Skip to main content

Collagen I-Coated Titanium Surfaces for Bone Implantation

  • Chapter
  • First Online:
Biological Interactions on Materials Surfaces

Abstract

Biological interactions at the tissue/implant material interface can be modulated by surface-linked cell-signalling biological molecules. Collagen type I, the main extracellular matrix protein of bone tissue, has been widely investigated in biomolecular surface modification of bone-contacting titanium implant devices. Literature reports on the biological effects of collagen-based coatings are, however, often contradictory. From a biomolecular surface-engineering perspective, a possible explanation is that the definition “collagen-coated surface” encompasses widely different molecular and supramolecular structures: adsorbed collagen, covalently linked collagen, crosslinked collagen, fibrillar versus monomeric collagen, and many other variation of this theme. Relevant details are not always described and proper surface characterization is often lacking. This chapter attempts to build up a rational frame of reference to describe surface modification of implant devices by collagen type I from a surface chemistry point of view, as well as to discuss relevant implications for process design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AFM:

atomic force microscopy

Arg–Gly–Asp:

arginine –glycine –aspartic acid

BMTiS:

biochemical modification of titanium surfaces

Co:

cobalt

DAE:

double acid etched

ECM:

extracellular matrix

EDC:

1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide

NHS:

N-hydroxysuccinimide

OC:

osteocalcin

OP:

osteopontin

PBS:

phosphate-buffered saline

PDGF:

platelet-derived growth factor

PDL:

periodontal ligament

PEG:

poly(ethylene glycol)

RGD:

arginine–glycine–aspartic acid

RT-PCR:

real-time polymerase chain reaction

Ti:

titanium

Ti6Al4V:

titanium/aluminum/vanadium alloy

ToF-SIMS:

time-of-flight static secondary ion mass spectroscopy

UHV:

ultra-high vacuum

XPS:

X-ray photoelectron spectroscopy

References

  1. Davies JE, Ed, The bone-biomaterial interface, Toronto, University of Toronto Press, 1991

    Google Scholar 

  2. Davies JE, Ed, Bone Engineering, Toronto, Em Squared, 2000

    Google Scholar 

  3. Brunette DM, Tengvall P, Textor M, Thomsen P, Eds, Titanium in Medicine, Berlin, Springer, 2001

    Google Scholar 

  4. Ellingsen JE, Lyngstadaas SP, Eds, Bio-Implant Interface, CRC, Boca Raton, 2003

    Google Scholar 

  5. Cunningham BW, Basic scientific considerations in total disc arthroplasty, Spine J, 2004;4:219S–230S

    Article  Google Scholar 

  6. Rupp F, Scheideler L, Olshanska N, de Wild M, Wieland M, Geis-Gerstorfer J, Enhancing surface free energy and hydrophilicity through chemical modification of microstructured titanium implant surfaces, J Biomed Mater Res, 2006;76A:323–334

    Article  CAS  Google Scholar 

  7. Cooper LF, Zhou Y, Takebe J, Guo J, Abron A, Holmen A, Ellingsen JE, Fluoride modification effects on osteoblast behavior and bone formation at TiO2 grit-blasted c.p. titanium endosseous implants, Biomaterials, 2006;27:926–936

    Article  CAS  Google Scholar 

  8. Puleo DA, Nanci A, Understanding and controlling the bone-implant interface, Biomaterials, 1999;20:2311–2321

    Article  CAS  Google Scholar 

  9. Lebaron RG, Athanasiou KA, Extracellular matrix cell adhesion peptides: functional applications in orthopedic materials, Tissue Eng, 2000;6:85–104

    Article  CAS  Google Scholar 

  10. Jikko A, Harris SE, Chen D, Mendrick DL, Damsky CH, Collagen integrin receptors regulate early osteoblast differentiation induced by BMP-2, J Bone Miner Res, 1999;14:1075–1083

