Measuring Vascular Function and Ventricular/Arterial Coupling Dynamics

  • David R. Gross


“… Now this Velocity is only the Velocity of the Blood at its firft entering into the Aorta, in the Time of the Syftole; in confequence of which the Blood in the Arteries, being forcibly propelled forward, with an accelerated Impetus, thereby dilates the Canal of the Arteries, which begin again to contract at the Infstant the Syftole ceafes: By which curious Artifice of Nature, the Blood is carried on in the finer Capillaries, with an almoft even Tenor of Velocity, in the fame manner as the fpouting Water of fome fire-Engines, is contrived to flow with a more even Velocity, not withftanding the alternate Syftoles and Diaftoles of the rifing and falling Embolus or Force; and this by the means of a large inverted Globe, wherein the compreffed Air alternately dilating or contracting, in Conformity to the workings to and fro of the Embolus, and thereby impelling the Water more equably than the Embolus alone would do, pufhes it out in a more nearly equal Spout.…”1

The above quote is probably the first ever published description of the arterial system working in combination with the heart to deliver blood to the peripheral tissues. It may also be the first published use of a model to describe a physiological phenomenon. Stephen Hales work was eventually translated into German and this led to the use of the term “windkessel” to describe the workings of the elastic (compliant) aorta and large arteries, by Otto Frank in 1899.2


Right Ventricular Thoracic Aorta Arterial Compliance Stroke Work Ascend Aorta 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Hales S, ed. Statical Essays: Containing Haemastaticks; Or, an Account of Fome Hydraulick and Hydrostatical Experiments made on the Blood and Blood-Veffels of Animals. West-End of St. Paul’s, London: Council of the Royal Society; 1733; No. II.Google Scholar
  2. 2.
    Frank O. Die grundform des arteriellen pulses. Z Biol. 1899;37:483.Google Scholar
  3. 3.
    McDonald DA, Taylor MG. The hydrodynamics of the arterial circulation. Prog Biophys Chem. 1959;9:107.Google Scholar
  4. 4.
    Bramwell JC, Hill AV. The velocity of the pulse wave in man. Proc Roy Soc Lond (Biol). 1922;93:298.CrossRefGoogle Scholar
  5. 5.
    McDonald DA. Regional pulse-wave velocity in the arterial tree. J Appl Physiol. 1968;24:73–78.PubMedGoogle Scholar
  6. 6.
    McDonald DA. Blood Flow in Arteries, 2nd Edition. Baltimore, MD: Williams & Wilkens; 1974.Google Scholar
  7. 7.
    Westerhof N, Elzinga G, Sipkema P. An artificial arterial system for pumping hearts. J Appl Physiol. 1971;31:776–781.PubMedGoogle Scholar
  8. 8.
    Noordergraaf A, Verdouw PD, van Brummelen AGW, Wiegel FW. Analog of the arterial bed. In: Attinger EO, ed. Pulsatile Blood Flow, 1st Edition. New York, NY: McGraw-Hill; 1964:373.Google Scholar
  9. 9.
    Taylor MG. An approach to an analysis of the arterial pulse wave. II. Fluid oscillations in an elastic pipe. Phys Med Biol. 1957;1:321–329.PubMedCrossRefGoogle Scholar
  10. 10.
    Taylor MG. An approach to an analysis of the arterial pulse wave. I. oscillations in an attenuating line. Phys Med Biol. 1957;1:258–269.PubMedCrossRefGoogle Scholar
  11. 11.
    Burattini R. Reduced models of the systemic arterial circulation. In: Westerhof N, Gross DR, eds. Vascular Dynamics; Physiological Perspectives. Life Sciences, Vol. 166. New York: Plenum Press; 1989:69–85.Google Scholar
  12. 12.
    O’Rourke MF. Pressure and flow waves in systemic arteries and the anatomical design of the arterial system. J Appl Physiol. 1967;23:139–149.PubMedGoogle Scholar
  13. 13.
    Wetterer E, Kenner T. Die Dynamik Des Arterienpulses, 1st Edition. Berlin: Springer-Verlag; 1968.Google Scholar
  14. 14.
