Cardiovascular Effects of Anesthetics, Sedatives, Postoperative Analgesic Agents, and Other Pharmaceuticals

  • David R. Gross


Researchers using animal models must be aware that many of the drugs necessary to provide humane use and care have adverse affects on the cardiovascular system. The use of these agents is absolutely necessary and unavoidable but informed choices can be made to minimize these affects.


Cardiac Output Cardiac Index Central Venous Pressure Systemic Vascular Resistance Action Potential Duration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Gross DR. Animal Models in Cardiovascular Research, 2nd Revised Edition. Boston, MA: Kluwer Academic; 1994.Google Scholar
  2. 2.
    Weber M, Motin L, Gaul S, Beker F, Fink RH, Adams DJ. Intravenous anaesthetics inhibit nicotinic acetylcholine receptor-mediated currents and Ca2+ transients in rat intracardiac ganglion neurons. Br J Pharmacol. 2005;144:98–107.PubMedCrossRefGoogle Scholar
  3. 3.
    Rottman JN, Ni G, Khoo M, et al. Temporal changes in ventricular function assessed echocardiographically in conscious and anesthetized mice. J Am Soc Echocardiogr. 2003;16:1150–1157.PubMedCrossRefGoogle Scholar
  4. 4.
    Schwenke DO, Cragg PA. Comparison of the depressive effects of four anesthetic regimens on ventilatory and cardiovascular variables in the guinea pig. Comp Med. 2004;54:77–85.PubMedGoogle Scholar
  5. 5.
    Blake DW, Korner PI. Role of baroreceptor reflexes in the hemodynamic and heart rate responses to althesin, ketamine and thiopentone anesthesia. J Auton Nerv Syst. 1981;3:55–70.PubMedCrossRefGoogle Scholar
  6. 6.
    Thomson IA, Fitch W, Hughes RL, Campbell D, Watson R. Effects of certain i.v. anaesthetics on liver blood flow and hepatic oxygen consumption in the greyhound. Br J Anaesth. 1986;58:69–80.PubMedCrossRefGoogle Scholar
  7. 7.
    Mather LE, Ladd LA, Copeland SE, Chang DH. Effects of imposed acid-base derangement on the cardiovascular effects and pharmacokinetics of bupivacaine and thiopental. Anesthesiology. 2004;100:1457–1468.PubMedCrossRefGoogle Scholar
  8. 8.
    Roth DM, Swaney JS, Dalton ND, Gilpin EA, Ross J, Jr. Impact of anesthesia on cardiac function during echocardiography in mice. Am J Physiol Heart Circ Physiol. 2002;282:H2134–H2140.PubMedGoogle Scholar
  9. 9.
    Philp KL, Hussain M, Byrne NF, Diver MJ, Hart G, Coker SJ. Greater antiarrhythmic activity of acute 17beta-estradiol in female than male anaesthetized rats: Correlation with Ca2+ channel blockade. Br J Pharmacol. 2006;149:233–242.PubMedCrossRefGoogle Scholar
  10. 10.
    Stekiel TA, Contney SJ, Bosnjak ZJ, Kampine JP, Roman RJ, Stekiel WJ. Chromosomal substitution-dependent differences in cardiovascular responses to sodium pentobarbital. Anesth Analg. 2006;102:799–805.PubMedCrossRefGoogle Scholar
  11. 11.
    Mustola ST, Baer GA, Toivonen JK, et al Electroencephalographic burst suppression versus loss of reflexes anesthesia with propofol or thiopental: Differences of variance in the catecholamine and cardiovascular response to tracheal intubation. Anesth Analg. 2003;97:1040–1045, table of contents.PubMedCrossRefGoogle Scholar
  12. 12.
    Misiolek H, Wojcieszek E, Dyaczynska-Herman A. Comparison of influence of thiopentone, propofol and midazolam on blood serum concentration of noradrenaline and cortisol in patients undergoing non-toxic struma operation. Med Sci Monit. 2000;6:319–324.PubMedGoogle Scholar
  13. 13.
    Roh WS, Ding X, Murray PA. Propofol and thiopental attenuate adenosine triphosphate-sensitive potassium channel relaxation in pulmonary veins. Am J Physiol Lung Cell Mol Physiol. 2006;291:L636–L643.PubMedCrossRefGoogle Scholar
  14. 14.
    Brookes ZL, Reilly CS, Brown NJ. Differential effects of propofol, ketamine, and thiopental anaesthesia on the skeletal muscle microcirculation of normotensive and hypertensive rats in vivo. Br J Anaesth. 2004;93:249–256.PubMedCrossRefGoogle Scholar
  15. 15.
    Brookes ZL, Brown NJ, Reilly CS. Response of the rat cremaster microcirculation to hemorrhage in vivo: Differential effects of intravenous anesthetic agents. Shock. 2002;18:542–548.PubMedCrossRefGoogle Scholar
  16. 16.
    Stein AB, Tiwari S, Thomas P, et al. Effects of anesthesia on echocardiographic assessment of left ventricular structure and function in rats. Basic Res Cardiol. 2007;102:28–41.PubMedCrossRefGoogle Scholar
  17. 17.
    Fanton JW, Zarr SR, Ewert DL, Woods RW, Koenig SC. Cardiovascular responses to propofol and etomidate in long-term instrumented rhesus monkeys (macaca mulatta). Comp Med. 2000;50:303–308.PubMedGoogle Scholar
  18. 18.
    Chen WH, Lee CY, Hung KC, Yeh FC, Tseng CC, Shiau JM. The direct cardiac effect of propofol on intact isolated rabbit heart. Acta Anaesthesiol Taiwan. 2006;44:19–23.PubMedGoogle Scholar
  19. 19.
    Akine A, Suzuka H, Hayashida Y, Kato Y. Effects of ketamine and propofol on autonomic cardiovascular function in chronically instrumented rats. Auton Neurosci. 2001;87:201–208.PubMedCrossRefGoogle Scholar
  20. 20.
    Oku K, Ohta M, Katoh T, Moriyama H, Kusano K, Fujinaga T. Cardiovascular effects of continuous propofol infusion in horses. J Vet Med Sci. 2006;68:773–778.PubMedCrossRefGoogle Scholar
  21. 21.
    Umar MA, Yamashita K, Kushiro T, Muir WW. Evaluation of cardiovascular effects of total intravenous anesthesia with propofol or a combination of ketamine-medetomidine-propofol in horses. Am J Vet Res. 2007;68:121–127.PubMedCrossRefGoogle Scholar
  22. 22.
    Cromheecke S, Pepermans V, Hendrickx E, et al Cardioprotective properties of sevoflurane in patients undergoing aortic valve replacement with cardiopulmonary bypass. Anesth Analg. 2006;103:289–296, table of contents.PubMedCrossRefGoogle Scholar
  23. 23.
    Wickley PJ, Ding X, Murray PA, Damron DS. Propofol-induced activation of protein kinase C isoforms in adult rat ventricular myocytes. Anesthesiology. 2006;104:970–977.PubMedCrossRefGoogle Scholar
  24. 24.
    Roy N, Friehs I, Cowan DB, Zurakowski D, McGowan FX, del Nido PJ. Dopamine induces postischemic cardiomyocyte apoptosis in vivo: An effect ameliorated by propofol. Ann Thorac Surg. 2006;82:2192–2199.PubMedCrossRefGoogle Scholar
  25. 25.
    Saint DA. The effects of propofol on macroscopic and single channel sodium currents in rat ventricular myocytes. Br J Pharmacol. 1998;124:655–662.PubMedCrossRefGoogle Scholar
  26. 26.
    Nagakawa T, Yamazaki M, Hatakeyama N, Stekiel TA. The mechanisms of propofol-mediated hyperpolarization of in situ rat mesenteric vascular smooth muscle. Anesth Analg. 2003;97:1639–1645.PubMedCrossRefGoogle Scholar
  27. 27.
    Rubal BJ, Buchanan C. Supplemental chloralose anesthesia in morphine premedicated dogs. Lab Anim Sci. 1986;36:59–64.PubMedGoogle Scholar
  28. 28.
    Faber JE. Effects of althesin and urethane-chloralose on neurohumoral cardiovascular regulation. Am J Physiol. 1989;256:R757–R765.PubMedGoogle Scholar
  29. 29.
    Dyson DH, Allen DG, Ingwersen W, Pascoe PJ, O’Grady M. Effects of saffan on cardiopulmonary function in healthy cats. Can J Vet Res. 1987;51:236–239.PubMedGoogle Scholar
  30. 30.
    Al-Khawashki MI, Ghaleb HA, El-Gawhary N, Madkour MK, Radwan AM, El-Sherbiny AM. Pharmacological effects of althesin and its steroidal components on the cardiovascular system. Middle East J Anaesthesiol. 1980;5:457–469.PubMedGoogle Scholar
  31. 31.
    Foster A, Zeller W, Pfannkuche HJ. Effect of thiopental, saffan, and propofol anesthesia on cardiovascular parameters and bronchial smooth muscle in the rhesus monkey. Lab Anim Sci. 1996;46:327–334.PubMedGoogle Scholar
  32. 32.
    De Hert SG. Volatile anesthetics and cardiac function. Semin Cardiothorac Vasc Anesth. 2006;10:33–42.PubMedCrossRefGoogle Scholar
  33. 33.
    Guarracino F, Landoni G, Tritapepe L, et al. Myocardial damage prevented by volatile anesthetics: A multicenter randomized controlled study. J Cardiothorac Vasc Anesth. 2006;20:477–483.PubMedCrossRefGoogle Scholar
  34. 34.
    Neuhauser C, Muller M, Welters I, Scholz S, Kwapisz MM. Effect of isoflurane on echocardiographic left-ventricular relaxation indices in patients with diastolic dysfunction due to concentric hypertrophy and ischemic heart disease. J Cardiothorac Vasc Anesth. 2006;20:509–514.PubMedCrossRefGoogle Scholar
  35. 35.
    Kadoi Y, Takahashi K, Saito S, Goto F. The comparative effects of sevoflurane versus isoflurane on cerebrovascular carbon dioxide reactivity in patients with diabetes mellitus. Anesth Analg. 2006;103:168–172, table of contents.PubMedCrossRefGoogle Scholar
  36. 36.
    Preckel B, Obal D, Mullenheim J, et al. Effects of halothane, sevoflurane and desflurane on the force-frequency relation in the dog heart in vivo. Can J Anaesth. 2006;53:1118–1125.PubMedCrossRefGoogle Scholar
  37. 37.
    Graham MD, Hopkins PM, Harrison SM. Antagonistic actions of halothane and sevoflurane on spontaneous Ca2+ release in rat ventricular myocytes. Anesthesiology. 2006;105:58–64.PubMedCrossRefGoogle Scholar
  38. 38.