    Article  CAS  Google Scholar 

  11. Mizuno M, Fujisawa R, Kuboki Y, Type I collagen-induced osteoblastic differentiation of bone-marrow cells mediated by collagen-alpha2beta1 integrin interaction, J Cell Physiol, 2000;184:207–213

    Article  CAS  Google Scholar 

  12. Salasznyk RM, Williams WA, Boskey A, Batorsky A, Plopper GE, Adhesion to vitronectin and collagen I promotes osteogenic differentiation of human mesenchymal stem cells, J Biomed Biotechnol, 2004;1:24–34

    Article  Google Scholar 

  13. Sampath TK, Reddi AH, Dissociative extraction and reconstitution of extracellular matrix components involved in local bone differentiation, Proc Natl Acad Sci U S A 1981;78:7599–7603

    Article  CAS  Google Scholar 

  14. Heemskerk JWM, Wust WMJ, Feijge MAH, Reutelingsperger CMP, Lindhout T, Collagen but not fibrinogen surfaces induce bleb formation, exposure of phosphatidylserine, and procoagulant activity of adherent platelets: evidence for regulation by protein tyrosine kinase-dependent Ca2 + responses, Blood, 1997;90:2615–2625

    CAS  Google Scholar 

  15. Park JY, Gemmell CH, Davies JE, Platelet interactions with titanium, modulation of platelet activity by surface topography, Biomaterials, 2000;22:2671–2682

    Article  Google Scholar 

  16. Davies JE, Housseini MM, Histodynamics of endosseous wound healing. In: Davies JE, Ed, Bone Engineering, Toronto, Em Squared, 2000;1–14

    Google Scholar 

  17. Gemmell CH, Park JY, Initial blood interactions with endosseous implant materials. In: Davies JE, Ed, Bone Engineering, Toronto, Em Squared, 2000;108–117

    Google Scholar 

  18. Panduranga Rao K, Recent developments of collagen based biomaterials for medical applications and drug delivery systems, J Biomater Sci Polym Ed, 1995;7:623–645

    Article  Google Scholar 

  19. Gungormus M, Kaya O, Evaluation of the effect of heterologous type I collagen on healing of bone defects, J Oral Maxillofac Surg, 2002;60:541–545

    Article  Google Scholar 

  20. Somorjai G, Biointerfaces: The Grand Challenge of Molecular Surface Chemistry, invited talk at the 25th Anniversary of NESAC/BIO, University of Washington, Seattle, WA, August 24–27, 2008

    Google Scholar 

  21. Lowenberg BF, Pilliar RM, Aubin JE, Sodek J, Melcher AH, Cell attachment of human gingival fibroblasts in vitro to porous-surfaced titanium alloy discs coated with collagen and platelet-derived growth factor, Biomaterials, 1988;9:302–309

    Article  CAS  Google Scholar 

  22. Matsumura K, Hyon SH, Nakajima N, Peng C, Tsutsumi S, Surface modification of poly(ethylene-co-vinyl alcohol) (EVA). Part I. Introduction of carboxyl groups and immobilization of collagen, J Biomed Mater Res, 2000;50:512–517

    Article  CAS  Google Scholar 

  23. Peng C, Tsutsumi S, Matsumura K, Nakajima N, Hyon SH, Morphologic study and syntheses of type I collagen and fibronectin of human periodontal ligament cells cultured on poly(ethylene-co-vinyl alcohol) (EVA) with collagen immobilization, J Biomed Mater Res, 2001;54:241–246

    Article  CAS  Google Scholar 

  24. Matsumura K, Hyon SH, Nakajima N, Peng C, Iwata H, Tsutsumi S, Adhesion between poly(ethylene-co-vinyl alcohol) (EVA) and titanium, J Biomed Mater Res, 2002;60:309–315

    Article  CAS  Google Scholar 

  25. Geissler U, Hempel U, Wolf C, Scharnweber D, Worch H, Wenzel K, Collagen type I-coating of Ti6Al4V promotes adhesion of osteoblasts, J Biomed Mater Res, 2000;51:752–760