    Sipkema P, Westerhof N. Effective length of the arterial system. Ann Biomed Eng. 1975;3:296–307.PubMedCrossRefGoogle Scholar
  15. 15.
    Burattini R, Gnudi G. Computer identification of models for the arterial tree input impedance: Comparison between two new simple models and first experimental results. Med Biol Eng Comput. 1982;20:134–144.PubMedCrossRefGoogle Scholar
  16. 16.
    Burattini R, Campbell KB. Modified asymmetric T-tube model to infer arterial wave reflection at the aortic root. IEEE Trans Biomed Eng. 1989;36:805–814.PubMedCrossRefGoogle Scholar
  17. 17.
    Westerhof N, Gross DR. Section I: Conduit and resistive vessel dynamics. In: Westerhof N, Gross DR, eds. Vascular Dynamics; Physiological Perspectives. Life Sciences, Vol. 166. New York: Plenum Press in cooperation with NATO Scientific Affairs Division; 1989:v.Google Scholar
  18. 18.
    Yin CPF, Liu Z. Arterial compliance-physiological viewpoint. In: Westerhof N, Gross DR, eds. Vascular Dynamics, Physiological Perspectives. Life Sciences, Vol. 166. New York: Plenum Press; 1989:9–22.Google Scholar
  19. 19.
    Patel DJ, Mallos AJ, Fry DL. Aortic mechanics in the living dog. J Appl Physiol. 1961;16:293–299.PubMedGoogle Scholar
  20. 20.
    Tucker WK, Janicki JS, Plowman F, Patel DJ. A device to test mechanical properties of tissues and transducers. J Appl Physiol. 1969;26:656–658.PubMedGoogle Scholar
  21. 21.
    Patel DJ, Janicki JS, Carew TE. Static anisotropic elastic properties of the aorta in living dogs. Circ Res. 1969;25:765–779.PubMedGoogle Scholar
  22. 22.
    Patel DJ, Janicki JS, Vaishnav RN, Young JT. Dynamic anisotropic viscoelastic properties of the aorta in living dogs. Circ Res. 1973;32:93–107.PubMedGoogle Scholar
  23. 23.
    Gentile BJ, Gross DR, Chuong CJ, Hwang NH. Segmental volume distensibility of the canine thoracic aorta in vivo. Cardiovasc Res. 1988;22:385–389.PubMedCrossRefGoogle Scholar
  24. 24.
    Gross DR. Compliance and aging. In: Westerhof N, Gross DR, eds. Vascular Dynamics, Physiological Perspectives. Life Sciences, Vol. 166. New York: Plenum Press; 1989:37–47.Google Scholar
  25. 25.
    Latham RD. Pulse propagation in the systemic arterial tree. In: Westerhof N, Gross DR, eds. Vascular Dynamics; Physiological Perspectives. Life Sciences, Vol. 166. New York: Plenum Press; 1989:49–67.Google Scholar
  26. 26.
    Latham RD, Rubal BJ, Westerhof N, Sipkema P, Walsh RA. Nonhuman primate model for regional wave travel and reflections along aortas. Am J Physiol. 1987;253:H299–H306.PubMedGoogle Scholar
  27. 27.
    Latham RD, Westerhof N, Sipkema P, Rubal BJ, Reuderink P, Murgo JP. Regional wave travel and reflections along the human aorta: A study with six simultaneous micromanometric pressures. Circulation. 1985;72:1257–1269.PubMedCrossRefGoogle Scholar
  28. 28.
    Latson TW, Hunter WC, Katoh N, Sagawa K. Effect of nitroglycerin on aortic impedance, diameter, and pulse-wave velocity. Circ Res. 1988;62:884–890.PubMedGoogle Scholar
  29. 29.
    Reddy AK, Jones AD, Martono C, Caro WA, Madala S, Hartley CJ. Pulsed Doppler signal processing for use in mice: Design and evaluation. IEEE Trans Biomed Eng. 2005;52:1764–1770.PubMedCrossRefGoogle Scholar
  30. 30.