    Wang Q, Brunner HR, Burnier M. Determination of cardiac contractility in awake unsedated mice with a fluid-filled catheter. Am J Physiol Heart Circ Physiol. 2004;286:H806–H814.PubMedCrossRefGoogle Scholar
  39. 39.
    Sigg DC, Iaizzo PA. In vivo versus in vitro comparison of swine cardiac performance: Induction of cardiodepression with halothane. Eur J Pharmacol. 2006;543:97–107.PubMedCrossRefGoogle Scholar
  40. 40.
    Pascoe PJ, Ilkiw JE, Fisher LD. Cardiovascular effects of equipotent isoflurane and alfentanil/isoflurane minimum alveolar concentration multiple in cats. Am J Vet Res. 1997;58:1267–1273.PubMedGoogle Scholar
  41. 41.
    Marinovic J, Bosnjak ZJ, Stadnicka A. Distinct roles for sarcolemmal and mitochondrial adenosine triphosphate-sensitive potassium channels in isoflurane-induced protection against oxidative stress. Anesthesiology. 2006;105:98–104.PubMedCrossRefGoogle Scholar
  42. 42.
    Feng J, Fischer G, Lucchinetti E, et al. Infarct-remodeled myocardium is receptive to protection by isoflurane postconditioning: Role of protein kinase B/Akt signaling. Anesthesiology. 2006;104:1004–1014.PubMedCrossRefGoogle Scholar
  43. 43.
    Iltis I, Kober F, Dalmasso C, Lan C, Cozzone PJ, Bernard M. In vivo assessment of myocardial blood flow in rat heart using magnetic resonance imaging: Effect of anesthesia. J Magn Reson Imaging. 2005;22:242–247.PubMedCrossRefGoogle Scholar
  44. 44.
    Ishizaka S, Sievers RE, Zhu BQ, et al. New technique for measurement of left ventricular pressure in conscious mice. Am J Physiol Heart Circ Physiol. 2004;286:H1208–H1215.PubMedCrossRefGoogle Scholar
  45. 45.
    Tsutsumi YM, Patel HH, Huang D, Roth DM. Role of 12-lipoxygenase in volatile anesthetic-induced delayed preconditioning in mice. Am J Physiol Heart Circ Physiol. 2006;291:H979–H983.PubMedCrossRefGoogle Scholar
  46. 46.
    Fujita H, Ogura T, Tamagawa M, et al. A key role for the subunit SUR2B in the preferential activation of vascular KATP channels by isoflurane. Br J Pharmacol. 2006;149:573–580.PubMedCrossRefGoogle Scholar
  47. 47.
    Galagudza M, Vaage J, Valen G. Isoflurane and other commonly used anaesthetics do not protect the isolated buffer perfused mouse heart from ischemia-reperfusion injury. Clin Exp Pharmacol Physiol. 2006;33:315–319.PubMedCrossRefGoogle Scholar
  48. 48.
    Souza AP, Guerrero PN, Nishimori CT, et al. Cardiopulmonary and acid-base effects of desflurane and sevoflurane in spontaneously breathing cats. J Feline Med Surg. 2005;7:95–100.PubMedCrossRefGoogle Scholar
  49. 49.
    Rozenberg S, Besse S, Amour J, Vivien B, Tavernier B, Riou B. Effects of desflurane in senescent rat myocardium. Anesthesiology. 2006;105:961–967.PubMedCrossRefGoogle Scholar
  50. 50.
    Yerer MB, Aydogan S, Comu FM, et al. The red blood cell deformability alterations under desflurane anesthesia in rats. Clin Hemorheol Microcirc. 2006;35:213–216.PubMedGoogle Scholar
  51. 51.
    Smul TM, Lange M, Redel A, Burkhard N, Roewer N, Kehl F. Desflurane-induced preconditioning against myocardial infarction is mediated by nitric oxide. Anesthesiology. 2006;105:719–725.PubMedCrossRefGoogle Scholar
  52. 52.
    Ogawa Y, Iwasaki K, Shibata S, Kato J, Ogawa S, Oi Y. Different effects on circulatory control during volatile induction and maintenance of anesthesia and total intravenous anesthesia: Autonomic nervous activity and arterial cardiac baroreflex function evaluated by blood pressure and heart rate variability analysis. J Clin Anesth. 2006;18:87–95.PubMedCrossRefGoogle Scholar
  53. 53.
    Bouwman RA, van’t Hof FN, de Ruijter W, et al. The mechanism of sevoflurane-induced cardioprotection is independent of the applied ischaemic stimulus in rat trabeculae. Br J Anaesth. 2006;97:307–314.PubMedCrossRefGoogle Scholar
  54. 54.
    Bouwman RA, Salic K, Padding FG, et al. Cardioprotection via activation of protein kinase C-delta depends on modulation of the reverse mode of the Na+/Ca2+ exchanger. Circulation. 2006;114:I226–I232.PubMedCrossRefGoogle Scholar
  55. 55.
    Kang J, Reynolds WP, Chen XL, Ji J, Wang H, Rampe DE. Mechanisms underlying the QT interval-prolonging effects of sevoflurane and its interactions with other QT-prolonging drugs. Anesthesiology. 2006;104:1015–1022.PubMedCrossRefGoogle Scholar
  56. 56.
    Kerbaul F, Bellezza M, Mekkaoui C, et al. Sevoflurane alters right ventricular performance but not pulmonary vascular resistance in acutely instrumented anesthetized pigs. J Cardiothorac Vasc Anesth. 2006;20:209–216.PubMedCrossRefGoogle Scholar
  57. 57.
    Drake VJ, Koprowski SL, Lough J, Hu N, Smith SM. Trichloroethylene exposure during cardiac valvuloseptal morphogenesis alters cushion formation and cardiac hemodynamics in the avian embryo. Environ Health Perspect. 2006;114:842–847.PubMedCrossRefGoogle Scholar
  58. 58.
    Mishima N, Hoffman S, Hill EG, Krug EL. Chick embryos exposed to trichloroethylene in an ex ova culture model show selective defects in early endocardial cushion tissue formation. Birth Defects Res A Clin Mol Teratol. 2006;76:517–527.PubMedCrossRefGoogle Scholar
  59. 59.
    Feuerstein G. The opioid system and central cardiovascular control: Analysis of controversies. Peptides. 1985;6 Suppl 2:51–56.PubMedCrossRefGoogle Scholar
  60. 60.
    Lalley PM. Mu-opioid receptor agonist effects on medullary respiratory neurons in the cat: Evidence for involvement in certain types of ventilatory disturbances. Am J Physiol Regul Integr Comp Physiol. 2003;285:R1287–R1304.PubMedGoogle Scholar
  61. 61.
    Naganobu K, Maeda N, Miyamoto T, Hagio M, Nakamura T, Takasaki M. Cardiorespiratory effects of epidural administration of morphine and fentanyl in dogs anesthetized with sevoflurane. J Am Vet Med Assoc. 2004;224:67–70.PubMedCrossRefGoogle Scholar
  62. 62.
    Hakim TS, Grunstein MM, Michel RP. Opiate action in the pulmonary circulation. Pulm Pharmacol. 1992;5:159–165.PubMedCrossRefGoogle Scholar
  63. 63.
    Feldberg W, Wei E. Analysis of cardiovascular effects of morphine in the cat. Neuroscience. 1986;17:495–506.PubMedCrossRefGoogle Scholar
  64. 64.
    Feuerstein G, Zukowska-Grojec Z. Effect of dermorphin and morphine on the sympathetic and cardiovascular system of the pithed rat. Neuropeptides. 1987;9:139–150.PubMedCrossRefGoogle Scholar
  65. 65.
    McNally GP, Carrive P. A telemetric examination of cardiovascular function during the development of, and recovery from, opiate dependence in rats. Physiol Behav. 2006;88:55–60.PubMedCrossRefGoogle Scholar
  66. 66.
    Mahinda TB, Lovell BM, Taylor BK. Morphine-induced analgesia, hypotension, and bradycardia are enhanced in hypertensive rats. Anesth Analg. 2004;98:1698–1704, table of contents.PubMedCrossRefGoogle Scholar
  67. 67.
    Chang WL, Lee SS, Su MJ. Attenuation of post-ischemia reperfusion injury by thaliporphine and morphine in rat hearts. J Biomed Sci. 2005;12:611–619.PubMedCrossRefGoogle Scholar
  68. 68.
    Shi E, Jiang X, Bai H, Gu T, Chang Y, Wang J. Cardioprotective effects of morphine on rat heart suffering from ischemia and reperfusion. Chin Med J (Engl). 2003;116:1059–1062.Google Scholar
  69. 69.
    Barrere-Lemaire S, Combes N, Sportouch-Dukhan C, Richard S, Nargeot J, Piot C. Morphine mimics the antiapoptotic effect of preconditioning via an ins(1,4,5)P3 signaling pathway in rat ventricular myocytes. Am J Physiol Heart Circ Physiol. 2005;288:H83–H88.PubMedCrossRefGoogle Scholar
  70. 70.
    Gross ER, Hsu AK, Gross GJ. The JAK/STAT pathway is essential for opioid-induced cardioprotection: JAK2 as a mediator of STAT3, akt, and GSK-3 beta. Am J Physiol Heart Circ Physiol. 2006;291:H827–H834.PubMedCrossRefGoogle Scholar
  71. 71.
    Roy S, Balasubramanian S, Wang J, Chandrashekhar Y, Charboneau R, Barke R. Morphine inhibits VEGF expression in myocardial ischemia. Surgery. 2003;134:336–344.PubMedCrossRefGoogle Scholar
  72. 72.
    Peart JN, Gross GJ. Cardioprotective effects of acute and chronic opioid treatment are mediated via different signaling pathways. Am J Physiol Heart Circ Physiol. 2006;291:H1746–H1753.PubMedCrossRefGoogle Scholar
  73. 73.
    Jiang X, Shi E, Nakajima Y, Sato S. Inducible nitric oxide synthase mediates delayed cardioprotection induced by morphine in vivo: Evidence from pharmacologic inhibition and gene-knockout mice. Anesthesiology. 2004;101:82–88.PubMedCrossRefGoogle Scholar
  74. 74.
    Peart JN, Gross GJ. Exogenous activation of delta- and kappa-opioid receptors affords cardioprotection in isolated murine heart. Basic Res Cardiol. 2004;99:29–37.PubMedCrossRefGoogle Scholar
  75. 75.
    Peart JN, Gross GJ. Morphine-tolerant mice exhibit a profound and persistent cardioprotective phenotype. Circulation. 2004;109:1219–1222.PubMedCrossRefGoogle Scholar
  76. 76.
