Skip to main content

Spatial and Temporal Noise in Solar EUV Observations

  • Chapter
Solar Image Analysis and Visualization

Abstract

Solar telescopes will never be able to resolve the smallest events at their intrinsic physical scales. Pixel signals recorded by SOHO/(CDS, EIT, SUMER), STEREO/SECCHI/ EUVI, TRACE, SDO/AIA, and even by the future Solar Orbiter EUI/HRI contain an inherent “spatial noise” since they represent an average of the solar signal present at subpixel scales. In this paper, we aim at investigating this spatial noise, and hopefully at extracting information from subpixel scales. Two paths are explored. We first combine a regularity analysis of a sequence of EIT images with an estimation of the relationship between mean and standard deviation, and we formulate a scenario for the evolution of the local signal-to-noise ratio (SNR) as the pixel size becomes smaller. Second, we use an elementary forward modeling to examine the relationship between nanoflare characteristics (such as area, duration, and intensity) and the global mean and standard deviation. We use theoretical distributions of nanoflare parameters as input to the forward model. A fine-grid image is generated as a random superposition of those pseudo-nanoflares. Coarser resolution images (simulating images acquired by a telescope) are obtained by rebinning and are used to compute the mean and standard deviation to be analyzed. Our results show that the local SNR decays more slowly in regions exhibiting irregularities than in smooth regions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aschwanden, M.J., Parnell, C.E.: 2002, Nanoflare statistics from first principles: Fractal geometry and temperature synthesis. Astrophys. J. 572, 1048 – 1071.

    Article  ADS  Google Scholar 

  • Aschwanden, M.J., Nightingale, R.W., Tarbell, T.D., Wolfson, C.J.: 2000, Time variability of the “quiet” sun observed with TRACE. I. Instrumental effects, event detection, and discrimination of extreme-ultraviolet microflares. Astrophys. J. 535, 1027 – 1046.

    Article  ADS  Google Scholar 

  • Berghmans, D., Clette, F., Moses, D.: 1998, Quiet Sun EUV transient brightenings and turbulence. A panoramic view by EIT on board SOHO. Astron. Astrophys. 336, 1039 – 1055.

    ADS  Google Scholar 

  • Chatterjee, S., Hadi, A.S.: 1986, Influential observations, high leverage points, and outliers in linear regression. Stat. Sci. 1, 379 – 416.

    Article  MathSciNet  Google Scholar 

  • Crosby, N.B., Aschwanden, M.J., Dennis, B.R.: 1993, Frequency distributions and correlations of solar X-ray flare parameters. Solar Phys. 143, 275 – 299.

    Article  ADS  Google Scholar 

  • Defise, J.M.: 1999, Analyse des performances instrumentales du téléscope spatial EIT. Ph.D. thesis, Université de Liège.

    Google Scholar 

  • DeForest, C.E.: 2007, On the size of structures in the Solar corona. Astrophys. J. 661, 532 – 542.

    Article  ADS  Google Scholar 

  • Delaboudinière, J.P., Artzner, G.E., Brunaud, J., Gabriel, A.H., Hochedez, J.F., Millier, F., Song, X.Y., Au, B., Dere, K.P., Howard, R.A., Kreplin, R., Michels, D.J., Moses, J.D., Defise, J.M., Jamar, C., Rochus, P., Chauvineau, J.P., Marioge, J.P., Catura, R.C., Lemen, J.R., Shing, L., Stern, R.A., Gurman, J.B., Neupert, W.M., Maucherat, A., Clette, F., Cugnon, P., van Dessel, E.L.: 1995, EIT: Extreme-ultraviolet imaging telescope for the SOHO mission. Solar Phys. 162, 291 – 312.

    Article  ADS  Google Scholar 

  • Delouille, V., Patoul, J., Hochedez, J.F., Jacques, L., Antoine, J.P.: 2005, Wavelet spectrum analysis of EIT/SOHO images. Solar Phys. 228, 301 – 321.

    Article  ADS  Google Scholar 

  • Golub, L., Hartquist, T.W., Quillen, A.C.: 1989, Comments on the observability of coronal variations. Solar Phys. 122, 245 – 261.

    Article  ADS  Google Scholar 

  • Hochedez, J.F., Lemaire, P., Pace, E., Schühle, U., Verwichte, E.: 2001, Wide bandgap EUV and VUV imagers for the Solar Orbiter. In: Battrick, B., Sawaya-Lacoste, H., Marsch, E., Martinez Pillet, V., Fleck, B., Marsden, R. (eds.) Solar Encounter. Proceedings of the First Solar Orbiter Workshop 493. ESA, Noordwijk, 245 – 250.

    Google Scholar 

  • Isliker, H., Anastasiadis, A., Vlahos, L.: 2001, MHD consistent cellular automata (CA) models. II. Applications to Solar flares. Astron. Astrophys. 377, 1068 – 1080.

    Article  ADS  Google Scholar 

  • Janesick, J., Klaasen, K., Elliott, T.: 1985, CCD charge collection efficiency and the photon transfer technique. In: Dereniak, E.L., Prettyjohns, K.N. (eds.) Solid State Imaging Arrays (SPIE) 570, 7 – 19.

    Google Scholar 

  • Katsukawa, Y., Tsuneta, S.: 2001, Small fluctuation of coronal X-ray intensity and a signature of nanoflares. Astrophys. J. 557, 343 – 350.

    Article  ADS  Google Scholar 

  • Krucker, S., Benz, A.O.: 1998, energy distribution of heating processes in the quiet Solar corona. Astrophys. J. Lett. 501, 213 – 216.

    Article  ADS  Google Scholar 

  • Lin, R.P., Schwartz, R.A., Kane, S.R., Pelling, R.M., Hurley, K.C.: 1984, Solar hard X-ray microflares. Astrophys. J. 283, 421 – 425.

    Article  ADS  Google Scholar 

  • Paczuski, M., Boettcher, S., Baiesi, M.: 2005, Interoccurrence times in the Bak – Tang – Wiesenfeld sandpile model: A comparison with the observed statistics of Solar flares. Phys. Rev. Lett. 95(18), 181102 – 181105.

    Article  ADS  Google Scholar 

  • Snyder, D.L., Miller, M.I.: 1991, Random Point Processes in Time and Space, Springer, New York.

    MATH  Google Scholar 

  • Véhel, J.L., Legrand, P.: 2004, Signal and image processing with fraclab. In: Novak, M. (ed.) Thinking in Patterns, World Scientific, Singapore, 321 – 323.

    Google Scholar 

  • Viticchié, B., Del Moro, D., Berrilli, F.: 2006, Statistical properties of synthetic nanoflares. Astrophys. J. 652, 1734 – 1739.

    Article  ADS  Google Scholar 

  • Vlahos, L., Georgoulis, M., Kluiving, R., Paschos, P.: 1995, The statistical flare. Astron. Astrophys. 299, 897 – 911.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Delouille .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Delouille, V., Chainais, P., Hochedez, JF. (2008). Spatial and Temporal Noise in Solar EUV Observations. In: Ireland, J., Young, C.A. (eds) Solar Image Analysis and Visualization. Springer, New York, NY. https://doi.org/10.1007/978-0-387-98154-3_17

Download citation

Publish with us

Policies and ethics