGoogle Scholar
  21. 21.
    Verheij, B.: Two approaches to dialectical argumentation: admissible sets and argumentation stages. In: Proc. 8th Dutch Conf. on Artificial Intelligence (NAIC’96), pp. 357–368. Utrecht, NL (1996)Google Scholar

Copyright information

© Springer-Verlag US 2009

Authors and Affiliations

  1. 1.Dip. di Elettronica per l’AutomazioneUniversity of BresciaVia Branze 38Italy

Personalised recommendations