    Kaye AD, Hoover JM, Baber SR, et al. The effects of meperidine in the pulmonary vascular bed of the cat. J Cardiothorac Vasc Anesth. 2006;20:691–695.PubMedCrossRefGoogle Scholar
  77. 77.
    Mollenhoff A, Nolte I, Kramer S. Anti-nociceptive efficacy of carprofen, levomethadone and buprenorphine for pain relief in cats following major orthopaedic surgery. J Vet Med A Physiol Pathol Clin Med. 2005;52:186–198.PubMedCrossRefGoogle Scholar
  78. 78.
    Mills PC, Magnusson BM, Cross SE. Investigation of in vitro transdermal absorption of fentanyl from patches placed on skin samples obtained from various anatomic regions of dogs. Am J Vet Res. 2004;65:1697–1700.PubMedCrossRefGoogle Scholar
  79. 79.
    Ambrisko TD, Hikasa Y, Sato K. Influence of medetomidine on stress-related neurohormonal and metabolic effects caused by butorphanol, fentanyl, and ketamine administration in dogs. Am J Vet Res. 2005;66:406–412.PubMedCrossRefGoogle Scholar
  80. 80.
    Lennander O, Henriksson BA, Martner J, Biber B. Effects of fentanyl, nitrous oxide, or both, on baroreceptor reflex regulation in the cat. Br J Anaesth. 1996;77:399–403.PubMedGoogle Scholar
  81. 81.
    Porsius AJ, Borgdorff P, van Rooij HH, de Neef JH. The inhibitory effect of fentanyl, nicomorphine and 6-nicotinoyl morphine on phrenic nerve activity in relation to their cardiovascular effects in the anaesthetized cat. Arch Int Pharmacodyn Ther. 1987;286:123–135.PubMedGoogle Scholar
  82. 82.
    Kaye AD, Hoover JM, Ibrahim IN, et al. Analysis of the effects of fentanyl in the feline pulmonary vascular bed. Am J Ther. 2006;13:478–484.PubMedCrossRefGoogle Scholar
  83. 83.
    Inoue T, Ko JC, Mandsager RE, Payton ME, Galloway DS, Lange DN. Efficacy and safety of preoperative etodolac and butorphanol administration in dogs undergoing ovariohysterectomy. J Am Anim Hosp Assoc. 2006;42:178–188.PubMedGoogle Scholar
  84. 84.
    Gross DR, Tranquilli WJ, Greene SA, Grimm KA. Critical anthropomorphic evaluation and treatment of postoperative pain in rats and mice. J Am Vet Med Assoc. 2003;222:1505–1510.PubMedCrossRefGoogle Scholar
  85. 85.
    Torske KE, Dyson DH, Conlon PD. Cardiovascular effects of epidurally administered oxymorphone and an oxymorphone-bupivacaine combination in halothane-anesthetized dogs. Am J Vet Res. 1999;60:194–200.PubMedGoogle Scholar
  86. 86.
    Vesal N, Cribb PH, Frketic M. Postoperative analgesic and cardiopulmonary effects in dogs of oxymorphone administered epidurally and intramuscularly, and medetomidine administered epidurally: A comparative clinical study. Vet Surg. 1996;25:361–369.PubMedCrossRefGoogle Scholar
  87. 87.
    Chance E, Paciorek PM, Todd MH, Waterfall JF. Comparison of the cardiovascular effects of meptazinol and naloxone following haemorrhagic shock in rats and cats. Br J Pharmacol. 1985;86:43–53.PubMedGoogle Scholar
  88. 88.
    Kaye AD, Phelps J, Baluch A, et al. The effects of sufentanil in the feline pulmonary vascular bed. Eur J Pharmacol. 2006;534:159–164.PubMedCrossRefGoogle Scholar
  89. 89.
    Lecomte P, Ouattara A, Le Manach Y, Landi M, Coriat P, Riou B. The coronary and myocardial effects of remifentanil and sufentanil in the erythrocyte-perfused isolated rabbit heart. Anesth Analg. 2006;103:9–14, table of contents.PubMedCrossRefGoogle Scholar
  90. 90.
    Pittarello D, Bonato R, Armellin G, Sorbara C. Alterations in left ventricular-arterial coupling and mechanical efficiency produced by remifentanil during cardiac anesthesia. Minerva Anestesiol. 2001;67:133–147.PubMedGoogle Scholar
  91. 91.
    Sohn JT, Murray PA. Inhibitory effects of etomidate and ketamine on adenosine triphosphate-sensitive potassium channel relaxation in canine pulmonary artery. Anesthesiology. 2003;98:104–113.PubMedCrossRefGoogle Scholar
  92. 92.
    Wang X, Huang ZG, Dergacheva O, et al. Ketamine inhibits inspiratory-evoked gamma-aminobutyric acid and glycine neurotransmission to cardiac vagal neurons in the nucleus ambiguus. Anesthesiology. 2005;103:353–359.PubMedCrossRefGoogle Scholar
  93. 93.
    Costa-Farre C, Garcia F, Andaluz A, Torres R, de Mora F. Effect of H1- and H2-receptor antagonists on the hemodynamic changes induced by the intravenous administration of ketamine in sevoflurane-anesthetized cats. Inflamm Res. 2005;54:256–260.PubMedCrossRefGoogle Scholar
  94. 94.
    Yang J, Li W, Duan M, et al. Large dose ketamine inhibits lipopolysaccharide-induced acute lung injury in rats. Inflamm Res. 2005;54:133–137.PubMedCrossRefGoogle Scholar
  95. 95.
    Oguchi T, Kashimoto S, Yamaguchi T, Kumazawa T, Hashimoto K. Effects of intravenous anesthetics on function and metabolism in the reperfused working rat heart. Jpn J Pharmacol. 1995;68:413–421.PubMedCrossRefGoogle Scholar
  96. 96.
    Saranteas T, Zotos N, Chantzi C, et al. Ketamine-induced changes in metabolic and endocrine parameters of normal and 2-kidney 1-clip rats. Eur J Anaesthesiol. 2005;22:875–878.PubMedCrossRefGoogle Scholar
  97. 97.
    Kim SJ, Kang HS, Lee MY, et al. Ketamine-induced cardiac depression is associated with increase in [Mg2+]i and activation of p38 MAP kinase and ERK 1/2 in guinea pig. Biochem Biophys Res Commun. 2006;349:716–722.PubMedCrossRefGoogle Scholar
  98. 98.
    DeRossi R, Junqueira AL, Beretta MP. Analgesic and systemic effects of ketamine, xylazine, and lidocaine after subarachnoid administration in goats. Am J Vet Res. 2003;64:51–56.PubMedCrossRefGoogle Scholar
  99. 99.
    Kawano T, Oshita S, Takahashi A, et al. Molecular mechanisms underlying ketamine-mediated inhibition of sarcolemmal adenosine triphosphate-sensitive potassium channels. Anesthesiology. 2005;102:93–101.PubMedCrossRefGoogle Scholar
  100. 100.
    Schulte-Sasse U, Hess W, Tarnow J. Hemodynamic analysis of 6 different anesthesia induction procedures in coronary surgery patients. Anasth Intensivther Notfallmed. 1982;17:195–200.PubMedCrossRefGoogle Scholar
  101. 101.
    Lundy JB, Slane ML, Frizzi JD. Acute adrenal insufficiency after a single dose of etomidate. J Intensive Care Med. 2007;22:111–117.PubMedCrossRefGoogle Scholar
  102. 102.
    McIntosh MP, Narita H, Kameyama Y, Rajewski RA, Goto H. Evaluation of mean arterial blood pressure, heart rate, and sympathetic nerve activity in rabbits after administration of two formulations of etomidate. Vet Anaesth Analg. 2007;34:149–156.PubMedCrossRefGoogle Scholar
  103. 103.
    Devin A, Nogueira V, Averet N, Leverve X, Rigoulet M. Profound effects of the general anesthetic etomidate on oxidative phosphorylation without effects on their yield. J Bioenerg Biomembr. 2006;38:137–142.PubMedCrossRefGoogle Scholar
  104. 104.
    Nakamura A, Kawahito S, Kawano T, et al. Differential effects of etomidate and midazolam on vascular adenosine triphosphate-sensitive potassium channels: Isometric tension and patch clamp studies. Anesthesiology. 2007;106:515–522.PubMedCrossRefGoogle Scholar
  105. 105.
    Shin IW, Sohn JT, Kim HJ, et al. Etomidate attenuates phenylephrine-induced contraction in isolated rat aorta. Can J Anaesth. 2005;52:927–934.PubMedCrossRefGoogle Scholar
  106. 106.
    Pili-Floury S, Samain E, Bouillier H, et al. Etomidate alters calcium mobilization induced by angiotensin II in rat aortic smooth muscle cells. J Cardiovasc Pharmacol. 2004;43:485–488.PubMedCrossRefGoogle Scholar
  107. 107.
    Zaugg M, Lucchinetti E, Spahn DR, Pasch T, Garcia C, Schaub MC. Differential effects of anesthetics on mitochondrial K(ATP) channel activity and cardiomyocyte protection. Anesthesiology. 2002;97:15–23.PubMedCrossRefGoogle Scholar
  108. 108.
    Ouedraogo N, Mounkaila B, Crevel H, Marthan R, Roux E. Effect of propofol and etomidate on normoxic and chronically hypoxic pulmonary artery. BMC Anesthesiol. 2006;6:2.PubMedCrossRefGoogle Scholar
  109. 109.
    Ogawa K, Tanaka S, Murray PA. Inhibitory effects of etomidate and ketamine on endothelium-dependent relaxation in canine pulmonary artery. Anesthesiology. 2001;94:668–677.PubMedCrossRefGoogle Scholar
  110. 110.
    Paris A, Philipp M, Tonner PH, et al. Activation of alpha 2B-adrenoceptors mediates the cardiovascular effects of etomidate. Anesthesiology. 2003;99:889–895.PubMedCrossRefGoogle Scholar
  111. 111.
    Zeller A, Arras M, Lazaris A, Jurd R, Rudolph U. Distinct molecular targets for the central respiratory and cardiac actions of the general anesthetics etomidate and propofol. FASEB J. 2005;19:1677–1679.PubMedGoogle Scholar
  112. 112.
    Kulier AH, Turner LA, Vodanovic S, Contney S, Lathrop DA, Bosnjak ZJ. Multiple agents potentiate alpha1-adrenoceptor-induced conduction depression in canine cardiac Purkinge fibers. Anesthesiology. 2000;92:1713–1721.PubMedCrossRefGoogle Scholar
  113. 113.
    Bazin JE, Dureuil B, Danialou G, et al. Effects of etomidate, propofol and thiopental anaesthesia on arteriolar tone in the rat diaphragm. Br J Anaesth. 1998;81:430–435.PubMedGoogle Scholar
  114. 114.
