Biomolecule-Nanomaterial Interactions: Effect on Biomolecular Structure, Function, and Stability

  • Ravindra C. Pangule
  • Shyam Sundhar Bale
  • Dhiral A. Shah
  • Amit Joshi
  • Prashanth Asuri
  • Jonathan S. Dordick
  • Ravi S. Kane
Chapter

Abstract

We have characterized the influence of protein–carbon nanotube interactions on protein structure and function using various techniques such as Fourier transform infrared spectroscopy, circular dichroism spectroscopy, and atomic force microscopy. This structure-based analysis revealed that different proteins interact with nanotubes differentially, consistent with the observed biological activity data. Furthermore, the high degree of surface curvature of the nanoscale support was found to play an important role in stabilizing proteins under denaturing conditions. Along with these fundamental studies, various applications of such highly active and stable nanotube–protein conjugates have been pursued, which include self-cleaning nanobiocomposite films, interfacial biocatalysis in a biphasic medium, and synthesis of nanotube–nanoparticle hybrids, among others.

Abbreviations

ADH

alcohol dehydrogenase

AFM

atomic force microscopy

AGP

α1-acid glycoprotein

AOT

Aerosol-OT

BSA

bovine serum albumin

CALB

Candida antarctica lipase B

CD

circular dichroism

CNT

carbon nanotube

CT

α-chymotrypsin

d-SBP

deglycosylated soybean peroxidase

EDC

N-ethyl-N′-(3-dimethylaminopropyl) carbodiimide hydrochloride

EDX

energy dispersive X-ray

FAM

carboxyfluorescein

FT-IR

Fourier transform infrared

HOPG

highly ordered pyrolytic graphite

HRP

horseradish peroxidase

HSA

human serum albumin

Lys

lysozyme

MJL

Mucor javanicus lipase

MWNT

multiwalled nanotube

NaDDBS

sodium dodecylbenzene sulfonate

NHS

N-hydroxysuccinimide

NIR

near infrared

PAGE

polyacrylamide gel electrophoresis

PLL

poly-l-lysine

PMMA

poly(methyl methacrylate)