    Reddy AK, Taffet GE, Li YH, et al. Pulsed Doppler signal processing for use in mice: Applications. IEEE Trans Biomed Eng. 2005;52:1771–1783.PubMedCrossRefGoogle Scholar
  31. 31.
    Kubozono T, Miyata M, Ueyama K, et al. Clinical significance and reproducibility of new arterial distensibility index. Circ J. 2007;71:89–94.PubMedCrossRefGoogle Scholar
  32. 32.
    Tillin T, Chambers J, Malik I, et al. Measurement of pulse wave velocity: Site matters. J Hypertens. 2007;25:383–389.PubMedCrossRefGoogle Scholar
  33. 33.
    Davies TS, Frenneaux MP, Campbell RI, White MJ. Human arterial responses to isometric exercise: The role of the muscle metaboreflex. Clin Sci (Lond). 2007;112:441–447.CrossRefGoogle Scholar
  34. 34.
    Vlachopoulos CV, Vyssoulis GG, Alexopoulos NA, et al. Effect of chronic coffee consumption on aortic stiffness and wave reflections in hypertensive patients. Eur J Clin Nutr. 2007;61:796–802.PubMedCrossRefGoogle Scholar
  35. 35.
    Burattini R, Montanari L, Mulligan LJ, Cannon MS, Gross DR. Evaluation of hypercholesterol diet-induced changes in viscoelastic properties of carotid circulation in pigs. Am J Physiol. 1992;263:H1919–H1926.PubMedGoogle Scholar
  36. 36.
    Noble MI, Gabe IT, Trenchard D, Guz A. Blood pressure and flow in the ascending aorta of conscious dogs. Cardiovasc Res. 1967;1:9–20.PubMedCrossRefGoogle Scholar
  37. 37.
    O’Rourke MF. Impact pressure, lateral pressure, and impedance in the proximal aorta and pulmonary artery. J Appl Physiol. 1968;25:533–541.PubMedGoogle Scholar
  38. 38.
    Westerhof N, Noordergraaf A. Errors in the measurement of hydraulic input impedance. J Biomech. 1970;3:351–356.PubMedCrossRefGoogle Scholar
  39. 39.
    Canic S, Hartley CJ, Rosenstrauch D, Tambaca J, Guidoboni G, Mikelic A. Blood flow in compliant arteries: An effective viscoelastic reduced model, numerics, and experimental validation. Ann Biomed Eng. 2006;34:575–592.PubMedCrossRefGoogle Scholar
  40. 40.
    Vrettos AM, Gross DR. Instantaneous changes in arterial compliance reduce energetic load on left ventricle during systole. Am J Physiol. 1994;267:H24–H32.PubMedGoogle Scholar
  41. 41.
    Attinger EO, Anne A, McDonald DA. Use of Fourier series for the analysis of biological systems. Biophys J. 1966;6:291–304.PubMedCrossRefGoogle Scholar
  42. 42.
    Attinger EO, Sugawara H, Navarro A, Riccetto A, Martin R. Pressure-flow relations in dog arteries. Circ Res. 1966;19:230–246.PubMedGoogle Scholar
  43. 43.
    Burattini R, Gnudi G, Westerhof N, Fioretti S. Total systemic arterial compliance and aortic characteristic impedance in the dog as a function of pressure: A model based study. Comput Biomed Res. 1987;20:154–165.PubMedCrossRefGoogle Scholar
  44. 44.
    Burattini R, Reale P, Borgdorff P, Westerhof N. Dynamic model of the short-term regulation of arterial pressure in the cat. Med Biol Eng Comput. 1987;25:269–276.PubMedCrossRefGoogle Scholar
  45. 45.
    Defares JG, van der Waal HJ. A method for the determination of systemic arterial compliance in man. Acta Physiol Pharmacol Neerl. 1969;15:329–343.PubMedGoogle Scholar
  46. 46.
    Latham RD, Sipkema P, Westerhof N, Rubal BJ. Aortic input impedance during Mueller maneuver: An evaluation of “effective length”. J Appl Physiol. 1988;65:1604–1610.PubMedGoogle Scholar
  47. 47.