    Modig J. Positive effects of ketamine v. metomidate anesthesia on cardiovascular function, oxygen delivery and survival. studies with a porcine endotoxin model. Acta Chir Scand. 1987;153:7–13.PubMedGoogle Scholar
  115. 115.
    Stegmann GF, Bester L. Some cardiopulmonary effects of midazolam premedication in clenbuterol-treated bitches during surgical endoscopic examination of the uterus and ovariohysterectomy. J S Afr Vet Assoc. 2001;72:33–36.PubMedGoogle Scholar
  116. 116.
    Kim C, Shvarev Y, Takeda S, Sakamoto A, Lindahl SG, Eriksson LI. Midazolam depresses carotid body chemoreceptor activity. Acta Anaesthesiol Scand. 2006;50:144–149.PubMedCrossRefGoogle Scholar
  117. 117.
    Kanaya N, Murray PA, Damron DS. Effects of L-type Ca2+ channel modulation on direct myocardial effects of diazepam and midazolam in adult rat ventricular myocytes. J Anesth. 2006;20:17–25.PubMedCrossRefGoogle Scholar
  118. 118.
    Win NN, Fukayama H, Kohase H, Umino M. The different effects of intravenous propofol and midazolam sedation on hemodynamic and heart rate variability. Anesth Analg. 2005;101:97–102, table of contents.PubMedCrossRefGoogle Scholar
  119. 119.
    Hidaka S, Kawamoto M, Kurita S, Yuge O. Comparison of the effects of propofol and midazolam on the cardiovascular autonomic nervous system during combined spinal and epidural anesthesia. J Clin Anesth. 2005;17:36–43.PubMedCrossRefGoogle Scholar
  120. 120.
    Klockgether-Radke AP, Pawlowski P, Neumann P, Hellige G. Mechanisms involved in the relaxing effect of midazolam on coronary arteries. Eur J Anaesthesiol. 2005;22:135–139.PubMedCrossRefGoogle Scholar
  121. 121.
    Juan-Fita MJ, Vargas ML, Hernandez J. Diazepam enhances inotropic responses to dopamine in rat ventricular myocardium. Anesth Analg. 2006;102:676–681.PubMedCrossRefGoogle Scholar
  122. 122.
    Zahner MR, Li DP, Pan HL. Benzodiazepine inhibits hypothalamic presympathetic neurons by potentiation of GABAergic synaptic input. Neuropharmacology. 2007;52:467–475.PubMedCrossRefGoogle Scholar
  123. 123.
    Suzuki M, Nishina M, Nakamura S, Maruyama K. Benzodiazepine-sensitive GABA(A) receptors in the commissural subnucleus of the NTS are involved in the carotid chemoreceptor reflex in rats. Auton Neurosci. 2004;110:108–113.PubMedCrossRefGoogle Scholar
  124. 124.
    Park SE, Sohn JT, Kim C, et al. Diazepam attenuates phenylephrine-induced contractions in rat aorta. Anesth Analg. 2006;102:682–689.PubMedCrossRefGoogle Scholar
  125. 125.
    Resstel LB, Joca SR, Moreira FA, Correa FM, Guimaraes FS. Effects of cannabidiol and diazepam on behavioral and cardiovascular responses induced by contextual conditioned fear in rats. Behav Brain Res. 2006;172:294–298.PubMedCrossRefGoogle Scholar
  126. 126.
    Selmi AL, Barbudo-Selmi GR, Moreira CF, et al. Evaluation of sedative and cardiorespiratory effects of romifidine and romifidine-butorphanol in cats. J Am Vet Med Assoc. 2002;221:506–510.PubMedCrossRefGoogle Scholar
  127. 127.
    Sy GY, Bousquet P, Feldman J. Opposite to alpha2-adrenergic agonists, an imidazoline I1 selective compound does not influence reflex bradycardia in rabbits. Auton Neurosci. 2006;128:19–24.PubMedCrossRefGoogle Scholar
  128. 128.
    Aantaa R, Jalonen J. Perioperative use of alpha2-adrenoceptor agonists and the cardiac patient. Eur J Anaesthesiol. 2006;23:361–372.PubMedCrossRefGoogle Scholar
  129. 129.
    Murrell JC, Hellebrekers LJ. Medetomidine and dexmedetomidine: A review of cardiovascular effects and antinociceptive properties in the dog. Vet Anaesth Analg. 2005;32:117–127.PubMedCrossRefGoogle Scholar
  130. 130.
    Dodam JR, Cohn LA, Durham HE, Szladovits B. Cardiopulmonary effects of medetomidine, oxymorphone, or butorphanol in selegiline-treated dogs. Vet Anaesth Analg. 2004;31:129–137.PubMedCrossRefGoogle Scholar
  131. 131.
    Kuo WC, Keegan RD. Comparative cardiovascular, analgesic, and sedative effects of medetomidine, medetomidine-hydromorphone, and medetomidine-butorphanol in dogs. Am J Vet Res. 2004;65:931–937.PubMedCrossRefGoogle Scholar
  132. 132.
    Joubert KE, Lobetti R. The cardiovascular and respiratory effects of medetomidine and thiopentone anaesthesia in dogs breathing at an altitude of 1486 m. J S Afr Vet Assoc. 2002;73:104–110.PubMedGoogle Scholar
  133. 133.
    Lamont LA, Bulmer BJ, Sisson DD, Grimm KA, Tranquilli WJ. Doppler echocardiographic effects of medetomidine on dynamic left ventricular outflow tract obstruction in cats. J Am Vet Med Assoc. 2002;221:1276–1281.PubMedCrossRefGoogle Scholar
  134. 134.
    Selmi AL, Mendes GM, Lins BT, Figueiredo JP, Barbudo-Selmi GR. Evaluation of the sedative and cardiorespiratory effects of dexmedetomidine, dexmedetomidine-butorphanol, and dexmedetomidine-ketamine in cats. J Am Vet Med Assoc. 2003;222:37–41.PubMedCrossRefGoogle Scholar
  135. 135.
    Kutter AP, Kastner SB, Bettschart-Wolfensberger R, Huhtinen M. Cardiopulmonary effects of dexmedetomidine in goats and sheep anaesthetised with sevoflurane. Vet Rec. 2006;159:624–629.PubMedCrossRefGoogle Scholar
  136. 136.
    Rioja E, Santos M, Martinez Taboada F, Ibancovichi JA, Tendillo FJ. Cardiorespiratory and minimum alveolar concentration sparing effects of a continuous intravenous infusion of dexmedetomidine in halothane or isoflurane-anaesthetized rats. Lab Anim. 2006;40:9–15.PubMedCrossRefGoogle Scholar
  137. 137.
    Hall DL, Rezvan E, Tatakis DN, Walters JD. Oral clonidine pretreatment prior to venous cannulation. Anesth Prog. 2006;53:34–42.PubMedCrossRefGoogle Scholar
  138. 138.
    Kaczynska K, Szereda-Przestaszewska M. Clonidine-evoked respiratory effects in anaesthetized rats. Exp Physiol. 2006;91:269–275.PubMedCrossRefGoogle Scholar
  139. 139.
    Burniston JG, Tan LB, Goldspink DF. Relative myotoxic and haemodynamic effects of the beta-agonists fenoterol and clenbuterol measured in conscious unrestrained rats. Exp Physiol. 2006;91:1041–1049.PubMedCrossRefGoogle Scholar
  140. 140.
    Doheny MH, Waterfield CJ, Timbrell JA. The effects of the beta 2-agonist drug clenbuterol on taurine levels in heart and other tissues in the rat. Amino Acids. 1998;15:13–25.PubMedCrossRefGoogle Scholar
  141. 141.
    Burniston JG, Ng Y, Clark WA, Colyer J, Tan LB, Goldspink DF. Myotoxic effects of clenbuterol in the rat heart and soleus muscle. J Appl Physiol. 2002;93:1824–1832.PubMedGoogle Scholar
  142. 142.
    Ferrer M, Salaices M, Sanchez M, Balfagon G. Different effects of acute clenbuterol on vasomotor response in mesenteric arteries from young and old spontaneously hypertensive rats. Eur J Pharmacol. 2003;466:289–299.PubMedCrossRefGoogle Scholar
  143. 143.
    Soppa GK, Smolenski RT, Latif N, et al. Effects of chronic administration of clenbuterol on function and metabolism of adult rat cardiac muscle. Am J Physiol Heart Circ Physiol. 2005;288:H1468–H1476.PubMedCrossRefGoogle Scholar
  144. 144.
    Burniston JG, Clark WA, Tan LB, Goldspink DF. Dose-dependent separation of the hypertrophic and myotoxic effects of the beta(2)-adrenergic receptor agonist clenbuterol in rat striated muscles. Muscle Nerve. 2006;33:655–663.PubMedCrossRefGoogle Scholar
  145. 145.
    Jones SW, Baker DJ, Gardiner SM, Bennett T, Timmons JA, Greenhaff PL. The effect of the beta2-adrenoceptor agonist prodrug BRL-47672 on cardiovascular function, skeletal muscle myosin heavy chain, and MyoD expression in the rat. J Pharmacol Exp Ther. 2004;311:1225–1231.PubMedCrossRefGoogle Scholar
  146. 146.
    Patiyal SN, Katoch SS. Tissue specific and variable collagen proliferation in swiss albino mice treated with clenbuterol. Physiol Res. 2006;55:97–103.PubMedGoogle Scholar
  147. 147.
    Sleeper MM, Kearns CF, McKeever KH. Chronic clenbuterol administration negatively alters cardiac function. Med Sci Sports Exerc. 2002;34:643–650.PubMedCrossRefGoogle Scholar
  148. 148.
    Furihata Y, Motokawa Y, Murata S, et al. Cardiovascular effects of KUR-1246, a new tetrahydronaphthalen derivative beta2-adrenoceptor agonist and a selective uterine relaxant. Arzneimittelforschung. 2006;56:18–24.PubMedGoogle Scholar
  149. 149.
    Gabrys J, Konecki J, Glowacka M, et al. Proteinous amino acids in muscle cytosol of rats’ heart, after their treatment with propranolol, pentylenetetrazol or reserpine. Receptors Channels. 2004;10:83–90.PubMedCrossRefGoogle Scholar
  150. 150.
    Shafi S, Stepanova IP, Fitzsimmons C, Bowyer DE, Born GV. Long-term low-dose treatment with reserpine of cholesterol-fed rabbits reduces cholesterol in plasma, non-high density lipoproteins and arterial walls. J Cardiovasc Pharmacol. 2002;40:67–79.PubMedCrossRefGoogle Scholar
  151. 151.
    Okada K, Shinozuka K, Shimoura K, Kobayashi Y, Hattori K, Nakase A. Effects of reserpine on the content and uptake of dopamine and noradrenaline in rabbit arteries. Clin Exp Pharmacol Physiol. 1993;20:261–267.PubMedCrossRefGoogle Scholar
  152. 152.