    Article  CAS  Google Scholar 

  26. Baier RE, Meyer AE, Future directions in surface preparation of dental implants, J Dent Ed, 1988;52:788–791

    CAS  Google Scholar 

  27. Cassinelli C, Morra M, Bruzzone G, Carpi A, Di Santi G, Giardino R, Fini M, Surface chemistry effects of topography modification of titanium dental implants surfaces: 1. In vitro experiments, Int J Oral Maxillofacial Implants, 2003;18:45–62

    Google Scholar 

  28. Morra M, Cassinelli C, Cascardo G, Bollati D, Rodriguez Y, Baena R, Multifunctional implant surfaces: surface characterization and bone response to acid-etched Ti implants surface-modified by fibrillar collagen I, J Biomed Mater Res, A, submitted

    Google Scholar 

  29. Boyan BD, Lossdörfer S, Wang L, Zhao G, Lohmann CH, Cochran DL, Schwartz Z, Osteoblasts generate an osteogenic microenvironment when grown on surfaces with rough microtopographies, Eur Cell Mater, 2003;6:22–27

    CAS  Google Scholar 

  30. Nagai M, Hayakawa T, Fukatsu A, Yamamoto M, Fukumoto M, Nagahama F, Mishima H, Yoshinari M, Nemoto K, Kato T, In vitro study of collagen coating of titanium implants for initial cell attachment, Dent Mater J, 2002;21:250–260

    Article  Google Scholar 

  31. Roehlecke C, Witt M, Kasper M, Schulze E, Wolf C, Hofer A, Funk RW, Synergistic effect of titanium alloy and collagen type I on cell adhesion, proliferation and differentiation of osteoblast-like cells, Cells Tissues Organs, 2001;168:178–187

    Article  CAS  Google Scholar 

  32. Becker D, Geissler U, Hempel U, Bierbaum S, Scharnweber D, Worch H, Wenzel KW, Proliferation and differentiation of rat calvarial osteoblasts on type I collagen-coated titanium alloy, J Biomed Mater Res, 2002;59:516–527

    Article  CAS  Google Scholar 

  33. Van den Dolder J, Bancroft GN, Sikavitsas VI, Spauwen PH, Mikos AG, Jansen JA, Effect of fibronectin- and collagen I-coated titanium fiber mesh on proliferation and differentiation of osteogenic cells, Tissue Eng, 2003;9:505–515

    Article  CAS  Google Scholar 

  34. Bierbaum S, Beutner R, Hanke T, Scharnweber D, Hempel U, Worch H, Modification of Ti6Al4V surfaces using collagen I, III, characteristics of the adsorbed matrix, J Biomed Mater Res A, 2003;67:421–430

    Article  Google Scholar 

  35. Bierbaum S, Hempel U, Geissler U, Hanke T, Scharnweber D, Wenzel KW, Wenzel KW, Modification of Ti6AL4V surfaces using collagen I, III, and fibronectin. II. Influence on osteoblast responses, J Biomed Mater Res A, 2003;67:431–438

    Article  Google Scholar 

  36. Kim HW, Li LH, Lee EJ, Lee SH, Kim HE, Fibrillar assembly and stability of collagen coating on titanium for improved osteoblast responses, J Biomed Mater Res A, 2005;75:629–638

    Google Scholar 

  37. Müller R, Abke J, Schnell E, Macionczyk F, Gbureck U, Mehrl R, Ruszczak Z, Kujat R, Englert C, Nerlich M, Angele P, Surface engineering of stainless steel materials by covalent collagen immobilization to improve implant biocompatibility, Biomaterials, 2005;26:6962–6972

    Article  Google Scholar 

  38. Müller R, Abke J, Schnell E, Scharnweber D, Kujat R, Englert C, Taheri D, Nerlich M, Angele P, Influence of surface pretreatment of titanium- and cobalt-based biomaterials on covalent immobilization of fibrillar collagen, Biomaterials, 2006;27:4059–4068