    Murgo JP, Westerhof N, Giolma JP, Altobelli SA. Manipulation of ascending aortic pressure and flow wave reflections with the Valsalva maneuver: Relationship to input impedance. Circulation. 1981;63:122–132.PubMedCrossRefGoogle Scholar
  48. 48.
    Murgo JP, Westerhof N, Giolma JP, Altobelli SA. Aortic input impedance in normal man: Relationship to pressure wave forms. Circulation. 1980;62:105–116.PubMedGoogle Scholar
  49. 49.
    O’Rourke MF, Taylor MG. Input impedance of the systemic circulation. Circ Res. 1967;20:365–380.PubMedGoogle Scholar
  50. 50.
    Patel DJ, Defreitas FM, Fry DL. Hydraulic input impedance to aorta and pulmonary artery in dogs. J Appl Physiol. 1963;18:134–140.PubMedGoogle Scholar
  51. 51.
    Westerhof N, Noordergraaf A. Arterial viscoelasticity: A generalized model effect on input impedance and wave travel in the systematic tree. J Biomech. 1970;3:357–379.PubMedCrossRefGoogle Scholar
  52. 52.
    Apter JT. Correlation of visco-elastic properties with microscopic structure of large arteries. IV. Thermal responses of collagen, elastin, smooth muscle, and intact arteries. Circ Res. 1967;21:901–918.PubMedGoogle Scholar
  53. 53.
    Apter JT, Marquez E. Correlation of visco-elastic properties of large arteries with microscopic structure. V. Effects of sinusoidal forcings at low and at resonance frequencies. Circ Res. 1968;22:393–404.PubMedGoogle Scholar
  54. 54.
    Bergel DH. The dynamic elastic properties of the arterial wall. J Physiol. 1961;156:458–469.PubMedGoogle Scholar
  55. 55.
    Bergel DH. The static elastic properties of the arterial wall. J Physiol. 1961;156:445–457.PubMedGoogle Scholar
  56. 56.
    Learoyd BM, Taylor MG. Alterations with age in the viscoelastic properties of human arterial walls. Circ Res. 1966;18:278–292.PubMedGoogle Scholar
  57. 57.
    De Tombe PP, Jones S, Burkhoff D, Hunter WC, Kass DA. Ventricular stroke work and efficiency both remain nearly optimal despite altered vascular loading. Am J Physiol. 1993;264:H1817–H1824.PubMedGoogle Scholar
  58. 58.
    Jegger D, da Silva R, Jeanrenaud X, et al. Ventricular-arterial coupling in a rat model of reduced arterial compliance provoked by hypervitaminosis D and nicotine. Am J Physiol Heart Circ Physiol. 2006;291:H1942–H1951.PubMedCrossRefGoogle Scholar
  59. 59.
    Tran CC, Latham RD, Self DA, Fanton JW, White CD, Owens RW. Effect of upright tilt on ventricular/vascular coupling in chronically instrumented primates. Am J Physiol. 1993;265:H244–H2451.PubMedGoogle Scholar
  60. 60.
    Garcia D, Barenbrug PJ, Pibarot P, et al. A ventricular-vascular coupling model in presence of aortic stenosis. Am J Physiol Heart Circ Physiol. 2005;288:H1874–H1884.PubMedCrossRefGoogle Scholar
  61. 61.
    Fourie PR, Coetzee AR, Bolliger CT. Pulmonary artery compliance: Its role in right ventricular-arterial coupling. Cardiovasc Res. 1992;26:839–844.PubMedCrossRefGoogle Scholar
  62. 62.
    Kass DA. Age-related changes in ventricular-arterial coupling: Pathophysiologic implications. Heart Fail Rev. 2002;7:51–62.PubMedCrossRefGoogle Scholar
  63. 63.
    Yang B, Larson DF, Watson R. Age-related left ventricular function in the mouse: Analysis based on in vivo pressure-volume relationships. Am J Physiol. 1999;277:H1906–H1913.PubMedGoogle Scholar
  64. 64.