    Wassilew G, David H, Fitzl G, Beskrownaya N, Sharow V. Ultrastructural morphometric investigation of the heart of rabbits after a single administration of reserpine. Exp Toxicol Pathol. 1993;45:217–222.PubMedCrossRefGoogle Scholar
  153. 153.
    Kehler CH, Hebl JR, Soule CL, Gallagher WJ, Houlton AJ. The effect of reduced myocardial cyclic AMP content on the response to milrinone in the isolated guinea pig heart. J Heart Lung Transplant. 1997;16:636–642.PubMedGoogle Scholar
  154. 154.
    Walcott GP, Melnick SB, Killingsworth CR, Smith WM, Ideker RE. Effects of burst stimulation during ventricular fibrillation on cardiac function after defibrillation. Am J Physiol Heart Circ Physiol. 2003;285:H766–H774.PubMedGoogle Scholar
  155. 155.
    Park IY, Kim EJ, Park H, Fields K, Dunker AK, Kang C. Interaction between cardiac calsequestrin and drugs with known cardiotoxicity. Mol Pharmacol. 2005;67:97–104.PubMedCrossRefGoogle Scholar
  156. 156.
    Lathers CM, Lipka LJ. Chlorpromazine: Cardiac arrhythmogenicity in the cat. Life Sci. 1986;38:521–538.PubMedCrossRefGoogle Scholar
  157. 157.
    Yabuki M, Tani N, Yoshioka T, Nishibe H, Kanamaru H, Kaneko H. Local thrombus formation in the site of intravenous injection of chlorpromazine: Possible colloid-osmotic lysis of the local endothelial cells. Biol Pharm Bull. 2000;23:957–961.PubMedCrossRefGoogle Scholar
  158. 158.
    Lee SY, Choi SY, Youm JB, et al. Block of HERG human K(+) channel and IKr of guinea pig cardiomyocytes by chlorpromazine. J Cardiovasc Pharmacol. 2004;43:706–714.PubMedCrossRefGoogle Scholar
  159. 159.
    Studenik C, Lemmens-Gruber R, Heistracher P. Proarrhythmic effects of antidepressants and neuroleptic drugs on isolated, spontaneously beating guinea-pig Purkinge fibers. Eur J Pharm Sci. 1999;7:113–118.PubMedCrossRefGoogle Scholar
  160. 160.
    Flaim SF, Brannan MD, Swigart SC, Gleason MM, Muschek LD. Neuroleptic drugs attenuate calcium influx and tension development in rabbit thoracic aorta: Effects of pimozide, penfluridol, chlorpromazine, and haloperidol. Proc Natl Acad Sci USA. 1985;82:1237–1241.PubMedCrossRefGoogle Scholar
  161. 161.
    Takata Y, Kurihara J, Suzuki S, Okubo Y, Kato H. A rabbit model for evaluation of chlorpromazine-induced orthostatic hypotension. Biol Pharm Bull. 1999;22:457–462.PubMedCrossRefGoogle Scholar
  162. 162.
    Cottle MK, Van Petten GR, van Muyden P. Maternal and fetal cardiovascular indices during fetal hypoxia due to cord compression in chronically cannulated sheep. II. responses to promazine. Am J Obstet Gynecol. 1983;146:686–692.PubMedGoogle Scholar
  163. 163.
    Svendsen P, Carter AM. Blood gas tensions, acid-base status and cardiovascular function in miniature swine anaesthetized with halothane and methoxyflurane or intravenous metomidate hydrochloride. Pharmacol Toxicol. 1989;64:88–93.PubMedCrossRefGoogle Scholar
  164. 164.
    Rezakhani A, Edjtehadi M, Szabuniewicz M. Prevention of thiopental and thiopental/halothane cardiac sensitization to epinephrine in the sheep. Can J Comp Med. 1977;41:389–395.PubMedGoogle Scholar
  165. 165.
    Choi SY, Koh YS, Jo SH. Inhibition of human ether-a-go-go-related gene K+ channel and IKr of guinea pig cardiomyocytes by antipsychotic drug trifluoperazine. J Pharmacol Exp Ther. 2005;313:888–895.PubMedCrossRefGoogle Scholar
  166. 166.
    Mohindroo A, Ahluwalia P. Effect of trifluoperazine on certain arterial wall lipid-metabolizing enzymes inducing atherosclerosis in rhesus monkeys. Lipids. 1997;32:867–872.PubMedCrossRefGoogle Scholar
  167. 167.
    Belhani D, Frassati D, Megard R, et al. Cardiac lesions induced by neuroleptic drugs in the rabbit. Exp Toxicol Pathol. 2006;57:207–212.PubMedCrossRefGoogle Scholar
  168. 168.
    Satoh Y, Sugiyama A, Takahara A, et al. The antipsychotic and antiemetic drug prochlorperazine delays the ventricular repolarization of the in situ canine heart. J Pharmacol Sci. 2005;97:101–106.PubMedCrossRefGoogle Scholar
  169. 169.
    Shiotani M, Harada T, Abe J, et al. Practical application of guinea pig telemetry system for QT evaluation. J Toxicol Sci. 2005;30:239–247.PubMedCrossRefGoogle Scholar
  170. 170.
    Kim MD, Eun SY, Jo SH. Blockade of HERG human K+ channel and IKr of guinea pig cardiomyocytes by prochlorperazine. Eur J Pharmacol. 2006;544:82–90.PubMedCrossRefGoogle Scholar
  171. 171.
    Drolet B, Vincent F, Rail J, et al. Thioridazine lengthens repolarization of cardiac ventricular myocytes by blocking the delayed rectifier potassium current. J Pharmacol Exp Ther. 1999;288:1261–1268.PubMedGoogle Scholar
  172. 172.
    Crumb W, Llorca PM, Lancon C, Thomas GP, Garay RP, Hameg A. Effects of cyamemazine on hERG, INa, ICa, ito, isus and IK1 channel currents, and on the QTc interval in guinea pigs. Eur J Pharmacol. 2006;532:270–278.PubMedCrossRefGoogle Scholar
  173. 173.
    Carmeliet E, Xhonneux R, Van Glabbeek A, Reneman R. Electrophysiological effects of droperidol in different cardiac tissues. Naunyn Schmiedebergs Arch Pharmacol. 1976;293:57–66.PubMedCrossRefGoogle Scholar
  174. 174.
    Adamantidis MM, Kerram P, Caron JF, Dupuis BA. Droperidol exerts dual effects on repolarization and induces early after-depolarizations and triggered activity in rabbit Purkinge fibers. J Pharmacol Exp Ther. 1993;266:884–893.PubMedGoogle Scholar
  175. 175.
    Drolet B, Zhang S, Deschenes D, et al. Droperidol lengthens cardiac repolarization due to block of the rapid component of the delayed rectifier potassium current. J Cardiovasc Electrophysiol. 1999;10:1597–1604.PubMedCrossRefGoogle Scholar
  176. 176.
    Shiga T, Yong S, Carino J, Murray PA, Damron DS. Droperidol inhibits intracellular Ca2+, myofilament Ca2+ sensitivity, and contraction in rat ventricular myocytes. Anesthesiology. 2005;102:1165–1173.PubMedCrossRefGoogle Scholar
  177. 177.
    Bustamante R, Valverde A. Determination of a sedative dose and influence of droperidol and midazolam on cardiovascular function in pigs. Can J Vet Res. 1997;61:246–250.PubMedGoogle Scholar
  178. 178.
    Sugiyama A, Satoh Y, Hashimoto K. In vivo canine model comparison of cardiohemodynamic and electrophysiological effects of a new antipsychotic drug aripiprazole (OPC-14597) to haloperidol. Toxicol Appl Pharmacol. 2001;173:120–128.PubMedCrossRefGoogle Scholar
  179. 179.
    Rasty S, Amin NB, Sabbah HN, Mishima T, Borzak S, Tisdale JE. Influence of i.v. haloperidol on ventricular repolarization and monophasic action potential duration in anesthetized dogs. Chest. 2004;125:1821–1829.PubMedCrossRefGoogle Scholar
  180. 180.
    Bentley GA, Copeland IW. The effect of chronic haloperidol treatment on some cardiovascular parameters in cats. Br J Pharmacol. 1985;86:737–741.PubMedGoogle Scholar
  181. 181.
    Drici MD, Wang WX, Liu XK, Woosley RL, Flockhart DA. Prolongation of QT interval in isolated feline hearts by antipsychotic drugs. J Clin Psychopharmacol. 1998;18:477–481.PubMedCrossRefGoogle Scholar
  182. 182.
    Huang ZQ, Shi GG, Zheng JH, Liu B. Effects of N-n-butyl haloperidol iodide on rat myocardial ischemia and reperfusion injury and L-type calcium current. Acta Pharmacol Sin. 2003;24:757–763.PubMedGoogle Scholar
  183. 183.
    van den Buuse M. Acute effects of antipsychotic drugs on cardiovascular responses to stress. Eur J Pharmacol. 2003;464:55–62.PubMedCrossRefGoogle Scholar
  184. 184.
    Gepdiremen A, Aydin N, Halici Z, et al. Chronic treatment of haloperidol causes vasoconstriction on basilar arteries of rats, dose dependently. Pharmacol Res. 2004;50:569–574.PubMedCrossRefGoogle Scholar
  185. 185.
    Bebarova M, Matejovic P, Pasek M, Novakova M. Effect of haloperidol on transient outward potassium current in rat ventricular myocytes. Eur J Pharmacol. 2006;550:15–23.PubMedCrossRefGoogle Scholar
  186. 186.
    Ishida H, Hoshiai K, Hoshiai M, Genka C, Hirota Y, Nakazawa H. Haloperidol prolongs diastolic phase of ca(2+) transient in cardiac myocytes. Jpn J Physiol. 1999;49:479–484.PubMedCrossRefGoogle Scholar
  187. 187.
    Hatip-Al-Khatib I, Bolukbasi-Hatip F. Modulation of the negative inotropic effect of haloperidol by drugs with positive inotropic effects in isolated rabbit heart. Pharmacology. 2002;66:19–25.PubMedCrossRefGoogle Scholar
  188. 188.
    Maayani S, Wilkinson CW, Stollak JS. 5-hydroxytryptamine receptor in rabbit aorta: Characterization by butyrophenone analogs. J Pharmacol Exp Ther. 1984;229:346–350.PubMedGoogle Scholar
  189. 189.
    Hapke HJ, Holl C. Effects of dopamine on the coronary vessels of swine. Dtsch Tierarztl Wochenschr. 1992;99:66–69.PubMedGoogle Scholar
  190. 190.
