Skip to main content

Ultra-Sensitive Biochemical Optical Detection Using Distributed Feedback Nanolasers

  • Chapter
  • First Online:
Advanced Photonic Structures for Biological and Chemical Detection

Part of the book series: Integrated Analytical Systems ((ANASYS))

Abstract

Circular resonators are promising candidates for a wide range of applications, ranging from research involving highly confined fields and strong photon-atom interactions such as cavity QED to optical communication systems and biochemical sensing. For sensing applications, circular cavities exhibit a great potential for achieving ultra-high sensitivity while retaining compact dimensions. The main characteristics of circular resonators are the Q-factor, the free spectral range (FSR), and the modal volume, where the last two are primarily determined by the resonator radius. The total-internal-reflection mechanism employed in “conventional” resonators couples between these characteristics and limits the ability to realize compact devices exhibiting large FSR, small modal volume, and high Q. Recently, a new class of annular resonator, based on a single defect surrounded by radial Bragg reflectors, has been proposed and analyzed. The radial Bragg confinement decouples the modal volume and the Q and paves a new way for the realization of compact and low loss resonators. Such properties as well as the unique mode profile of these circular Bragg nanolasers make this class of devices an excellent tool for ultra-sensitive biochemical detection as well as for studies in nonlinear optics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Madsen, C. K.; Zhao, J. H., Optical Filter Design and Analysis: A Signal Processing Approach, Wiley-Interscience Publications, New York, NY, 1999, and references therein.

    Book  Google Scholar 

  2. Little, B. E.; Chu, T.; Haus, H. A., Second-order filtering and sensing with partially coupled traveling waves in a single resonator, Opt. Lett. 1998, 23, 1570–1572

    Article  CAS  Google Scholar 

  3. Yariv, A., Critical coupling and its control in optical waveguide-ring resonator systems, IEEE Photonics Technol. Lett. 2002, 14, 483–485

    Article  Google Scholar 

  4. Heebner, J. E.; Boyd, R. W., Slow and fast light in resonator-coupled waveguides, J. Mod. Opt. 2002, 49, 2629–2636

    Article  Google Scholar 

  5. Chao, C. Y.; Gao, L. J., Biochemical sensors based on polymer microrings with sharp asymmetrical resonance, Appl. Phys. Lett. 2003, 83, 1527–1529

    Article  CAS  Google Scholar 

  6. Matsko, A. B.; Maleki, L.; Savchenkov, A. A.; Ilchenko, V. S., Whispering gallery mode based optoelectronic microwave oscillator, J. Mod. Opt. 2003, 50, 2523–2542

    Google Scholar 

  7. Vahala, K.J., Optical microcavities, Nature 2003, 424, 839–846

    Article  CAS  Google Scholar 

  8. Boyd, R. W., et al, Nanofabrication of optical structures and devices for photonics and biophotonics, J. Mod. Opt. 2003, 50, 2543

    Article  CAS  Google Scholar 

  9. Loncar, M.; Scherer, A.; Qiu, Y., Photonic crystal laser sources for chemical detection, Appl. Phys. Lett. 2003, 82, 4648

    Article  CAS  Google Scholar 

  10. Chow, E.; Grot, A.; Mirkarimi, L. W.; Sigalas, M.; Girolami, G., Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity, Opt. Lett. 2004, 29, 1093

    Article  CAS  Google Scholar 

  11. Scheuer, J.; Yariv, A., Annular Bragg defect mode resonators, J. Opt. Soc. Am. B. 2003, 20, 2285–2291

    Article  CAS  Google Scholar 

  12. Scheuer, J.; Green, W. M. J.; DeRose, G.; Yariv, A., Low threshold two-dimensional annular Bragg lasers, Opt. Lett. 2004, 29, 2641–2643

    Article  Google Scholar 

  13. Scheuer, J.; Green,W. M. J.; DeRose, G.; Yariv, A., Lasing from a circular Bragg nanocavity with an ultra-small modal volume, Appl. Phys. Lett. 2005, 86, 251101

