Measuring Cardiac Function

  • David R. Gross


The normal cardiovascular system is a finely tuned pump and delivery system functioning together, with optimal efficiency, to match cardiac output to the integrated metabolic demands of the entire corpus. The inherent physical properties of the two systems contribute to the efficiency, and the physiological coordination of central and local control mechanisms assure that all tissues are supplied with appropriate blood supply. Under normal circumstances, local demands for blood flow are met by locally controlled adjustments and diversion of flow to metabolically active tissues without the need to increase pump function. When metabolic demands increase significantly, cardiac output must increase to meet the demand. If the heart is unable to meet the demand, the corpus is, by definition, in heart failure.

The problem for the physician treating patients and for the researcher studying the mechanisms and/or the treatment of cardiovascular disease is to be able to understand and quantify changes in or loss of function.


Frame Rate Ventricular Volume Pulse Repetition Frequency High Heart Rate Ensemble Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Hill A. The heat of shortening and the dynamic constants of muscle. Proc R Soc London B. 1938;126:136–195.CrossRefGoogle Scholar
  2. 2.
    Katz B. The relation between force and speed in muscular contraction. J Physiol. 1939;96:45–64.PubMedGoogle Scholar
  3. 3.
    Ford A, Huxley A, Simmons R. Tension responses to sudden length change in simulated frog muscle fibers near slack length. J Physiol. 1977;269:441–515.PubMedGoogle Scholar
  4. 4.
    Burkhoff D, Mirsky I, Suga H. Assessment of systolic and diastolic ventricular properties via pressure-volume analysis: A guide for clinical, translational, and basic researchers. Am J Physiol Heart Circ Physiol. 2005;289:H501–H512.PubMedCrossRefGoogle Scholar
  5. 5.
    Claessens TE, Georgakopoulos D, Afanasyeva M, et al. Nonlinear isochrones in murine left ventricular pressure-volume loops: How well does the time-varying elastance concept hold? Am J Physiol Heart Circ Physiol. 2006;290:H1474–H1483.PubMedCrossRefGoogle Scholar
  6. 6.
    Kheradvar A, Milano M, Gorman RC, Gorman JH, III, Gharib M. Assessment of left ventricular viscoelastic components based on ventricular harmonic behavior. Cardiovasc Eng. 2006;6:30–39.PubMedCrossRefGoogle Scholar
  7. 7.
    Berul CI, Aronovitz MJ, Wang PJ, Mendelsohn ME. In vivo cardiac electrophysiology studies in the mouse. Circulation. 1996;94:2641–2648.PubMedGoogle Scholar
  8. 8.
    Berul CI, Christe ME, Aronovitz MJ, Seidman CE, Seidman JG, Mendelsohn ME. Electrophysiological abnormalities and arrhythmias in alpha MHC mutant familial hypertrophic cardiomyopathy mice. J Clin Invest. 1997;99:570–576.PubMedCrossRefGoogle Scholar
  9. 9.
    Bazett HC. An analysis of the time-relations of electrocardiograms. Heart. 1920;7:353–370.Google Scholar
  10. 10.
    Appleton GO, Li Y, Taffet GE, et al. Determinants of cardiac electrophysiological properties in mice. J Interv Card Electrophysiol. 2004;11:5–14.PubMedCrossRefGoogle Scholar
  11. 11.
    Hofer E, Keplinger F, Thurner T, et al. A new floating sensor array to detect electric near fields of beating heart preparations. Biosens Bioelectron. 2006;21:2232–2239.PubMedCrossRefGoogle Scholar
  12. 12.
    Mitchell GF, Jeron A, Koren G. Measurement of heart rate and Q-T interval in the conscious mouse. Am J Physiol. 1998;274:H747–H751.PubMedGoogle Scholar
  13. 13.
    Hellige G. Recording of ventricular pressure by conventional catheter manometer systems efficiency of several combinations of conventional catheters, modern transducers and catheter-flush systems. Basic Res Cardiol. 1976;71:389–406.PubMedCrossRefGoogle Scholar
  14. 14.
    Hellige G. Recording of ventricular pressure by conventional catheter manometer systems. I. Minimal requirements of blood pressure recording systems and estimation of frequency response characteristics. Basic Res Cardiol. 1976;71:319–336.PubMedCrossRefGoogle Scholar
  15. 15.
    Branzi A, Zannoli R, Binetti G, Lamberti G, Magnani B. Study of the precision and limitations in measuring left ventricular pressure and its first time-derivative. G Ital Cardiol. 1977;7:995–1002.PubMedGoogle Scholar
  16. 16.