    Lees P, Serrano L. Effects of azaperone on cardiovascular and respiratory functions in the horse. Br J Pharmacol. 1976;56:263–269.PubMedGoogle Scholar
  191. 191.
    Gregory NG, Wilkins LJ. Effect of azaperone on cardiovascular responsiveness in stress-sensitive pigs. J Vet Pharmacol Ther. 1986;9:164–170.PubMedCrossRefGoogle Scholar
  192. 192.
    Pacher P, Kecskemeti V. Cardiovascular side effects of new antidepressants and antipsychotics: New drugs, old concerns? Curr Pharm Des. 2004;10:2463–2475.PubMedCrossRefGoogle Scholar
  193. 193.
    Pacher P, Ungvari Z, Nanasi PP, Furst S, Kecskemeti V. Speculations on difference between tricyclic and selective serotonin reuptake inhibitor antidepressants on their cardiac effects. is there any? Curr Med Chem. 1999;6:469–480.PubMedGoogle Scholar
  194. 194.
    Pacher P, Kecskemeti V. Cardiovascular effects of selective serotonin reuptake inhibitor antidepressants. Orv Hetil. 2004;145:425–431.PubMedGoogle Scholar
  195. 195.
    Aubert M, Osterwalder R, Wagner B, et al. Evaluation of the rabbit Purkinge fibre assay as an in vitro tool for assessing the risk of drug-induced torsades de pointes in humans. Drug Saf. 2006;29:237–254.PubMedCrossRefGoogle Scholar
  196. 196.
    Kobayashi T, Washiyama K, Ikeda K. Inhibition of G protein-activated inwardly rectifying K+ channels by various antidepressant drugs. Neuropsychopharmacology. 2004;29:1841–1851.PubMedCrossRefGoogle Scholar
  197. 197.
    Gintant GA, Limberis JT, McDermott JS, Wegner CD, Cox BF. The canine Purkinge fiber: An in vitro model system for acquired long QT syndrome and drug-induced arrhythmogenesis. J Cardiovasc Pharmacol. 2001;37:607–618.PubMedCrossRefGoogle Scholar
  198. 198.
    Bateman DN, Thanacoody HK, Waring WS. Digitalis intoxication induced by paroxetine co-administration. Lancet. 2006;368:1962–1963.PubMedCrossRefGoogle Scholar
  199. 199.
    Fossa AA, Gorczyca W, Wisialowski T, et al. Electrical alternans and hemodynamics in the anesthetized guinea pig can discriminate the cardiac safety of antidepressants. J Pharmacol Toxicol Methods. 2007;55:78–85.PubMedCrossRefGoogle Scholar
  200. 200.
    Isbister GK, Bowe SJ, Dawson A, Whyte IM. Relative toxicity of selective serotonin reuptake inhibitors (SSRIs) in overdose. J Toxicol Clin Toxicol. 2004;42:277–285.PubMedCrossRefGoogle Scholar
  201. 201.
    Goodnick PJ, Jerry J, Parra F. Psychotropic drugs and the ECG: Focus on the QTc interval. Expert Opin Pharmacother. 2002;3:479–498.PubMedCrossRefGoogle Scholar
  202. 202.
    Rasmussen SL, Overo KF, Tanghoj P. Cardiac safety of citalopram: Prospective trials and retrospective analyses. J Clin Psychopharmacol. 1999;19:407–415.PubMedCrossRefGoogle Scholar
  203. 203.
    Hamplova-Peichlova J, Krusek J, Paclt I, Slavicek J, Lisa V, Vyskocil F. Citalopram inhibits L-type calcium channel current in rat cardiomyocytes in culture. Physiol Res. 2002;51:317–321.PubMedGoogle Scholar
  204. 204.
    Witchel HJ, Pabbathi VK, Hofmann G, Paul AA, Hancox JC. Inhibitory actions of the selective serotonin re-uptake inhibitor citalopram on HERG and ventricular L-type calcium currents. FEBS Lett. 2002;512:59–66.PubMedCrossRefGoogle Scholar
  205. 205.
    Pacher P, Bagi Z, Lako-Futo Z, Ungvari Z, Nanasi PP, Kecskemeti V. Cardiac electrophysiological effects of citalopram in guinea pig papillary muscle comparison with clomipramine. Gen Pharmacol. 2000;34:17–23.PubMedCrossRefGoogle Scholar
  206. 206.
    Maertens C, Droogmans G, Verbesselt R, Nilius B. Block of volume-regulated anion channels by selective serotonin reuptake inhibitors. Naunyn Schmiedebergs Arch Pharmacol. 2002;366:158–165.PubMedCrossRefGoogle Scholar
  207. 207.
    Pousti A, Deemyad T, Malihi G. Mechanism of inhibitory effect of citalopram on isolated guinea-pig atria in relation to adenosine receptor. Hum Psychopharmacol. 2004;19:347–350.PubMedCrossRefGoogle Scholar
  208. 208.
    Pousti A, Malihi G, Naghibi B. Effect of citalopram on ouabain-induced arrhythmia in isolated guinea-pig atria. Hum Psychopharmacol. 2003;18:121–124.PubMedCrossRefGoogle Scholar
  209. 209.
    Degner D, Grohmann R, Kropp S, et al Severe adverse drug reactions of antidepressants: Results of the german multicenter drug surveillance program AMSP. Pharmacopsychiatry. 2004;37 Suppl 1:S39–S45.PubMedGoogle Scholar
  210. 210.
    Wanstall JC, Fiore SA, Gambino A, Chess-Williams R. Potentiation of 5-hydroxytryptamine (5-HT) responses by a 5-HT uptake inhibitor in pulmonary and systemic vessels: Effects of exposing rats to hypoxia. Naunyn Schmiedebergs Arch Pharmacol. 2003;368:520–527.PubMedCrossRefGoogle Scholar
  211. 211.
    Marcos E, Adnot S, Pham MH, et al. Serotonin transporter inhibitors protect against hypoxic pulmonary hypertension. Am J Respir Crit Care Med. 2003;168:487–493.PubMedCrossRefGoogle Scholar
  212. 212.
    Barak Y, Swartz M, Levy D, Weizman R. Age-related differences in the side effect profile of citalopram. Prog Neuropsychopharmacol Biol Psychiatry. 2003;27:545–548.PubMedCrossRefGoogle Scholar
  213. 213.
    Paclt I, Slavicek J, Dohnalova A, Kitzlerova E, Pisvejcova K. Electrocardiographic dose-dependent changes in prophylactic doses of dosulepine, lithium and citalopram. Physiol Res. 2003;52:311–317.PubMedGoogle Scholar
  214. 214.
    Slavicek J, Paclt I, Hamplova J, Kittnar O, Trefny Z, Horacek BM. Antidepressant drugs and heart electrical field. Physiol Res. 1998;47:297–300.PubMedGoogle Scholar
  215. 215.
    Lu HR, Vlaminckx E, Teisman A, Gallacher DJ. Choice of cardiac tissue plays an important role in the evaluation of drug-induced prolongation of the QT interval in vitro in rabbit. J Pharmacol Toxicol Methods. 2005;52:90–105.PubMedCrossRefGoogle Scholar
  216. 216.
    Eckardt L, Breithardt G, Haverkamp W. Electrophysiologic characterization of the antipsychotic drug sertindole in a rabbit heart model of torsades de pointes: Low torsadogenic potential despite QT prolongation. J Pharmacol Exp Ther. 2002;300:64–71.PubMedCrossRefGoogle Scholar
  217. 217.
    Drolet B, Rousseau G, Daleau P, Cardinal R, Simard C, Turgeon J. Pimozide (orap) prolongs cardiac repolarization by blocking the rapid component of the delayed rectifier potassium current in native cardiac myocytes. J Cardiovasc Pharmacol Ther. 2001;6:255–260.PubMedCrossRefGoogle Scholar
  218. 218.
    Lee SY, Kim YJ, Kim KT, Choe H, Jo SH. Blockade of HERG human K+ channels and IKr of guinea-pig cardiomyocytes by the antipsychotic drug clozapine. Br J Pharmacol. 2006;148:499–509.PubMedCrossRefGoogle Scholar
  219. 219.
    Gluais P, Bastide M, Caron J, Adamantidis M. Risperidone prolongs cardiac action potential through reduction of K+ currents in rabbit myocytes. Eur J Pharmacol. 2002;444:123–132.PubMedCrossRefGoogle Scholar
  220. 220.
    Drolet B, Yang T, Daleau P, Roden DM, Turgeon J. Risperidone prolongs cardiac repolarization by blocking the rapid component of the delayed rectifier potassium current. J Cardiovasc Pharmacol. 2003;41:934–937.PubMedCrossRefGoogle Scholar
  221. 221.
    Magyar J, Banyasz T, Bagi Z, et al. Electrophysiological effects of risperidone in mammalian cardiac cells. Naunyn Schmiedebergs Arch Pharmacol. 2002;366:350–356.PubMedCrossRefGoogle Scholar
  222. 222.
    Biziere K, Worms P, Kan JP, Mandel P, Garattini S, Roncucci R. Minaprine, a new drug with antidepressant properties. Drugs Exp Clin Res. 1985;11:831–840.PubMedGoogle Scholar
  223. 223.
    Baizman ER, Ezrin AM, Ferrari RA, Luttinger D. Pharmacologic profile of fezolamine fumarate: A nontricyclic antidepressant in animal models. J Pharmacol Exp Ther. 1987;243:40–54.PubMedGoogle Scholar
  224. 224.
    Depin JC, Betbeder-Matibet A, Bonhomme Y, Muller AJ, Berthelon JJ. Pharmacology of lortalamine, a new potent non-tricyclic antidepressant. Arzneimittelforschung. 1985;35:1655–1662.PubMedGoogle Scholar
  225. 225.
    Ilback NG, Stalhandske T. Cardiovascular effects of xylazine recorded with telemetry in the dog. J Vet Med A Physiol Pathol Clin Med. 2003;50:479–483.PubMedCrossRefGoogle Scholar
  226. 226.
    Allen DG, Downey RS. Echocardiographic assessment of cats anesthetized with xylazine-sodium pentobarbital. Can J Comp Med. 1983;47:281–283.PubMedGoogle Scholar
  227. 227.
    DeRossi R, Junqueira AL, Beretta MP. Analgesic and systemic effects of xylazine, lidocaine and their combination after subarachnoid administration in goats. J S Afr Vet Assoc. 2005;76:79–84.PubMedGoogle Scholar
  228. 228.
    Teng B, Muir WW, 3rd. Effects of xylazine on canine coronary artery vascular rings. Am J Vet Res. 2004;65:431–435.PubMedCrossRefGoogle Scholar
  229. 229.
    van Woerkens LJ, Duncker DJ, Huigen RJ, van der Giessen WJ, Verdouw PD. Redistribution of cardiac output caused by opening of arteriovenous anastomoses by a combination of azaperone and metomidate. Br J Anaesth. 1990;65:393–399.PubMedCrossRefGoogle Scholar
  230. 230.