PMSF

phenylmethansulfonyl fluoride

ROS

reactive oxygen species

SAM

self-assembled monolayer

SBP

soybean peroxidase

SC

subtilisin Carlsberg

SWNT

single-walled nanotube

TEM

transmission electron microscopy

TRY

trypsin

UV

ultraviolet

References

  1. 1.
    Dabbousi BO, RodriguezViejo J, Mikulec FV, Heine JR, Mattoussi H, Ober R, et al (CdSe)ZnS core-shell quantum dots: Synthesis and characterization of a size series of highly luminescent nanocrystallites. J Phys Chem B 1997;101(46):9463–9475.CrossRefGoogle Scholar
  2. 2.
    Strano MS, Dyke CA, Usrey ML, Barone PW, Allen MJ, Shan HW, et al Electronic structure control of single-walled carbon nanotube functionalization. Science 2003;301(5639):1519–1522.CrossRefGoogle Scholar
  3. 3.
    Peng XG, Manna L, Yang WD, Wickham J, Scher E, Kadavanich A, et al Shape control of CdSe nanocrystals. Nature 2000;404(6773):59–61.CrossRefGoogle Scholar
  4. 4.
    Hong R, Fischer NO, Verma A, Goodman CM, Emrick T, Rotello VM. Control of protein structure and function through surface recognition by tailored nanoparticle scaffolds. J Am Chem Soc 2004;126(3):739–743.CrossRefGoogle Scholar
  5. 5.
    Ajayan PM. Nanotubes from carbon. Chem Rev 1999;99(7):1787–1799.CrossRefGoogle Scholar
  6. 6.
    Zhao YL, Hu LB, Stoddart JF, Gruner G. Pyrenecyclodextrin-decorated single-walled carbon nanotube field-effect transistors as chemical sensors. Adv Mater 2008;20(10):1910–1915.CrossRefGoogle Scholar
  7. 7.
    Besteman K, Lee JO, Wiertz FGM, Heering HA, Dekker C. Enzyme-coated carbon nanotubes as single-molecule biosensors. Nano Lett 2003;3(6):727–730.CrossRefGoogle Scholar
  8. 8.
    Yan YM, Yehezkeli O, Willner I. Integrated, electrically contacted NAD(P)(+)-dependent enzyme – carbon nanotube electrodes for biosensors and biofuel cell applications. Chem Eur J 2007;13(36):10168–10175.CrossRefGoogle Scholar
  9. 9.
    Medintz IL, Uyeda HT, Goldman ER, Mattoussi H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 2005;4(6):435–446.CrossRefGoogle Scholar
  10. 10.
    Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, et al Quantum dots for live cells, in vivo imaging, and diagnostics. Science 2005;307(5709):538–544.CrossRefGoogle Scholar
  11. 11.
    Brannon-Peppas L, Blanchette JO. Nanoparticle and targeted systems for cancer therapy. Adv Drug Del Rev 2004;56(11):1649–1659.CrossRefGoogle Scholar
  12. 12.
    Kane RS, Stroock AD. Nanobiotechnology: Protein-nanomaterial interactions. Biotechnol Progr 2007;23(2):316–319.CrossRefGoogle Scholar
  13. 13.
    Asuri P, Bale SS, Karajanagi SS, Kane RS. The protein-nanomaterial interface. Curr Opin Biotechnol 2006;17(6):562–568.CrossRefGoogle Scholar
  14. 14.
    Katz E, Willner I. Integrated nanoparticle-biomolecule hybrid systems: Synthesis, properties, and applications. Angew Chem Int Ed Engl 2004;43(45):6042–6108.CrossRefGoogle Scholar
  15. 15.
    Lacerda L, Bianco A, Prato M, Kostarelos K. Carbon nanotube cell translocation and delivery of nucleic acids in vitro and in vivo. J Mat Chem 2008;18(1):17–22.CrossRefGoogle Scholar
  16. 16.
    Kostarelos K, Lacerda L, Pastorin G, Wu W, Wieckowski S, Luangsivilay J, et al Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. Nat Nanotechnol 2007;2(2):108–113.CrossRefGoogle Scholar
  17. 17.
    Karajanagi SS, Vertegel AA, Kane RS, Dordick JS. Structure and function of enzymes adsorbed onto single-walled carbon nanotubes. Langmuir 2004;20(26):11594–11599.CrossRefGoogle Scholar
  18. 18.