    Lorenz JN, Robbins J. Measurement of intraventricular pressure and cardiac performance in the intact closed-chest anesthetized mouse. Am J Physiol. 1997;272:H1137–H1146.PubMedGoogle Scholar
  17. 17.
    Azhar G, Zhang X, Wang S, Zhong Y, Quick CM, Wei JY. Maintaining serum response factor activity in the older heart equal to that of the young adult is associated with better cardiac response to isoproterenol stress. Basic Res Cardiol. 2007;102:233–244.PubMedCrossRefGoogle Scholar
  18. 18.
    Van den Bergh A, Flameng W, Herijgers P. Type II diabetic mice exhibit contractile dysfunction but maintain cardiac output by favourable loading conditions. Eur J Heart Fail. 2006;8:777–783.PubMedCrossRefGoogle Scholar
  19. 19.
    Matsushima S, Kinugawa S, Ide T, et al. Over expression of glutathione peroxidase attenuates myocardial remodeling and preserves diastolic function in diabetic heart. Am J Physiol Heart Circ Physiol. 2006;291:H2237–H2245.PubMedCrossRefGoogle Scholar
  20. 20.
    Wang Q, Brunner HR, Burnier M. Determination of cardiac contractility in awake unsedated mice with a fluid-filled catheter. Am J Physiol Heart Circ Physiol. 2004;286:H806–H814.PubMedCrossRefGoogle Scholar
  21. 21.
    Edler I, Lindstrom K. The history of echocardiography. Ultrasound Med Biol. 2004;30:1565–1644.PubMedCrossRefGoogle Scholar
  22. 22.
    Feigenbaum H. Cardiovascular uses of diagnostic ultrasound. J Indiana State Med Assoc. 1967;60:1522–1525.PubMedGoogle Scholar
  23. 23.
    Feigenbaum H, Linback RE, Nasser WK. Hemodynamic studies before and after instrumental mitral commissurotomy. A reappraisal of the pathophysiology of mitral stenosis and the efficacy of mitral valvotomy. Circulation. 1968;38:261–276.PubMedGoogle Scholar
  24. 24.
    Feigenbaum H, Popp RL, Chip JN, Haine CL. Left ventricular wall thickness measured by ultrasound. Arch Intern Med. 1968;121:391–395.PubMedCrossRefGoogle Scholar
  25. 25.
    Feigenbaum H, Zaky A. Ultrasound as a diagnostic tool in cardiology. A review. Med Res Eng. 1968;7:26–31.PubMedGoogle Scholar
  26. 26.
    Ha JS, Walker WF, Hossack JA. Determination of an optimal image frame interval for frame-to-frame ultrasound image motion tracking. IEEE Trans Ultrason Ferroelectr Freq Control. 2005;52:386–396.PubMedCrossRefGoogle Scholar
  27. 27.
    Dawson D, Lygate CA, Saunders J, et al. Quantitative 3-dimensional echocardiography for accurate and rapid cardiac phenotype characterization in mice. Circulation. 2004;110:1632–1637.PubMedCrossRefGoogle Scholar
  28. 28.
    Winkler AJ, Wu J. Correction of intrinsic spectral broadening errors in Doppler peak velocity measurements made with phased sector and linear array transducers. Ultrasound Med Biol. 1995;21:1029–1035.PubMedCrossRefGoogle Scholar
  29. 29.
    Zhang Y, Guo Z, Wang W, He S, Lee T, Loew M. A comparison of the wavelet and short-time Fourier transforms for Doppler spectral analysis. Med Eng Phys. 2003;25:547–557.PubMedCrossRefGoogle Scholar
  30. 30.
    Hartley CJ, Latson LA, Michael LH, Seidel CL, Lewis RM, Entman ML. Doppler measurement of myocardial thickening with a single epicardial transducer. Am J Physiol. 1983;245:H1066–H1072.PubMedGoogle Scholar
  31. 31.
    Hartley CJ, Litowitz H, Rabinovitz RS, et al. An ultrasonic method for measuring tissue displacement: Technical details and validation for measuring myocardial thickening. IEEE Trans Biomed Eng. 1991;38:735–747.PubMedCrossRefGoogle Scholar
  32. 32.
    Sebag IA, Handschumacher MD, Ichinose F, et al. Quantitative assessment of regional myocardial function in mice by tissue Doppler imaging: Comparison with hemodynamics and sonomicrometry. Circulation. 2005;111:2611–2616.PubMedCrossRefGoogle Scholar
  33. 33.