    Orr JA, Manohar M, Will JA. Cardiopulmonary effects of the combination of neuroleptic azaperone and hypnotic metomidate in swine. Am J Vet Res. 1976;37:1305–1308.PubMedGoogle Scholar
  231. 231.
    Pypendop B, Verstegen J. Cardiorespiratory effects of a combination of medetomidine, midazolam, and butorphanol in dogs. Am J Vet Res. 1999;60:1148–1154.PubMedGoogle Scholar
  232. 232.
    Difilippo SM, Norberg PJ, Suson UD, Savino AM, Reim DA. A comparison of xylazine and medetomidine in an anesthetic combination in New Zealand white rabbits. Contemp Top Lab Anim Sci. 2004;43:32–34.PubMedGoogle Scholar
  233. 233.
    Kojima K, Nishimura R, Mutoh T, Hong SH, Mochizuki M, Sasaki N. Effects of medetomidine-midazolam, acepromazine-butorphanol, and midazolam-butorphanol on induction dose of thiopental and propofol and on cardiopulmonary changes in dogs. Am J Vet Res. 2002;63:1671–1679.PubMedCrossRefGoogle Scholar
  234. 234.
    Kojima K, Nishimura R, Mutoh T, et al. Comparison of cardiopulmonary effects of medetomidine-midazolam, acepromazine-butorphanol and midazolam-butorphanol in dogs. Zentralbl Veterinarmed A. 1999;46:353–359.PubMedGoogle Scholar
  235. 235.
    Bettschart-Wolfensberger R, Bowen IM, Freeman SL, Weller R, Clarke KW. Medetomidine-ketamine anaesthesia induction followed by medetomidine-propofol in ponies: Infusion rates and cardiopulmonary side effects. Equine Vet J. 2003;35:308–313.PubMedCrossRefGoogle Scholar
  236. 236.
    Henke J, Baumgartner C, Roltgen I, Eberspacher E, Erhardt W. Anaesthesia with midazolam/medetomidine/fentanyl in chinchillas (chinchilla lanigera) compared to anaesthesia with xylazine/ketamine and medetomidine/ketamine. J Vet Med A Physiol Pathol Clin Med. 2004;51:259–264.PubMedCrossRefGoogle Scholar
  237. 237.
    Kushiro T, Yamashita K, Umar MA, et al. Anesthetic and cardiovascular effects of balanced anesthesia using constant rate infusion of midazolam-ketamine-medetomidine with inhalation of oxygen-sevoflurane (MKM-OS anesthesia) in horses. J Vet Med Sci. 2005;67:379–384.PubMedCrossRefGoogle Scholar
  238. 238.
    Appleton GO, Li Y, Taffet GE, et al. Determinants of cardiac electrophysiological properties in mice. J Interv Card Electrophysiol. 2004;11:5–14.PubMedCrossRefGoogle Scholar
  239. 239.
    Ingwersen W, Allen DG, Dyson DH, Black WD, Goldberg MT, Valliant AE. Cardiopulmonary effects of a ketamine/acepromazine combination in hypovolemic cats. Can J Vet Res. 1988;52:423–427.PubMedGoogle Scholar
  240. 240.
    Sumitra M, Manikandan P, Rao KV, Nayeem M, Manohar BM, Puvanakrishnan R. Cardiorespiratory effects of diazepam-ketamine, xylazine-ketamine and thiopentone anesthesia in male Wistar rats - a comparative analysis. Life Sci. 2004;75:1887–1896.PubMedCrossRefGoogle Scholar
  241. 241.
    Saha DC, Saha AC, Malik G, Astiz ME, Rackow EC. Comparison of cardiovascular effects of tiletamine-zolazepam, pentobarbital, and ketamine-xylazine in male rats. J Am Assoc Lab Anim Sci. 2007;46:74–80.PubMedGoogle Scholar
  242. 242.
    Rodrigues SF, de Oliveira MA, Martins JO, et al Differential effects of chloral hydrate- and ketamine/xylazine-induced anesthesia by the s.c. route. Life Sci. 2006;79:1630–1637.PubMedCrossRefGoogle Scholar
  243. 243.
    Musizza B, Stefanovska A, McClintock PV, et al. Interactions between cardiac, respiratory and EEG-delta oscillations in rats during anaesthesia. J Physiol. 2007;580:315–326.PubMedCrossRefGoogle Scholar
  244. 244.
    Kober F, Iltis I, Cozzone PJ, Bernard M. Cine-MRI assessment of cardiac function in mice anesthetized with ketamine/xylazine and isoflurane. MAGMA. 2004;17:157–161.PubMedCrossRefGoogle Scholar
  245. 245.
    Kober F, Iltis I, Cozzone PJ, Bernard M. Myocardial blood flow mapping in mice using high-resolution spin labeling magnetic resonance imaging: Influence of ketamine/xylazine and isoflurane anesthesia. Magn Reson Med. 2005;53:601–606.PubMedCrossRefGoogle Scholar
  246. 246.
    Schaefer A, Meyer GP, Brand B, Hilfiker-Kleiner D, Drexler H, Klein G. Effects of anesthesia on diastolic function in mice assessed by echocardiography. Echocardiography. 2005;22:665–670.PubMedCrossRefGoogle Scholar
  247. 247.
    Stypmann J, Engelen MA, Breithardt AK, et al. Doppler echocardiography and tissue doppler imaging in the healthy rabbit: Differences of cardiac function during awake and anaesthetised examination. Int J Cardiol. 2007;115:164–170.PubMedCrossRefGoogle Scholar
  248. 248.
    Kerr CL, McDonell WN, Young SS. Cardiopulmonary effects of romifidine/ketamine or xylazine/ketamine when used for short duration anesthesia in the horse. Can J Vet Res. 2004;68:274–282.PubMedGoogle Scholar
  249. 249.
    Picavet MT, Gasthuys FM, Laevens HH, Watts SA. Cardiopulmonary effects of combined xylazine-guaiphenesin-ketamine infusion and extradural (inter-coccygeal lidocaine) anaesthesia in calves. Vet Anaesth Analg. 2004;31:11–19.PubMedCrossRefGoogle Scholar
  250. 250.
    Newell SM, Ko JC, Ginn PE, et al. Effects of three sedative protocols on glomerular filtration rate in clinically normal dogs. Am J Vet Res. 1997;58:446–450.PubMedGoogle Scholar
  251. 251.
    Gross ME, Smith JA, Tranquilli WJ. Cardiorespiratory effects of combined midazolam and butorphanol in isoflurane-anesthetized cats. Vet Surg. 1993;22:159–162.PubMedCrossRefGoogle Scholar
  252. 252.
    Hexeberg E, Hexeberg S, Hessevik I, Fosse RT. Midazolam in combination with fentanyl/fluanisone and nitrous oxide as anaesthesia in rabbits - cardiovascular parameters. Lab Anim. 1995;29:400–406.PubMedCrossRefGoogle Scholar
  253. 253.
    Schauvliege S, Narine K, Bouchez S, et al. Refined anaesthesia for implantation of engineered experimental aortic valves in the pulmonary artery using a right heart bypass in sheep. Lab Anim. 2006;40:341–352.PubMedCrossRefGoogle Scholar
  254. 254.
    Dyson DH, Allen DG, Ingwersen W, Pascoe PJ. Evaluation of acepromazine/meperidine/atropine premedication followed by thiopental anesthesia in the cat. Can J Vet Res. 1988;52:419–422.PubMedGoogle Scholar
  255. 255.
    Liehmann L, Mosing M, Auer U. A comparison of cardiorespiratory variables during isoflurane-fentanyl and propofol-fentanyl anaesthesia for surgery in injured cats. Vet Anaesth Analg. 2006;33:158–168.PubMedCrossRefGoogle Scholar
  256. 256.
    Hellyer P, Muir WW, 3rd, Hubbell JA, Sally J. Cardiorespiratory effects of the intravenous administration of tiletamine-zolazepam to dogs. Vet Surg. 1989;18:160–165.PubMedCrossRefGoogle Scholar
  257. 257.
    Natalini CC, Alves SD, Guedes AG, Polydoro AS, Brondani JT, Bopp S. Epidural administration of tiletamine/zolazepam in horses. Vet Anaesth Analg. 2004;31:79–85.PubMedCrossRefGoogle Scholar
  258. 258.
    Jacobson C. A novel anaesthetic regimen for surgical procedures in guinea pigs. Lab Anim. 2001;35:271–276.PubMedCrossRefGoogle Scholar
  259. 259.
    Foxall G, McCahon R, Lamb J, Hardman JG, Bedforth NM. Levobupivacaine-induced seizures and cardiovascular collapse treated with intralipid. Anaesthesia. 2007;62:516–518.PubMedCrossRefGoogle Scholar
  260. 260.
    Newton DJ, McLeod GA, Khan F, Belch JJ. Mechanisms influencing the vasoactive effects of lidocaine in human skin. Anaesthesia. 2007;62:146–150.PubMedCrossRefGoogle Scholar
  261. 261.
    Gerhardt MA, Gunka VB, Miller RJ. Hemodynamic stability during labor and delivery with continuous epidural infusion. J Am Osteopath Assoc. 2006;106:692–698.PubMedGoogle Scholar
  262. 262.
    Braun C, Hofmeister EH, Lockwood AA, Parfitt SL. Effects of diazepam or lidocaine premedication on propofol induction and cardiovascular parameters in dogs. J Am Anim Hosp Assoc. 2007;43:8–12.PubMedGoogle Scholar
  263. 263.
    Persson F, Andersson B, Duker G, Jacobson I, Carlsson L. Functional effects of the late sodium current inhibition by AZD7009 and lidocaine in rabbit isolated atrial and ventricular tissue and Purkinge fibre. Eur J Pharmacol. 2007;558:133–143.PubMedCrossRefGoogle Scholar
  264. 264.
    Stehr SN, Ziegeler JC, Pexa A, et al. The effects of lipid infusion on myocardial function and bioenergetics in l-bupivacaine toxicity in the isolated rat heart. Anesth Analg. 2007;104:186–192.PubMedCrossRefGoogle Scholar
  265. 265.
    Hersh EV, Giannakopoulos H, Levin LM, et al. The pharmacokinetics and cardiovascular effects of high-dose articaine with 1:100,000 and 1:200,000 epinephrine. J Am Dent Assoc. 2006;137:1562–1571.PubMedGoogle Scholar
  266. 266.
    Royse CF, Royse AG. The myocardial and vascular effects of bupivacaine, levobupivacaine, and ropivacaine using pressure volume loops. Anesth Analg. 2005;101:679–687, table of contents.PubMedCrossRefGoogle Scholar
  267. 267.
