Skip to main content

Modeling of Membrane-Electrode-Assembly Degradation in Proton-Exchange-Membrane Fuel Cells – Local H2 Starvation and Start–Stop Induced Carbon-Support Corrosion

  • Chapter
  • First Online:
Modeling and Diagnostics of Polymer Electrolyte Fuel Cells

Part of the book series: Modern Aspects of Electrochemistry ((MAOE))

Abstract

Carbon-support corrosion causes electrode structure damage and thus electrode degradation. This chapter discusses fundamental models developed to predict cathode carbon-support corrosion induced by local H2 starvation and start–stop in a proton-exchange-membrane (PEM) fuel cell. Kinetic models based on the balance of current among the various electrode reactions are illustrative, yielding much insight on the origin of carbon corrosion and its implications for future materials developments. They are particularly useful in assessing carbon corrosion rates at a quasi-steady-state when an H2-rich region serves as a power source that drives an H2-free region as a load. Coupled kinetic and transport models are essential in predicting when local H2 starvation occurs and how it affects the carbon corrosion rate. They are specifically needed to estimate length scales at which H2 will be depleted and time scales that are valuable for developing mitigation strategies. To predict carbon-support loss distributions over an entire active area, incorporating the electrode pseudo-capacitance appears necessary for situations with shorter residence times such as start–stop events. As carbon-support corrosion is observed under normal transient operations, further model improvement shall be focused on finding the carbon corrosion kinetics associated with voltage cycling and incorporating mechanisms that can quantify voltage decay with carbon-support loss.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.F. Mathias, R. Makharia, H.A. Gasteiger, J.J. Conley, T.J. Fuller, C.J. Gittleman, S.S. Kocha, D.P. Miller, C.K. Mittelsteadt, T. Xie, S.G. Yan, P.T. Yu, Electrochem. Soc. Interface 14, 24 (2005)

    CAS  Google Scholar 

  2. R. Borup, J. Meyer, B. Pivovar, Y.S. Kim, R. Mukundan, N. Garland, D. Myers, M. Wilson, F. Garzon, D. Wood, P. Zelenat, K. More, K. Stroh, T. Zawodzinski, J. Boncella, J.E. McGrath, T. Inaba, K. Miyake, M. Hori, K. Ohto, Z. Ogumi, S. Miyata, A. Nishikata, Z. Siroma, Y. Uchimoto, K. Yasuda, K. Kimijima, N. Iwashita, Chem. Rev. 107, 3904 (2007)

    Article  CAS  Google Scholar 

  3. W. Schmittinger, A. Vahidi, J. Power Sources 180, 1 (2008)

    Article  CAS  Google Scholar 

  4. J. Wu, X.Z. Yuan, J.J. Martin, H. Wanga, J. Zhang, J. Shen, S. Wu, W. Merida, J. Power Sources 184, 104 (2008)

    Article  CAS  Google Scholar 

  5. H.A. Gasteiger, W. Gu, B. Litteer, R. Makharia, M. Budinski, E. Thompson, F.T. Wagner, S.G. Yan, P.T. Yu, in Mini-Micro Fuel Cells, ed. by S. Kakaç, A. Pramuanjaroenkij, L. Vasiliev (Springer, Dordrecht, 2008)

    Google Scholar 

  6. J. Zhang, R.N. Carter, P.T. Yu, W. Gu, F.T. Wagner, H.A. Gasteiger, in Encyclopedia of Electrochemical Power Sources, Volume 2, ed. by J. Garche, C. Dyer, P. Moseley, Z. Ogumi, D. Rand, B. Scrosati. (Elsevier B.V., Amsterdam, 2009)

    Google Scholar 

  7. T. Hatanaka, T. Takeshita, H. Murata, N. Hasegawa, T. Asano, M. Kawasumi, Y. Morimoto, ECS Trans. 16(2), 1961 (2008)

    Google Scholar 

  8. C.A. Reiser, L. Bregoli, T.W. Patterson, J.S. Yi, J.Y. Yang, M.L. Perry, T.D. Jarvi, Electrochem. Solid-State Lett. 8, A273 (2005)