    Notomi Y, Martin-Miklovic MG, Oryszak SJ, et al. Enhanced ventricular untwisting during exercise: A mechanistic manifestation of elastic recoil described by Doppler tissue imaging. Circulation. 2006;113:2524–2533.PubMedCrossRefGoogle Scholar
  34. 34.
    Stypmann J, Engelen MA, Breithardt AK, et al. Doppler echocardiography and tissue Doppler imaging in the healthy rabbit: Differences of cardiac function during awake and anaesthetised examination. Int J Cardiol. 2007;115:164–170.PubMedCrossRefGoogle Scholar
  35. 35.
    Liu YH, Carretero OA, Cingolani OH, et al. Role of inducible nitric oxide synthase in cardiac function and remodeling in mice with heart failure due to myocardial infarction. Am J Physiol Heart Circ Physiol. 2005;289:H2616–H2623.PubMedCrossRefGoogle Scholar
  36. 36.
    Shimizu T, Okamoto H, Watanabe M, et al. Altered microvasculature is involved in remodeling processes in cardiomyopathic hamsters. Jpn Heart J. 2003;44:111–126.PubMedCrossRefGoogle Scholar
  37. 37.
    Zhang C, Yasuno S, Kuwahara K, et al. Blockade of angiotensin II type 1 receptor improves the arrhythmia morbidity in mice with left ventricular hypertrophy. Circ J. 2006;70:335–341.PubMedCrossRefGoogle Scholar
  38. 38.
    Rennison JH, McElfresh TA, Okere I, et al. High fat diet post infarction enhances mitochondrial function and does not exacerbate left ventricular dysfunction. Am J Physiol Heart Circ Physiol. 2007;292:H1498–H1506.PubMedCrossRefGoogle Scholar
  39. 39.
    Stein AB, Tiwari S, Thomas P, et al. Effects of anesthesia on echocardiographic assessment of left ventricular structure and function in rats. Basic Res Cardiol. 2007;102:28–41.PubMedCrossRefGoogle Scholar
  40. 40.
    Roth DM, Swaney JS, Dalton ND, Gilpin EA, Ross J, Jr. Impact of anesthesia on cardiac function during echocardiography in mice. Am J Physiol Heart Circ Physiol. 2002;282:H2134–40.PubMedGoogle Scholar
  41. 41.
    Du XJ, Samuel CS, Gao XM, Zhao L, Parry LJ, Tregear GW. Increased myocardial collagen and ventricular diastolic dysfunction in relaxin deficient mice: A gender-specific phenotype. Cardiovasc Res. 2003;57:395–404.PubMedCrossRefGoogle Scholar
  42. 42.
    Larsen KO, Sjaastad I, Svindland A, Krobert KA, Skjonsberg OH, Christensen G. Alveolar hypoxia induces left ventricular diastolic dysfunction and reduces phosphorylation of phospholamban in mice. Am J Physiol Heart Circ Physiol. 2006;291:H507–H516.PubMedCrossRefGoogle Scholar
  43. 43.
    Lisauskas JB, Singh J, Bowman AW, Kovacs SJ. Chamber properties from transmitral flow: Prediction of average and passive left ventricular diastolic stiffness. J Appl Physiol. 2001;91:154–162.PubMedGoogle Scholar
  44. 44.
    Zhou YQ, Foster FS, Parkes R, Adamson SL. Developmental changes in left and right ventricular diastolic filling patterns in mice. Am J Physiol Heart Circ Physiol. 2003;285:H1563–H1575.PubMedGoogle Scholar
  45. 45.
    Stoyanova E, Trudel M, Felfly H, Garcia D, Cloutier G. Characterization of circulatory disorders in beta-thalassemic mice by non-invasive ultrasound biomicroscopy. Physiol Genomics. 2007;29:84–90.PubMedGoogle Scholar
  46. 46.
    Zhang Y, Takagawa J, Sievers RE, et al. Validation of the wall motion score and myocardial performance indices as novel techniques to assess cardiac function in mice post myocardial infarction. Am J Physiol Heart Circ Physiol. 2007;292:H1187–H1192.PubMedCrossRefGoogle Scholar
  47. 47.
    Kulandavelu S, Qu D, Adamson SL. Cardiovascular function in mice during normal pregnancy and in the absence of endothelial NO synthase. Hypertension. 2006;47:1175–1182.PubMedCrossRefGoogle Scholar
  48. 48.
    Reddy AK, Jones AD, Martono C, Caro WA, Madala S, Hartley CJ. Pulsed Doppler signal processing for use in mice: Design and evaluation. IEEE Trans Biomed Eng. 2005;52:1764–1770.PubMedCrossRefGoogle Scholar
  49. 49.