    Chang KS, Morrow DR, Kuzume K, Andresen MC. Bupivacaine inhibits baroreflex control of heart rate in conscious rats. Anesthesiology. 2000;92:197–207.PubMedCrossRefGoogle Scholar
  268. 268.
    Borer LR, Peel JE, Seewald W, Schawalder P, Spreng DE. Effect of carprofen, etodolac, meloxicam, or butorphanol in dogs with induced acute synovitis. Am J Vet Res. 2003;64:1429–1437.PubMedCrossRefGoogle Scholar
  269. 269.
    Scheiman JM, Tillner A, Pohl T, et al. Reduction of non-steroidal anti-inflammatory drug induced gastric injury and leucocyte endothelial adhesion by octreotide. Gut. 1997;40:720–725.PubMedCrossRefGoogle Scholar
  270. 270.
    Jones MK, Wang H, Peskar BM, et al. Inhibition of angiogenesis by nonsteroidal anti-inflammatory drugs: Insight into mechanisms and implications for cancer growth and ulcer healing. Nat Med. 1999;5:1418–1423.PubMedCrossRefGoogle Scholar
  271. 271.
    Momma K, Takao A. Transplacental cardiovascular effects of four popular analgesics in rats. Am J Obstet Gynecol. 1990;162:1304–1310.PubMedGoogle Scholar
  272. 272.
    Cappon GD, Gupta U, Cook JC, Tassinari MS, Hurtt ME. Comparison of the developmental toxicity of aspirin in rabbits when administered throughout organogenesis or during sensitive windows of development. Birth Defects Res B Dev Reprod Toxicol. 2003;68:38–46.PubMedCrossRefGoogle Scholar
  273. 273.
    Frendin JH, Bostrom IM, Kampa N, Eksell P, Haggstrom JU, Nyman GC. Effects of carprofen on renal function during medetomidine-propofol-isoflurane anesthesia in dogs. Am J Vet Res. 2006;67:1967–1973.PubMedCrossRefGoogle Scholar
  274. 274.
    Hennan JK, Huang J, Barrett TD, et al. Effects of selective cyclooxygenase-2 inhibition on vascular responses and thrombosis in canine coronary arteries. Circulation. 2001;104:820–825.PubMedCrossRefGoogle Scholar
  275. 275.
    Dubey K, Balani DK, Pillai KK. Potential adverse interaction between aspirin and lisinopril in hypertensive rats. Hum Exp Toxicol. 2003;22:143–147.PubMedCrossRefGoogle Scholar
  276. 276.
    Grosfeld JL, Phelps TO, Jesseph JM. Effect of stress and aspirin on extrahepatic portal hypertension in rats. J Pediatr Surg. 1975;10:609–615.PubMedCrossRefGoogle Scholar
  277. 277.
    Peter FW, Franken RJ, Wang WZ, et al. Effect of low dose aspirin on thrombus formation at arterial and venous microanastomoses and on the tissue microcirculation. Plast Reconstr Surg. 1997;99:1112–1121.PubMedCrossRefGoogle Scholar
  278. 278.
    Vesvres MH, Doutremepuich F, Lalanne MC, Doutremepuich C. Effects of aspirin on embolization in an arterial model of laser-induced thrombus formation. Haemostasis. 1993;23:8–12.PubMedGoogle Scholar
  279. 279.
    Belougne-Malfatti E, Aguejouf O, Doutremepuich F, Belon P, Doutremepuich C. Combination of two doses of acetyl salicylic acid: Experimental study of arterial thrombosis. Thromb Res. 1998;90:215–221.PubMedCrossRefGoogle Scholar
  280. 280.
    Napoli C, Aldini G, Wallace JL, et al. Efficacy and age-related effects of nitric oxide-releasing aspirin on experimental restenosis. Proc Natl Acad Sci USA. 2002;99:1689–1694.PubMedCrossRefGoogle Scholar
  281. 281.
    Borgdorff P, Tangelder GJ, Paulus WJ. Cyclooxygenase-2 inhibitors enhance shear stress-induced platelet aggregation. J Am Coll Cardiol. 2006;48:817–823.PubMedCrossRefGoogle Scholar
  282. 282.
    Wang D, Wang M, Cheng Y, Fitzgerald GA. Cardiovascular hazard and non-steroidal anti-inflammatory drugs. Curr Opin Pharmacol. 2005;5:204–210.PubMedCrossRefGoogle Scholar
  283. 283.
    Gershlick AH, Syndercombe Court YD, Murday AJ, Lewis CT, Mills PG. Adverse effects of high dose aspirin on platelet adhesion to experimental autogenous vein grafts. Cardiovasc Res. 1985;19:770–776.PubMedCrossRefGoogle Scholar
  284. 284.
    Debons AF, Fani K, Jimenez FA. Enhancement of experimental atherosclerosis by aspirin. J Toxicol Environ Health. 1981;8:899–906.PubMedCrossRefGoogle Scholar
  285. 285.
    Cheng Y, Wang M, Yu Y, Lawson J, Funk CD, Fitzgerald GA. Cyclooxygenases, microsomal prostaglandin E synthase-1, and cardiovascular function. J Clin Invest. 2006;116:1391–1399.PubMedCrossRefGoogle Scholar
  286. 286.
    Fosslien E. Cardiovascular complications of non-steroidal anti-inflammatory drugs. Ann Clin Lab Sci. 2005;35:347–385.PubMedGoogle Scholar
  287. 287.
    Vizi ES, Tuba Z, Maho S, et al. A new short-acting non-depolarizing muscle relaxant (SZ1677) without cardiovascular side-effects. Acta Anaesthesiol Scand. 2003;47:291–300.PubMedCrossRefGoogle Scholar
  288. 288.
    Castillo-Zamora C, Lespron Mdel C, Nava-Ocampo AA. Similar preoperative hemodynamic response to pancuronium and rocuronium in high-risk cardiac surgical patients. Minerva Anestesiol. 2005;71:769–773.PubMedGoogle Scholar
  289. 289.
    Moore EW, Hunter JM. The new neuromuscular blocking agents: Do they offer any advantages? Br J Anaesth. 2001;87:912–925.PubMedCrossRefGoogle Scholar
  290. 290.
    Kampe S, Krombach JW, Diefenbach C. Muscle relaxants. Best Pract Res Clin Anaesthesiol. 2003;17:137–146.PubMedCrossRefGoogle Scholar
  291. 291.
    Cope TM, Hunter JM. Selecting neuromuscular-blocking drugs for elderly patients. Drugs Aging. 2003;20:125–140.PubMedCrossRefGoogle Scholar
  292. 292.
    Plaud B, Marty J, Debaene B, et al The cardiovascular effects of mivacurium in hypertensive patients. Anesth Analg. 2002;95:379–384, table of contents.PubMedGoogle Scholar
  293. 293.
    Fodale V, Santamaria LB. Laudanosine, an atracurium and cisatracurium metabolite. Eur J Anaesthesiol. 2002;19:466–473.PubMedGoogle Scholar
  294. 294.
    Jonsson M, Dabrowski M, Gurley DA, et al. Activation and inhibition of human muscular and neuronal nicotinic acetylcholine receptors by succinylcholine. Anesthesiology. 2006;104:724–733.PubMedCrossRefGoogle Scholar
  295. 295.
    Robertson EN, Driessen JJ, Booij LH. Suxamethonium administration prolongs the duration of action of subsequent rocuronium. Eur J Anaesthesiol. 2004;21:734–737.PubMedGoogle Scholar
  296. 296.
    Heerdt PM, Kang R, The’ A, Hashim M, Mook RJ, Jr, Savarese JJ. Cardiopulmonary effects of the novel neuromuscular blocking drug GW280430A (AV430A) in dogs. Anesthesiology. 2004;100:846–851.PubMedCrossRefGoogle Scholar
  297. 297.
    Savarese JJ, Belmont MR, Hashim MA, et al. Preclinical pharmacology of GW280430A (AV430A) in the rhesus monkey and in the cat: A comparison with mivacurium. Anesthesiology. 2004;100:835–845.PubMedCrossRefGoogle Scholar
  298. 298.
    Kastrup MR, Marsico FF, Ascoli FO, Becker T, Soares JH, Gomez de Segura IA. Neuromuscular blocking properties of atracurium during sevoflurane or propofol anaesthesia in dogs. Vet Anaesth Analg. 2005;32:222–227.PubMedCrossRefGoogle Scholar
  299. 299.
    Igarashi A, Amagasa S, Horikawa H, Shirahata M. Vecuronium directly inhibits hypoxic neurotransmission of the rat carotid body. Anesth Analg. 2002;94:117–122, table of contents.PubMedGoogle Scholar
  300. 300.
    Gyermek L, Lee C, Cho YM, Nguyen N. Quaternary derivatives of granatanol diesters: Potent, ultrashort acting non-depolarizing neuromuscular relaxants. Life Sci. 2006;79:559–569.PubMedCrossRefGoogle Scholar
  301. 301.
    Fazekas T, Krassoi I, Lengyel C, Varro A, Papp JG. Suppression of erythromycin-induced early after-depolarizations and torsades de pointes ventricular tachycardia by mexiletine. Pacing Clin Electrophysiol. 1998;21:147–150.PubMedCrossRefGoogle Scholar
  302. 302.
    Roden DM. Torsade de pointes. Clin Cardiol. 1993;16:683–686.PubMedCrossRefGoogle Scholar
  303. 303.
    Chiba K, Sugiyama A, Hagiwara T, Takahashi S, Takasuna K, Hashimoto K. In vivo experimental approach for the risk assessment of fluoroquinolone antibacterial agents-induced long QT syndrome. Eur J Pharmacol. 2004;486:189–200.PubMedCrossRefGoogle Scholar
  304. 304.
    Hahm S, Dresner HS, Podwall D, et al. DNA biomarkers antecede semiquantitative anthracycline cardiomyopathy. Cancer Invest. 2003;21:53–67.PubMedCrossRefGoogle Scholar
  305. 305.
    Kim C, Kim N, Joo H, et al. Modulation by melatonin of the cardiotoxic and antitumor activities of adriamycin. J Cardiovasc Pharmacol. 2005;46:200–210.PubMedCrossRefGoogle Scholar
  306. 306.
    L’Ecuyer T, Sanjeev S, Thomas R, et al. DNA damage is an early event in doxorubicin-induced cardiac myocyte death. Am J Physiol Heart Circ Physiol. 2006;291:H1273–H1280.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • David R. Gross
    • 1
  1. 1.Department of Veterinary BiosciencesUniversity of Illinois, Urbana Champaign College of Veterinary MedicineUrbanaUSA

Personalised recommendations