    Singh R, Pantarotto D, McCarthy D, Chaloin O, Hoebeke J, Partidos CD, et al Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: Toward the construction of nanotube-based gene delivery vectors. J Am Chem Soc 2005;127(12):4388–4396.CrossRefGoogle Scholar
  19. 19.
    Rege K, Viswanathan G, Zhu GY, Vijayaraghavan A, Ajayan PM, Dordick JS. In vitro transcription and protein translation from carbon nanotube-DNA assemblies. Small 2006;2(6):718–722.CrossRefGoogle Scholar
  20. 20.
    Pantarotto D, Singh R, McCarthy D, Erhardt M, Briand JP, Prato M, et al Functionalized carbon nanotubes for plasmid DNA gene delivery. Angew Chem Int Ed Engl 2004;43(39):5242–5246.CrossRefGoogle Scholar
  21. 21.
    Pantarotto D, Briand JP, Prato M, Bianco A. Translocation of bioactive peptides across cell membranes by carbon nanotubes. Chem Commun 2004 (1):16–17.Google Scholar
  22. 22.
    Kam NWS, O’Connell M, Wisdom JA, Dai HJ. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc Natl Acad Sci USA 2005;102(33):11600–11605.CrossRefGoogle Scholar
  23. 23.
    Jia G, Wang HF, Yan L, Wang X, Pei RJ, Yan T, et al Cytotoxicity of carbon nanomaterials: Single-wall nanotube, multi-wall nanotube, and fullerene. Environ Sci Technol 2005;39(5):1378–1383.CrossRefGoogle Scholar
  24. 24.
    MacDonald RA, Laurenzi BF, Viswanathan G, Ajayan PM, Stegemann JP. Collagen-carbon nanotube composite materials as scaffolds in tissue engineering. J Biomed Mater Res A 2005;74A(3):489–496.CrossRefGoogle Scholar
  25. 25.
    Correa-Duarte MA, Wagner N, Rojas-Chapana J, Morsczeck C, Thie M, Giersig M. Fabrication and biocompatibility of carbon nanotube-based 3D networks as scaffolds for cell seeding and growth. Nano Lett 2004;4(11):2233–2236.CrossRefGoogle Scholar
  26. 26.
    Hu H, Ni YC, Montana V, Haddon RC, Parpura V. Chemically functionalized carbon nanotubes as substrates for neuronal growth. Nano Lett 2004;4(3):507–511.CrossRefGoogle Scholar
  27. 27.
    Price RL, Waid MC, Haberstroh KM, Webster TJ. Selective bone cell adhesion on formulations containing carbon nanofibers. Biomaterials 2003;24(11):1877–1887.CrossRefGoogle Scholar
  28. 28.
    Webster TJ, Ergun C, Doremus RH, Siegel RW, Bizios R. Specific proteins mediate enhanced osteoblast adhesion on nanophase ceramics. J Biomed Mater Res 2000;51(3):475–483.CrossRefGoogle Scholar
  29. 29.
    Webster TJ, Schadler LS, Siegel RW, Bizios R. Mechanisms of enhanced osteoblast adhesion on nanophase alumina involve vitronectin. Tissue Eng 2001;7(3):291–301.CrossRefGoogle Scholar
  30. 30.
    Price RL, Haberstroh KM, Webster TJ. Improved osteoblast viability in the presence of smaller nanometre dimensioned carbon fibres. Nanotechnology 2004;15(8):892–900.CrossRefGoogle Scholar
  31. 31.
    Vedantham G, Sparks HG, Sane SU, Tzannis S, Przybycien TM. A holistic approach for protein secondary structure estimation from infrared spectra in H2O solutions. Anal Biochem 2000;285(1):33–49.CrossRefGoogle Scholar
  32. 32.
    Asuri P, Karajanagi SS, Sellitto E, Kim DY, Kane RS, Dordick JS. Water-soluble carbon nanotube-enzyme conjugates as functional biocatalytic formulations. Biotechnol Bioeng 2006;95(5):804–811.CrossRefGoogle Scholar
  33. 33.
    Asuri P, Bale SS, Pangule RC, Shah DA, Kane RS, Dordick JS. Structure, function, and stability of enzymes covalently attached to single-walled carbon nanotubes. Langmuir 2007;23(24):12318–12321.CrossRefGoogle Scholar
  34. 34.