    Article  CAS  Google Scholar 

  9. T.W. Patterson, R.M. Darling, Electrochem. Solid-State Lett. 9, A183 (2006)

    Article  CAS  Google Scholar 

  10. H. Tang, Z. Qi, M. Ramani, J.F. Elter, J. Power Sources 158, 1306 (2006)

    Article  CAS  Google Scholar 

  11. R. Makharia, S. Kocha, P. Yu, M.A. Sweikart, W. Gu, F. Wagner, H.A. Gasteiger, ECS Trans. 1(8), 3 (2006)

    Google Scholar 

  12. P.T. Yu, W. Gu, R. Makharia, F.T. Wagner, H.A. Gasteiger, ECS Trans. 3(1), 797 (2006)

    Google Scholar 

  13. Z.Y. Liu, B.K. Brady, R.N. Carter, B. Litteer, M. Budinski, J.K. Hyun, D.A. Muller, J. Electrochem. Soc. 155, B979 (2008)

    Article  CAS  Google Scholar 

  14. W. Gu, R. Makharia, P.T. Yu, H.A. Gasteiger, Preprint – Am. Chem. Soc. Div. Fuel Chem. 51(2), 692 (2006)

    CAS  Google Scholar 

  15. W. Gu, R.N. Carter, P.T. Yu, H.A. Gasteiger, ECS Trans. 11(1), 963 (2007)

    Google Scholar 

  16. H. Chizawa, Y. Ogami, H. Naka, A. Matsunaga, N. Aoki, T. Aoki, K. Tanaka, ECS Trans. 11(1), 981 (2007)

    Google Scholar 

  17. J. Kim, J. Lee, G. Lee, Y. Tak, ECS Trans. 16(2), 961 (2008)

    Google Scholar 

  18. A.B. Ofstad, J.R. Davey, S. Sunde, R.L. Borup, ECS Trans. 16(2), 1301 (2008)

    Google Scholar 

  19. W.R. Baumgartner, E. Wallnöfer, T. Schaffer, J.O. Besenhard, V. Hacker, V. Peinecke, P. Prenninger, ECS Trans. 3(1), 811 (2006)

    Google Scholar 

  20. R. Dross, B. Maynard, ECS Trans. 11(1), 1059 (2007)

    Google Scholar 

  21. Q. Shen, M. Hou, D. Liang, Z. Zhou, X. Li, Z. Shao, B. Yi, J. Power Sources 189, 1114 (2009)

    Article  CAS  Google Scholar 

  22. P.T. Yu, W. Gu, J. Zhang, R. Makharia, F.T. Wagner, H.A. Gasteiger, in PEFC Durability and Degradation, ed. by F.N. Büchi, M. Inaba, T.J. Schmidt (Springer, New York, NY, 2009)

    Google Scholar 

  23. P.T. Yu, W. Gu, F.T. Wagner, H.A. Gasteiger, Preprint – Am. Chem. Soc. Div. Fuel Chem. 52(2), 386 (2007)

    CAS  Google Scholar 

  24. J.P. Meyers, R.M. Darling, J. Electrochem. Soc., 153, A1432 (2006)

    Article  CAS  Google Scholar 

  25. T.F. Fuller, G. Gray, ECS Trans. 1(8), 345 (2006)

    Google Scholar 

  26. N. Takeuchi, T.F. Fuller, ECS Trans. 11(1), 1021 (2007)

    Google Scholar 

  27. N. Takeuchi, T.F. Fuller, J. Electrochem. Soc. 155, B770 (2008)

    Article  CAS  Google Scholar 

  28. J. Hu, P.C. Sui, S. Kumar, N. Djilali, ECS Trans. 11(1), 1031 (2007)

    Google Scholar 

  29. J. Hu, P.C. Sui, N. Djilali, S. Kumar, ECS Trans. 16(2), 1313 (2008)

    Google Scholar 

  30. A. Gidwani, K. Jain, S. Kumar, J.V. Cole, ECS Trans. 16(2), 1323 (2008)

    Google Scholar 

  31. A.A. Franco, M. Gerard, J. Electrochem. Soc. 155, B367 (2008)

    Article  CAS  Google Scholar 

  32. A.A. Franco, M. Gerard, M. Guinard, B. Barthe, O. Lemairea, ECS Trans. 13(15), 35 (2008)

    Article  CAS  Google Scholar 

  33. K.C. Neyerlin, W. Gu, J. Jorne, H.A. Gasteiger, J. Electrochem. Soc. 154, B631 (2007)

    Article  CAS  Google Scholar 

  34. K.C. Neyerlin, W. Gu, J. Jorne, H.A. Gasteiger, J. Electrochem. Soc. 153, A1955 (2006)

    Article  CAS  Google Scholar 

  35. P.T. Yu, W. Gu, H.A. Gasteiger, Internal experimental data, Electrochemical Energy Research Laboratory, General Motors Research and Development (2007)