    Article  Google Scholar 

  14. Yeh, P.; Yariv, A.; Marom, E., Theory of Bragg fiber, J. Opt. Soc. Am. 1978, 68, 1196–1201

    Article  Google Scholar 

  15. Yariv, A., Optical Electronics in Modern Communications, 5th edn., Oxford University Press, New York, NY, 1997

    Google Scholar 

  16. Luff, B. J.; Harris, R. D.; Wilkinson, J. S.; Wilson, R.; Schiffrin, D. J., Integrated-optical directional coupler biosensor, Opt. Lett. 1996, 21, 618–620

    Article  CAS  Google Scholar 

  17. Luff, B. J.; Wilkinson, J. S.; Piehler, J.; Hollenbach, U.; Igenhoff, J.; Fabricius, N., Integrated optical Mach-Zehnder biosensor, IEEE J. Lightwave Technol. 1998, 16, 583–592

    Article  Google Scholar 

  18. Boyd, R. W.; Heebner, J., Sensitive disk resonator photonic biosensor, Appl. Opt. 2001, 40, 5742–5747

    Article  CAS  Google Scholar 

  19. Levy, U.; Shamai, R., Tunable optofluidic devices, Microfluidics and Nanofluidics 2008, 4, 97–105

    Article  Google Scholar 

  20. Luff, B. J.; Harris, R. D.; Wilkinson, J. S.; Wilson, R.; Schiffrin, D. J., Integrated-optical directional coupler biosensor, Opt. Lett. 1996, 21, 618

    Article  CAS  Google Scholar 

  21. Scheuer, J.; Green, W. M. J.; DeRose, G.; Yariv, A., InGaAsP annular Bragg lasers: Theory, applications and modal properties, IEEE J. Sel. Top. Quantum Electron. 2005, 11, 476–484

    Article  CAS  Google Scholar 

  22. Coldren, L. A.; Corzine, S. W., Diode Lasers and Photonic Integrated Circuits, Wiley-Interscience Publications, New York, NY, 1995.

    Google Scholar 

  23. Kim, S.; Ryu, H.; Park, H.; Kim, G.; Choi, Y.; Lee, Y.; Kim, J., Two-dimensional photonic crystal hexagonal waveguide ring laser, Appl. Phys. Lett. 2002, 81, 2499–2501

    Article  CAS  Google Scholar 

  24. Yoshie, T.; Shchekin, O. B.; Chen, H.; Deppe, D. G.; Scherer, A., Planar photonic crystal nanolasers (II): Low-threshold quantum dot lasers, IEICE Trans. Electron. 2004, E87-C, 300–307

    Google Scholar 

  25. Painter, O.; Lee, R. K.; Scherer, A.; Yariv, A.; O'Brien, J. D.; Dapkus, P. D.; Kim, I., Two-dimensional photonic band-gap defect mode laser, Science 1999, 284, 1819–1821

    Article  CAS  Google Scholar 

  26. Green, W.; Scheuer, J.; DeRose, G.; Yariv, A., Ultra-sensitive biochemical sensor based on circular bragg micro-cavities, CLEO/QELS 2005, Baltimore, Maryland, paper CPDA7

    Google Scholar 

  27. Chow, E.; Grot, A.; Mirkarimi, L. W.; Sigalas, M.; Girolami, G., Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity, Opt. Lett. 2004, 29, 1093–1095

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Israeli Ministry of Science and Technology.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Scheuer, J. (2009). Ultra-Sensitive Biochemical Optical Detection Using Distributed Feedback Nanolasers. In: Fan, X. (eds) Advanced Photonic Structures for Biological and Chemical Detection. Integrated Analytical Systems. Springer, New York, NY. https://doi.org/10.1007/978-0-387-98063-8_12

Download citation

Publish with us

Policies and ethics