    Article  Google Scholar 

  39. Douglas T, Heinemann S, Hempel U, Mietrach C, Knieb C, Bierbaum S, Scharnweber D, Worch H, Characterization of collagen II fibrils containing biglycan and their effect as a coating on osteoblast adhesion and proliferation, J Mater Sci Mater Med, 2008;19:1653–1660

    Article  CAS  Google Scholar 

  40. Douglas T, Hempel U, Mietrach C, Viola M, Vigetti D, Heinemann S, Bierbaum S, Scharnweber D, Worch H, Influence of collagen-fibril-based coatings containing decorin and biglycan on osteoblast behavior, J Biomed Mater Res A, 2008;84:805–816

    Google Scholar 

  41. Douglas T, Heinemann S, Mietrach C, Hempel U, Bierbaum S, Scharnweber D, Worch H, Interactions of collagen types I and II with chondroitin sulfates A-C and their effect on osteoblast adhesion, Biomacromolecules, 2007;8:1085–1092

    Article  CAS  Google Scholar 

  42. Rammelt S, Schulze E, Wolf E, Scharnweber D, Holch M, Worch H, Zwipp H, Immunohistochemical characterization of the bone implant interface of collagen coated titanium pins in the undecalcified rat-tibia, Eur J Trauma, 2002;28:125–126

    Google Scholar 

  43. Rammelt S, Schulze E, Bernhardt R, Hanisch U, Scharnweber D, Worch H, Zwipp H, Biewener A, Coating of titanium implants with type-I collagen, J Orthop Res, 2004;22:1025–1034

    Article  CAS  Google Scholar 

  44. Morra M, Cassinelli C, Cascardo G, Cahalan P, Cahalan L, Fini M, Giardino R, Surface engineering of titanium by collagen immobilization. Surface characterization and in vitro and in vivo studies, Biomaterials, 2003;24:4639–4654

    Article  CAS  Google Scholar 

  45. Morra M, Cassinelli C, Meda L, Fini M, Giavaresi G, Giardino R, Surface analysis and effects on interfacial bone microhardness of collagen-coated titanium implants: a rabbit model, Int J Oral Maxillofac Implants, 2005;20:23–30

    Google Scholar 

  46. Morra M, Cassinelli C, Fini M, Giardino R, Enhanced osteointegration by biochemical surface modification: covalent linking of collagen I to intervertebral metal disk surface, Eur Cell Mater, 2005;10(suppl. 3):6

    Google Scholar 

  47. Morra M, Cassinelli C, Cascardo G, Mazzucco L, Borzini P, Fini M, Giavaresi G, Giardino R, Collagen I-coated porous titanium surfaces: mesenchymal cell adhesion and in vivo evaluation in trabecular bone implants, J Biomed Mater Res A, 2006;78:449–458

    CAS  Google Scholar 

  48. Schliephake H, Scharnweber D, Dard M, Sewing A, Aref A, Roessler S, Functionalization of dental implant surfaces using adhesion molecules, J Biomed Mater Res Part B Appl Biomater, 2005;73B:88–96

    Article  CAS  Google Scholar 

  49. Bernhardt R, van den Dolder J, Bierbaum S, Beutner R, Scharnweber D, Jansen J, Beckmann F, Worch H, Osteoconductive modifications of Ti-implants in a goat defect model: characterization of bone growth with SR μCT and histology, Biomaterials, 2005;26:3009–3019

    Article  CAS  Google Scholar 

  50. Rammelt S, Illert T, Bierbaum S, Scharnweber D, Zwipp H, Schneiders W, Coating of titanium implants with collagen, RGD peptide and chondroitin sulfate, Biomaterials, 2006;27:5561–5571

    Article  CAS  Google Scholar 

  51. Stadlinger B, Pilling E, Mai R, Bierbaum S, Berhardt R, Scharnweber D, Eckelt U, Effect of biological implant surface coatings on bone formation, applying collagen, proteoglycans, glycosaminoglycans and growth factors, J Mater Sci Mater Med, 2008;19:1043–1049