    Reddy AK, Taffet GE, Li YH, et al. Pulsed Doppler signal processing for use in mice: Applications. IEEE Trans Biomed Eng. 2005;52:1771–1783.PubMedCrossRefGoogle Scholar
  50. 50.
    Liu JH, Jeng GS, Wu TK, Li PC. ECG triggering and gating for ultrasonic small animal imaging. IEEE Trans Ultrason Ferroelectr Freq Control. 2006;53:1590–1596.PubMedCrossRefGoogle Scholar
  51. 51.
    Chavez I, Dorbecker N, Celis A. Direct intracardiac angiography: Its diagnostic value. Am Heart J. 1947;33:560–593.PubMedCrossRefGoogle Scholar
  52. 52.
    Sandler H, Dodge HT. The use of single plane angiocardiograms for the calculation of left ventricular volume in man. Am Heart J. 1968;75:325–334.PubMedCrossRefGoogle Scholar
  53. 53.
    WhitePA, Redington AN. Right ventricular volume measurement: Can conductance do it better? Physiol Meas. 2000;21:R23–R41.CrossRefGoogle Scholar
  54. 54.
    Rodriguez F, Langer F, Harrington KB, et al. Alterations in transmural strains adjacent to ischemic myocardium during acute midcircumflex occlusion. J Thorac Cardiovasc Surg. 2005;129:791–803.PubMedCrossRefGoogle Scholar
  55. 55.
    Vogel M, Ho SY, Lincoln C, Yacoub MH, Anderson RH. Three-dimensional echocardiography can simulate intraoperative visualization of congenitally malformed hearts. Ann Thorac Surg. 1995;60:1282–1288.PubMedCrossRefGoogle Scholar
  56. 56.
    Vogel M, White PA, Redington AN. In vitro validation of right ventricular volume measurement by three-dimensional echocardiography. Br Heart J. 1995;74:460–463.PubMedCrossRefGoogle Scholar
  57. 57.
    Knackstedt C, Franke A, Mischke K, et al. Semi-automated 3-dimensional intracardiac echocardiography: Development and initial clinical experience of a new system to guide ablation procedures. Heart Rhythm. 2006;3:1453–1459.PubMedCrossRefGoogle Scholar
  58. 58.
    Watanabe T, Omata S, Odamura M, Okada M, Nakamura Y, Yokoyama H. Three-dimensional quantification of cardiac surface motion: A newly developed three-dimensional digital motion-capture and reconstruction system for beating heart surgery. J Thorac Cardiovasc Surg. 2006;132:1162–1171.PubMedCrossRefGoogle Scholar
  59. 59.
    Lang RM, Mor-Avi V, Sugeng L, Nieman PS, Sahn DJ. Three-dimensional echocardiography: The benefits of the additional dimension. J Am Coll Cardiol. 2006;48:2053–2069.PubMedCrossRefGoogle Scholar
  60. 60.
    Gu L, Xu J, Peters TM. Novel multistage three-dimensional medical image segmentation: Methodology and validation. IEEE Trans Inf Technol Biomed. 2006;10:740–748.PubMedCrossRefGoogle Scholar
  61. 61.
    Ellis RM, Franklin DL, Rushmer RF. Left ventricular dimensions recorded by sonocardiometry. Circ Res. 1956;4:684–688.PubMedGoogle Scholar
  62. 62.
    Diez-Freire C, Vazquez J, Correa de Adjounian MF, et al. ACE2 gene transfer attenuates hypertension-linked pathophysiological changes in the SHR. Physiol Genomics. 2006;27:12–19.PubMedCrossRefGoogle Scholar
  63. 63.
    van der Velde ET, van Dijk AD, Steendijk P, et al. Left ventricular segmental volume by conductance catheter and cine-CT. Eur Heart J. 1992;13 Suppl E:15–21.PubMedGoogle Scholar
  64. 64.
    Rushmer RF, Crystal DK, Wagner C, Ellis RM. Intracardiac impedance plethysmography. Am J Physiol. 1953;174:171–174.PubMedGoogle Scholar
  65. 65.
    Baan J, Jong TT, Kerkhof PL, et al. Continuous stroke volume and cardiac output from intra-ventricular dimensions obtained with impedance catheter. Cardiovasc Res. 1981;15:328–334.PubMedCrossRefGoogle Scholar
  66. 66.
    Baan J, van der Velde ET, de Bruin HG, et al. Continuous measurement of left ventricular volume in animals and humans by conductance catheter. Circulation. 1984;70:812–823.PubMedCrossRefGoogle Scholar
  67. 67.