    Google Scholar 

  36. S.G. Bratsch, J. Phys. Chem. Ref. Data 18, 1 (1989)

    Article  CAS  Google Scholar 

  37. K. Kinoshita, Electrochemical Oxygen Technology (Wiley, New York, NY, 1992)

    Google Scholar 

  38. L.B. Kriksunov, L.V. Bunakova, S.E. Zabusova, L.I. Krishtalik, Electrochim. Acta 39, 137 (1994)

    Article  CAS  Google Scholar 

  39. A.E. Bolzan, A.J. Arvia, J. Electroanal. Chem. 375, 157 (1994)

    Article  CAS  Google Scholar 

  40. I.V. Barsukov, M.A. Gallego, J.E. Doninger, J. Power Sources 153, 288 (2006)

    Article  CAS  Google Scholar 

  41. K. Kinoshita, Carbon (Wiley, New York, NY, 1988)

    Google Scholar 

  42. Y. Liu, M. Murphy, D. Baker, W. Gu, C. Ji, J. Jorne, H.A. Gasteiger, ECS Trans. 11(1), 473 (2007)

    Google Scholar 

  43. Y. Liu, M.W. Murphy, D.R. Baker, W. Gu, C. Ji, J. Jorne, H.A. Gasteiger, J. Electrochem. Soc. 156, B970 (2009)

    Article  CAS  Google Scholar 

  44. C.K. Mittelsteadt, H. Liu, in Handbook of Fuel Cells – Fundamentals, Technology and Applications, Volume 5: Advances in Electrocatalysis, Materials, Diagnostics and Durability, Part 1, ed. by W. Vielstich, H. Yokokawa, H.A. Gasteiger (Wiley, New York, NY, 2009)

    Google Scholar 

  45. A.E. Fischer, G.M. Swain, J. Electrochem. Soc. 152, B369 (2005)

    Article  CAS  Google Scholar 

  46. E. Antolini, Appl. Catalysis B: Environ. 88, 1 (2009)

    Article  CAS  Google Scholar 

  47. S.D. Knights, K.M. Colbow, J. St.-Pierre, D.P. Wilkinson, J. Power Sources 127, 127 (2004)

    Article  CAS  Google Scholar 

  48. T.R. Ralph, S. Hudson, D.P. Wilkinson, ECS Trans. 1(8), 67 (2006)

    Google Scholar 

  49. C.R. Wilke, J. Chem. Phys. 18, 517 (1950)

    Article  CAS  Google Scholar 

  50. C.R. Wilke, Chem. Eng. Prog. 46, 95 (1950)

    Google Scholar 

  51. D. Baker, C. Wieser, K.C. Neyerlin, M.W. Murphy, ECS Trans. 3(1), 989 (2006)

    Google Scholar 

  52. D.R. Baker, D.A. Caulk, K.C. Neyerlin, M.W. Murphy, J. Electrochem. Soc., 156, B991 (2009)

    Article  CAS  Google Scholar 

  53. S.V. Patankar, Numerical Heat Transfer and Fluid Flow (Taylor & Francis, New York, NY, 1980)

    Google Scholar 

  54. R.N. Carter, W. Gu, B. Brady, K. Subramanian, H.A. Gasteiger, in Handbook of Fuel Cells – Fundamentals, Technology and Applications, Volume 6: Advances in Electrocatalysis, Materials, Diagnostics and Durability, Part 2, ed. by W. Vielstich, H. Yokokawa, H.A. Gasteiger (Wiley, New York, NY, 2009)

    Google Scholar 

  55. R.N. Carter, S.S. Kocha, F.T. Wagner, M. Fay, H.A. Gasteiger, ECS Trans. 11(1), 403 (2007)

    Google Scholar 

  56. K.G. Gallagher, D.T. Wong, T.F. Fuller, J. Electrochem. Soc. 155, B488 (2009)

    Article  Google Scholar 

  57. S. Maass, F. Finsterwalder, G. Frank, R. Hartmann, C. Merten, J. Power Sources 176, 444 (2008)

    Article  CAS  Google Scholar 

  58. K.G. Gallagher, R.M. Darling, T.F. Fuller, in Handbook of Fuel Cells – Fundamentals, Technology and Applications, Volume 6: Advances in Electrocatalysis, Materials, Diagnostics and Durability, Part 2, ed. by W. Vielstich, H. Yokokawa, H.A. Gasteiger (Wiley, New York, NY, 2009)

