Normal Cardiac Function Parameters

  • David R. Gross


The normal values found in this chapter are provided to serve as a quick and easy reference. Investigators might find these values useful to be able to compare to the data they acquire. Manuscripts that report results from animals or preparations significantly different than these ranges could be problematic (Tables 3.1-3.6).


  1. 1.
    Gross DR. Animal Models in Cardiovascular Research, Second Revised Edition. Boston: Kluwer; 1994.Google Scholar
  2. 2.
    Gross DR. Unpublished data.Google Scholar
  3. 3.
    Ishizaka S, Sievers RE, Zhu BQ, et al. New technique for measurement of left ventricular pressure in conscious mice. Am J Physiol Heart Circ Physiol. 2004;286:H1208–H1215.PubMedGoogle Scholar
  4. 4.
    Wang Q, Brunner HR, Burnier M. Determination of cardiac contractility in awake unsedated mice with a fluid-filled catheter. Am J Physiol Heart Circ Physiol. 2004;286:H806–H814.PubMedGoogle Scholar
  5. 5.
    Stein AB, Tiwari S, Thomas P, et al. Effects of anesthesia on echocardiographic assessment of left ventricular structure and function in rats. Basic Res Cardiol. 2007;102(1):28–41.PubMedGoogle Scholar
  6. 6.
    Gao Z, Xing J, Sinoway LI, Li J. P2X receptor-mediated muscle pressor reflex in myocardial infarction (MI). Am J Physiol Heart Circ Physiol. 2007;292(2):H939–H945.PubMedGoogle Scholar
  7. 7.
    Stypmann J, Engelen MA, Breithardt AK, et al. Doppler echocardiography and tissue Doppler imaging in the healthy rabbit: Differences of cardiac function during awake and anaesthetised examination. Int J Cardiol. 2007;115(2):164–170.PubMedGoogle Scholar
  8. 8.
    Chetboul V, Escriou C, Tessier D, et al. Tissue Doppler imaging detects early asymptomatic myocardial abnormalities in a dog model of Duchenne’s cardiomyopathy. Eur Heart J. 2004;25:1934–1939.PubMedGoogle Scholar
  9. 9.
    Nishijima Y, Feldman DS, Bonagura JD, et al. Canine nonischemic left ventricular dysfunction: A model of chronic human cardiomyopathy. J Card Fail. 2005;11:638–644.PubMedGoogle Scholar
  10. 10.
    Uechi M, Hori Y, Fujimoto K, Ebisawa T, Yamano S, Maekawa S. Cardiovascular effects of a phosphodiesterase III inhibitor in the presence of carvedilol in dogs. J Vet Med Sci. 2006;68:549–553.PubMedGoogle Scholar
  11. 11.
    Ishikawa Y, Uechi M, Hori Y, et al. Effects of enalapril in cats with pressure overload-induced left ventricular hypertrophy. J Feline Med Surg. 2007;9(1):29–35.PubMedGoogle Scholar
  12. 12.
    Ramirez-Gil JF, Trouve P, Mougenot N, Carayon A, Lechat P, Charlemagne D. Modifications of myocardial Na+, K(+)-ATPase isoforms and Na+/Ca2+ exchanger in aldosterone/salt-induced hypertension in guinea pigs. Cardiovasc Res. 1998;38:451–462.PubMedGoogle Scholar
  13. 13.
    Kostelec M, Covell J, Buckberg GD, Sadeghi A, Hoffman JI, Kassab GS. Myocardial protection in the failing heart: I. Effect of cardioplegia and the beating state under simulated left ventricular restoration. J Thorac Cardiovasc Surg. 2006;132:875–883.PubMedGoogle Scholar
  14. 14.
    Chee HK, Tuzun E, Ferrari M, et al. Baseline hemodynamic and echocardiographic indices in anesthetized calves. ASAIO J. 2004;50:267–271.PubMedGoogle Scholar
  15. 15.
    Power JM, Raman J, Dornom A, et al. Passive ventricular constraint amends the course of heart failure: A study in an ovine model of dilated cardiomyopathy. Cardiovasc Res. 1999;44:549–555.PubMedGoogle Scholar
  16. 16.
    Kim WG, Cho SR, Sung SH, Park HJ. A chronic heart failure model by coronary artery ligation in the goat. Int J Artif Organs. 2003;26:929–934.PubMedGoogle Scholar
  17. 17.
    Vaitkevicius PV, Lane M, Spurgeon H, et al. A cross-link breaker has sustained effects on arterial and ventricular properties in older rhesus monkeys. Proc Natl Acad Sci USA. 2001;98:1171–1175.PubMedGoogle Scholar