    Baan J, Van der Velde, E.T., Steendijk P, Koops J. Calibration and application of the conductance catheter for ventricular volume measurement. Automedica. 1989;11:357–365.Google Scholar
  68. 68.
    Burkhoff D, van der Velde E, Kass D, Baan J, Maughan WL, Sagawa K. Accuracy of volume measurement by conductance catheter in isolated, ejecting canine hearts. Circulation. 1985;72:440–447.PubMedCrossRefGoogle Scholar
  69. 69.
    Mur G, Baan J. Computation of the input impedances of a catheter for cardiac volumetry. IEEE Trans Biomed Eng. 1984;31:448–453.PubMedCrossRefGoogle Scholar
  70. 70.
    Steendijk P, Mur G, Van Der Velde ET, Baan J. The four-electrode resistivity technique in anisotropic media: Theoretical analysis and application on myocardial tissue in vivo. IEEE Trans Biomed Eng. 1993;40:1138–1148.PubMedCrossRefGoogle Scholar
  71. 71.
    Steendijk P, Van der Velde ET, Baan J. Left ventricular stroke volume by single and dual excitation of conductance catheter in dogs. Am J Physiol. 1993;264:H2198–H2207.PubMedGoogle Scholar
  72. 72.
    Herrera MC, Olivera JM, Valentinuzzi ME. Parallel conductance estimation by hypertonic dilution method with conductance catheter: Effects of the bolus concentration and temperature. IEEE Trans Biomed Eng. 1999;46:830–837.PubMedCrossRefGoogle Scholar
  73. 73.
    Herrera MC, Olivera JM, Valentinuzzi ME. Parallel conductance determination in cardiac volumetry using dilution manoeuvres: Theoretical analysis and practical implications. Med Biol Eng Comput. 1999;37:169–174.PubMedCrossRefGoogle Scholar
  74. 74.
    Teitel DF, Klautz RJ, Cassidy SC, et al. The end-systolic pressure-volume relationship in young animals using the conductance technique. Eur Heart J. 1992;13 Suppl E:40–46.PubMedGoogle Scholar
  75. 75.
    Yang B, Larson DF, Watson R. Age-related left ventricular function in the mouse: Analysis based on in vivo pressure-volume relationships. Am J Physiol. 1999;277:H1906–H1913.PubMedGoogle Scholar
  76. 76.
    Westerhof N. Physiological hypotheses--intramyocardial pressure. A new concept, suggestions for measurement. Basic Res Cardiol. 1990;85:105–119.PubMedCrossRefGoogle Scholar
  77. 77.
    Reyes M, Steinhelper ME, Alvarez JA, et al. Impact of physiological variables and genetic background on myocardial frequency-resistivity relations in the intact beating murine heart. Am J Physiol Heart Circ Physiol. 2006;291:H1659–H1669.PubMedCrossRefGoogle Scholar
  78. 78.
    Fatemi M, Greenleaf JF. Probing the dynamics of tissue at low frequencies with the radiation force of ultrasound. Phys Med Biol. 2000;45:1449–1464.PubMedCrossRefGoogle Scholar
  79. 79.
    Borlaug BA, Kass DA. Mechanisms of diastolic dysfunction in heart failure. Trends Cardiovasc Med. 2006;16:273–279.PubMedCrossRefGoogle Scholar
  80. 80.
    Senzaki H, Fetics B, Chen CH, Kass DA. Comparison of ventricular pressure relaxation assessments in human heart failure: Quantitative influence on load and drug sensitivity analysis. J Am Coll Cardiol. 1999;34:1529–1536.PubMedCrossRefGoogle Scholar
  81. 81.
    Kass DA. Assessment of diastolic dysfunction. invasive modalities. Cardiol Clin. 2000;18:571–586.PubMedCrossRefGoogle Scholar
  82. 82.
    Kass DA, Solaro RJ. Mechanisms and use of calcium-sensitizing agents in the failing heart. Circulation. 2006;113:305–315.PubMedCrossRefGoogle Scholar
  83. 83.
    Takimoto E, Soergel DG, Janssen PM, Stull LB, Kass DA, Murphy AM. Frequency- and afterload-dependent cardiac modulation in vivo by troponin I with constitutively active protein kinase A phosphorylation sites. Circ Res. 2004;94:496–504.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • David R. Gross
    • 1
  1. 1.Department of Veterinary BiosciencesUniversity of Illinois, Urbana Champaign College of Veterinary MedicineUrbanaUSA

Personalised recommendations