    Frenneaux M, Williams L. Ventricular-arterial and ventricular-ventricular interactions and their relevance to diastolic filling. Prog Cardiovasc Dis. 2007;49:252–262.PubMedCrossRefGoogle Scholar
  65. 65.
    Cassidy SC, Chan DP, Allen HD. Left ventricular systolic function, arterial elastance, and ventricular-vascular coupling: A developmental study in piglets. Pediatr Res. 1997;42:273–281.PubMedCrossRefGoogle Scholar
  66. 66.
    Segers P, Georgakopoulos D, Afanasyeva M, et al. Conductance catheter-based assessment of arterial input impedance, arterial function, and ventricular-vascular interaction in mice. Am J Physiol Heart Circ Physiol. 2005;288:H1157–H1164.PubMedCrossRefGoogle Scholar
  67. 67.
    Wauthy P, Pagnamenta A, Vassalli F, Naeije R, Brimioulle S. Right ventricular adaptation to pulmonary hypertension: An interspecies comparison. Am J Physiol Heart Circ Physiol. 2004;286:H1441–H1447.PubMedCrossRefGoogle Scholar
  68. 68.
    Chung CS, Strunc A, Oliver R, Kovacs SJ. Diastolic ventricular-vascular stiffness and relaxation relation: Elucidation of coupling via pressure phase plane-derived indexes. Am J Physiol Heart Circ Physiol. 2006;291:H2415–H2423.PubMedCrossRefGoogle Scholar
  69. 69.
    Dell’Italia LJ, Blackwell GG, Thorn BT, Pearce DJ, Bishop SP, Pohost GM. Time-varying wall stress: An index of ventricular vascular coupling. Am J Physiol. 1992;263:H597–H605.PubMedGoogle Scholar
  70. 70.
    Hartley CJ, Litowitz H, Rabinovitz RS, et al. An ultrasonic method for measuring tissue displacement: Technical details and validation for measuring myocardial thickening. IEEE Trans Biomed Eng. 1991;38:735–747.PubMedCrossRefGoogle Scholar
  71. 71.
    Hartley CJ, Latson LA, Michael LH, Seidel CL, Lewis RM, Entman ML. Doppler measurement of myocardial thickening with a single epicardial transducer. Am J Physiol. 1983;245:H1066–H1072.PubMedGoogle Scholar
  72. 72.
    Zhu WX, Myers ML, Hartley CJ, Roberts R, Bolli R. Validation of a single crystal for measurement of transmural and epicardial thickening. Am J Physiol. 1986;251:H1045–H1055.PubMedGoogle Scholar
  73. 73.
    Doursout MF, Wouters P, Kashimoto S, Hartley CJ, Rabinovitz R, Chelly JE. Measurement of cardiac function in conscious rats. Ultrasound Med Biol. 2001;27:195–202.PubMedCrossRefGoogle Scholar
  74. 74.
    Hartley CJ, Reddy AK, Madala S, Entman ML, Michael LH, Taffet GE. Noninvasive ultrasonic measurement of arterial wall motion in mice. Am J Physiol Heart Circ Physiol. 2004;287:H1426–H1432.PubMedCrossRefGoogle Scholar
  75. 75.
    Hartley CJ, Taffet GE, Reddy AK, Entman ML, Michael LH. Noninvasive cardiovascular phenotyping in mice. ILAR J. 2002;43:147–158.PubMedGoogle Scholar
  76. 76.
    Mahfouz Badran H, Elnoamany M. Impact of type 2 diabetes mellitus on aortic elastic properties in normotensive diabetes: Doppler tissue imaging study. J Am Soc Echocardiogr. 2006;19:1471–1481.PubMedCrossRefGoogle Scholar
  77. 77.
    Fatemi M, Greenleaf JF. Probing the dynamics of tissue at low frequencies with the radiation force of ultrasound. Phys Med Biol. 2000;45:1449–1464.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • David R. Gross
    • 1
  1. 1.Department of Veterinary BiosciencesUniversity of Illinois, Urbana Champaign College of Veterinary MedicineUrbanaUSA

Personalised recommendations