    Asuri P, Karajanagi SS, Yang HC, Yim TJ, Kane RS, Dordick JS. Increasing protein stability through control of the nanoscale environment. Langmuir 2006;22(13):5833–5836.CrossRefGoogle Scholar
  35. 35.
    Asuri P, Karajanagi SS, Vertegel AA, Dordick JS, Kane RS. Enhanced stability of enzymes adsorbed onto nanoparticles. J Nanosci Nanotechnol 2007;7(4–5):1675–1678.CrossRefGoogle Scholar
  36. 36.
    Asuri P, Karajanagi SS, Kane RS, Dordick JS. Polymer-nanotube-enzyme composites as active antifouling films. Small 2007;3(1):50–53.CrossRefGoogle Scholar
  37. 37.
    Liu Z, Cai WB, He LN, Nakayama N, Chen K, Sun XM, et al In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat Nanotechnol 2007;2(1):47–52.CrossRefGoogle Scholar
  38. 38.
    Hirsch LR, Stafford RJ, Bankson JA, Sershen SR, Rivera B, Price RE, et al Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci USA 2003;100(23):13549–13554.CrossRefGoogle Scholar
  39. 39.
    Joshi A, Punyani S, Bale SS, Yang HC, Borca-Tasciuc T, Kane RS. Nanotube-assisted protein deactivation. Nat Nanotechnol 2008;3(1):41–45.CrossRefGoogle Scholar
  40. 40.
    Wu ZC, Chen ZH, Du X, Logan JM, Sippel J, Nikolou M, et al Transparent, conductive carbon nanotube films. Science 2004;305(5688):1273–1276.CrossRefGoogle Scholar
  41. 41.
    Davies KJ. Protein damage and degradation by oxygen radicals. I. General aspects. 1987; 262(20):9895–9901.Google Scholar
  42. 42.
    Bale SS, Asuri P, Karajanagi SS, Dordick JS, Kane RS. Protein-directed formation of silver nanoparticles on carbon nanotubes. Adv Mater 2007;19(20):3167–3170.CrossRefGoogle Scholar
  43. 43.
    Asuri P, Karajanagi SS, Dordick JS, Kane RS. Directed assembly of carbon nanotubes at liquid-liquid interfaces: Nanoscale conveyors for interfacial biocatalysis. J Am Chem Soc 2006;128(4):1046–1047.CrossRefGoogle Scholar
  44. 44.
    Karajanagi SS, Yang HC, Asuri P, Sellitto E, Dordick JS, Kane RS. Protein-assisted solubilization of single-walled carbon nanotubes. Langmuir 2006;22(4):1392–1395.CrossRefGoogle Scholar
  45. 45.
    Li YF, Breaker RR. Deoxyribozymes: New players in the ancient game of biocatalysis. Curr Opin Struct Biol 1999;9(3):315–323.CrossRefGoogle Scholar
  46. 46.
    Liu JW, Lu Y. A colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles. J Am Chem Soc 2003;125(22):6642–6643.CrossRefGoogle Scholar
  47. 47.
    Sando S, Sasaki T, Kanatani K, Aoyama Y. Amplified nucleic acid sensing using programmed self-cleaving DNAzyme. J Am Chem Soc 2003;125(51):15720–15721.CrossRefGoogle Scholar
  48. 48.
    Yim TJ, Liu JW, Lu Y, Kane RS, Dordick JS. Highly active and stable DNAzyme – Carbon nanotube hybrids. J Am Chem Soc 2005;127(35):12200–12201.CrossRefGoogle Scholar
  49. 49.
    Santoro SW, Joyce GF. A general purpose RNA-cleaving DNA enzyme. Proc Natl Acad Sci USA 1997;94(9):4262–4266.CrossRefGoogle Scholar
  50. 50.
    Cotten M, Fu R, Cross TA. Solid-state NMR and hydrogen-deuterium exchange in a bilayer-solubilized peptide: Structural and mechanistic implications. Biophys J 1999;76(3):1179–1189.CrossRefGoogle Scholar
  51. 51.
    Hoofnagle AN, Resing KA, Ahn NG. Protein analysis by hydrogen exchange mass spectrometry. Ann Rev Biophys Biomol Struct 2003;32:1–25.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Ravindra C. Pangule
    • 1
  • Shyam Sundhar Bale
    • 1
  • Dhiral A. Shah
    • 1
  • Amit Joshi
    • 1
  • Prashanth Asuri
    • 1
  • Jonathan S. Dordick
    • 1
  • Ravi S. Kane
    • 1
  1. 1.Department of Chemical and Biological EngineeringRensselaer Polytechnic InstituteTroyUSA

Personalised recommendations