    Google Scholar 

  59. B.E. Conway, V. Birss, J. Wojtowicz, J. Power Sources 66, 1 (1997)

    Article  CAS  Google Scholar 

  60. L.C. Colmenares, A. Wurth, Z. Jusys, R.J. Behm, J. Power Sources 190, 14 (2009)

    Article  CAS  Google Scholar 

  61. Y. Shao, J. Wang, R. Kou, M. Engelhard, J. Liu, Y. Wang, Y. Lin, Electrochim. Acta 54, 3109 (2009)

    Article  CAS  Google Scholar 

  62. N. Takeuchi, T.F. Fuller, ECS Trans. 16(2), 1563 (2008)

    Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Frederick T. Wagner for useful discussions.

List of Symbols

a

electrochemically active surface area of an ingredient in an electrode, cm 2 /mg

C φ

electrode pseudo-capacitance, F/cm 2 electrode

ci

molar concentration of species i, mol/cm 3

Di

effective diffusion coefficient of species i, cm 2 /s

Di,mix

molecular diffusion coefficient of species i in a multi-component mixture, cm 2 /s

DK,i

Knudsen diffusion coefficient of species i, cm 2 /s

d

pore diameter of an electrode, cm

Eo

standard equilibrium (or reversible) potential of an electrode reaction, V

Edry or wet

activation energy for gas transport in the dry (or wet) phase of membrane, J/mol

Erev

activation energy of an electrode reaction at zero overpotential, J/mol

E an or cath

electric potential of anode (or cathode) electrode, V

F

Faraday constant, C/equiv

i

current density, A/cm 2

io

exchange current density of an electrode reaction, A/cm 2 Pt or C

ix,O2

O 2 crossover current density, A/cm 2

Kg

permeability of a porous medium, cm 2 /s

Km

permeability of gaseous species through membrane, mol cm/(cm 2 s kPa)

L

loading of an ingredient in an electrode, mg/cm 2

M

molecular weight of a species, g/mol

m

index for carbon weight loss dependence in the COR kinetics equation

n

number of electrons transferred in an electrode reaction

p

pressure, partial pressure of a species, kPa

q max

maximum stored charge, C/cm 2 electrode

R

universal gas constant, J/mol/K

R H

proton transport resistance, Ω cm 2

r Pt/C

weight ratio of ingredient Pt to carbon support in an electrode

RH

relative humidity, %

s

stoichiometry of a species in an electrode reaction

T

temperature, °C or K

t

time, s

v

gas velocity, cm/s

x

normalized location of H 2 /O 2 front at the anode

xi

mole fraction of species i in a gas mixture

Greek Symbols

α a

anodic transfer coefficient of an electrode reaction

α c

cathodic transfer coefficient of an electrode reaction

δ

thickness, cm

ɛ

porosity

φ

electric potential, V

γ

reaction order of a species in an electrode reaction

η

charge transfer overpotential of an electrode reaction, V

κ

proton conductivity, S/cm

σ

τ

electron conductivity, S/cm

tortuosity

μ mix

viscosity of a gas mixture, Pa s

θ

Mass fraction of carbon support that has been lost

Subscripts

an

anode

cath

cathode

CL

catalyst layer

e

electrolyte conducting protons

mem

membrane

s

solid conducting electrons

Superscripts

ref

reference

sat

saturated

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenbin Gu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Gu, W., Yu, P.T., Carter, R.N., Makharia, R., Gasteiger, H.A. (2009). Modeling of Membrane-Electrode-Assembly Degradation in Proton-Exchange-Membrane Fuel Cells – Local H2 Starvation and Start–Stop Induced Carbon-Support Corrosion. In: Wang, CY., Pasaogullari, U. (eds) Modeling and Diagnostics of Polymer Electrolyte Fuel Cells. Modern Aspects of Electrochemistry. Springer, New York, NY. https://doi.org/10.1007/978-0-387-98068-3_2

Download citation

Publish with us

Policies and ethics