    Article  CAS  Google Scholar 

  52. Stadlinger B, Pilling E, Huhle M, Mai R, Bierbaum S, Scharnweber D, Kuhlisch E, Loukota R, Eckelt U, Evaluation of osseointegration of dental implants coated with collagen, chondroitin sulphate and BMP-4: an animal study, Int J Oral Maxillofac Surg, 2008;37:54–59

    Article  CAS  Google Scholar 

  53. Rammelt S, Heck C, Bernhardt R, Bierbaum S, Scharnweber D, Goebbels J, Ziegler J, Biewener A, Zwipp H, In vivo effects of coating loaded and unloaded Ti implants with collagen, chondroitin sulfate, and hydroxyapatite in the sheep tibia, J Orthop Res, 2007;25:1052–1061

    Article  CAS  Google Scholar 

  54. Stadlinger B, Pilling E, Huhle M, Mai R, Bierbaum S, Bernhardt R, Scharnweber D, Kuhlisch E, Hempel U, Eckelt U Influence of extracellular matrix coatings on implant stability and osseointegration: an animal study, J Biomed Mater Res B Appl Biomater, 2007;83:222–231

    Google Scholar 

  55. Svehla M, Morberg P, Bruce W, Walsh WR, No effect of a type I collagen gel coating in uncemented implant fixation, J Biomed Mater Res B Appl Biomater, 2005;74:423–428

    CAS  Google Scholar 

  56. Hay ED, Ed, Cell Biology of the Extracellular Matrix, 2nd edition, New York, Plenum, 1991

    Google Scholar 

  57. Brinckmann J, Notbohm H, Muller PK, Eds, Primer in structure, processing and assembly, In: Topics in Current Chemistry: Collagen, Berlin, Springer, 2005

    Google Scholar 

  58. Kadler KE, Holmes DF, Trotter JA, Chapman JA, Collagen fibril formation, Biochem J, 1996;316:1–11

    CAS  Google Scholar 

  59. Hodge AJ, In: Ramachandran GN, Ed, Treatise on Collagen, Vol. 1, New York, Academic, 1967;185:205–213

    Google Scholar 

  60. Gale M, Pollanen MS, Markiewicz P, Goh MC, Sequential assembly of collagen revealed by atomic force microscopy, Biophys J, 1995;68:2124

    Article  CAS  Google Scholar 

  61. Yamauchi M, Collagen Biochemistry: An Overview, New York, WSP, 2003;93–112

    Google Scholar 

  62. Birk DE, Bruckner P, Collagen suprastructures, In: Brinckmann J, Müller PK, Notbohm H, Eds, Topics in Current Chemistry: Collagen, Berlin, Springer, 2005; 245:185–206

    Google Scholar 

  63. Horbett TA, Principles underlying the role of adsorbed plasma-proteins in blood interactions with foreign materials, Cardiovasc Pathol, 1993;2:S137–S148

    Article  Google Scholar 

  64. Bergstrom K, Holmberg K, Safrani A, Hoffmann AS, Edgell MJ, Kozlowski A, Hovanes BA, Milton Harris J, Reduction of fibrinogen adsorption on PEG-coated polystyrene surfaces, J Biomed Mater Res, 1992;26:779–790

    Article  CAS  Google Scholar 

  65. Zhu Y, Chan-Park MB, Density quantification of collagen grafted on biodegradable polyester: its application to esophageal smooth muscle cell, Anal Biochem, 2007;363:119–127

    Article  CAS  Google Scholar 

  66. Cannella I, Sviluppo di un protocollo di caratterizzazione di un dispositivo da impianto in osso con modifica superficiale biomolecolare, Biomedical engineering thesis, Politecnico of Turin, 2008

    Google Scholar 

  67. Martin SM, Schwartz JL, Giachelli CM, Ratner BD, Enhancing the biological activity of immobilized osteopontin using a type-I collagen affinity coating, J Biomed Mater Res, 2004;70A:10–19

    Article  CAS  Google Scholar 

  68. Lhoest JB, Wagner MS, Tidwell CD, Castner DG, Characterization of adsorbed protein films by time of flight secondary ion mass spectrometry, J Biomed Mater Res, 2001;57:432–440

    Article  CAS  Google Scholar 

  69. Wagner MS, Castner DG, Characterization of adsorbed protein films by time of flight secondary ion mass spectrometry with principal component analysis, Langmuir, 2001;17:4649–4660

    Article  CAS  Google Scholar 

  70. Wagner MS, Tyler BG, Castner DG, Interpretation of static time of flight secondary ion mass spectra of adsorbed proteins films by multivariate pattern recognition, Anal Chem, 2002;74:1824–1835

    Article  CAS  Google Scholar 

  71. Fassett J, Tobolt D, Hansen LK, Type I, collagen structure regulates cell morphology and EGF signaling in primary rat hepatocytes through cAMP-dependent protein kinase A, Mol Biol Cell, 2006;17:345–356

    Article  CAS  Google Scholar 

  72. Henriet P, Zhong ZD, Brooks PC, Weinberg KI, DeClerck YA, Contact with fibrillar collagen inhibits melanoma cell proliferation by up-regulating p27KIP1, Proc Natl Acad Sci U S A, 2000;97:10026–10031

    Article  CAS  Google Scholar 

  73. Halliday NL, Tomasek JJ, Mechanical properties of the extracellular matrix influence fibronectin fibril assembly in vitro, Exp Cell Res, 1995;217:109–117

    Article  CAS  Google Scholar 

  74. Roskelley CD, Desprez PY, Bissell MJ, Extracellular matrix dependent tissue-specific gene expression in mammary epithelial cells requires both physical and biochemical signal transduction, Proc Natl Acad Sci U S A 1994;91:12378–12382

    Article  CAS  Google Scholar 

  75. Morra M, Cassinelli C, Cascardo G, Bollati D, manuscript in preparation

    Google Scholar 

  76. Cheng SL, Yang JW, Rifas L, Zhang SF, Avioli LV, Differentiation of human bone marrow osteogenic stromal cells in vitro: induction of the osteoblast phenotype by dexamethasone, Endocrinology, 1994;134:277–286

    Article  CAS  Google Scholar 

  77. Freitas de Assis A, Beloti MM, Crippa GE, de Oliveira PT, Morra M, Luiz Rosa A, Development of osteoblastic phenotype in human alveolar bone-derived cells grown on collagen type I-coated titanium surface, Clin Oral Implant Res, submitted

    Google Scholar 

  78. Guo L, Kawazoe N, Hoshiba T, Tateishi T, Chen G, Zhang X, Osteogenic differentiation of human mesenchymal stem cells on chargeable polymer-modified surfaces, J Biomed Mater Res, Published Online: 28 Jan 2008

    Google Scholar 

  79. Ratner B, New ideas in biomaterials science – a path to engineered biomaterials, J Biomed Mater Res, 1993;27:837–850

    Article  CAS  Google Scholar 

  80. Morra M, Biomolecular modification of implant surfaces, Expert Rev Med Devices, 2007;4:361–372

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Most of this work was performed under the program “Coating bioattivi per dispositivi a contatto con osso” Legge 598/94 art. 11 – Ricerca, Regione Piemonte.

The significant contribution of Dr. Eng. Ilaria Cannella to the analytical work (which was part of her thesis work) is acknowledged.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Morra, M., Cassinelli, C., Cascardo, G., Bollati, D. (2009). Collagen I-Coated Titanium Surfaces for Bone Implantation. In: Puleo, D., Bizios, R. (eds) Biological Interactions on Materials Surfaces. Springer, New York, NY. https://doi.org/10.1007/978-0-387-98161-1_19

Download citation

Publish with us

Policies and ethics