  18. 18.
    Sebag IA, Handschumacher MD, Ichinose F, et al. Quantitative assessment of regional myocardial function in mice by tissue Doppler imaging: Comparison with hemodynamics and sonomicrometry. Circulation. 2005;111:2611–2616.PubMedGoogle Scholar
  19. 19.
    Kuma F, Ueda N, Ito H, et al. Effects of ultrasound energy application on cardiac performance in open-chest guinea pigs. Circ J. 2006;70:1356–1361.PubMedGoogle Scholar
  20. 20.
    Bolotin G, Lorusso R, Schreuder JJ, et al. Perioperative hemodynamic and geometric changes of the left ventricle during cardiomyoplasty in goats with dilated left ventricle. Chest. 2002;121:1628–1633.PubMedGoogle Scholar
  21. 21.
    Lorusso R, van der Veen F, Schreuder JJ, et al. Hemodynamic effects in acute cardiomyoplasty of different wrapped muscle activation times as measured by pressure-volume relations. J Card Surg. 1996;11:217–225.PubMedGoogle Scholar
  22. 22.
    Yan X, Price RL, Nakayama M, et al. Ventricular-specific expression of angiotensin II type 2 receptors causes dilated cardiomyopathy and heart failure in transgenic mice. Am J Physiol Heart Circ Physiol. 2003;285:H2179–H2187.PubMedGoogle Scholar
  23. 23.
    Wallis J, Lygate CA, Fischer A, et al. Supranormal myocardial creatine and phosphocreatine concentrations lead to cardiac hypertrophy and heart failure: Insights from creatine transporter-overexpressing transgenic mice. Circulation. 2005;112:3131–3139.PubMedGoogle Scholar
  24. 24.
    Westermann D, Rutschow S, Van Linthout S, et al. Inhibition of p38 mitogen-activated protein kinase attenuates left ventricular dysfunction by mediating pro-inflammatory cardiac cytokine levels in a mouse model of diabetes mellitus. Diabetologia. 2006;49:2507–2513.PubMedGoogle Scholar
  25. 25.
    Van den Bergh A, Flameng W, Herijgers P. Type II diabetic mice exhibit contractile dysfunction but maintain cardiac output by favorable loading conditions. Eur J Heart Fail. 2006;8:777–783.PubMedGoogle Scholar
  26. 26.
    Rodriguez F, Langer F, Harrington KB, et al. Alterations in transmural strains adjacent to ischemic myocardium during acute midcircumflex occlusion. J Thorac Cardiovasc Surg. 2005;129:791–803.PubMedGoogle Scholar
  27. 27.
    Coates BJ, Broderick TL, Batia LM, Standley CA. MgSO4 prevents left ventricular dysfunction in an animal model of preeclampsia. Am J Obstet Gynecol. 2006;195:1398–1403.PubMedGoogle Scholar
  28. 28.
    Faber MJ, Dalinghaus M, Lankhuizen IM, et al. Right and left ventricular function after chronic pulmonary artery banding in rats assessed with biventricular pressure-volume loops. Am J Physiol Heart Circ Physiol. 2006;291:H1580–H1586.PubMedGoogle Scholar
  29. 29.
    Jegger D, Jeanrenaud X, Nasratullah M, et al. Noninvasive Doppler-derived myocardial performance index in rats with myocardial infarction: Validation and correlation by conductance catheter. Am J Physiol Heart Circ Physiol. 2006;290:H1540–H1548.PubMedGoogle Scholar
  30. 30.
    Baber SR, Deng W, Master RG, et al. Intratracheal mesenchymal stem cell administration attenuates monocrotaline-induced pulmonary hypertension and endothelial dysfunction. Am J Physiol Heart Circ Physiol. 2007;292(2):H1120–H1128.PubMedGoogle Scholar
  31. 31.
    Susic D, Varagic J, Ahn J, Matavelli LC, Frohlich ED. Long-term mineralocorticoid receptor blockade reduces fibrosis and improves cardiac performance and coronary hemodynamics in elderly SHR. Am J Physiol Heart Circ Physiol. 2007;292(1):H175–H179.PubMedGoogle Scholar
  32. 32.
    Noguchi T, Ikeda K, Sasaki Y, et al. Effects of vitamin E and sesamin on hypertension and cerebral thrombogenesis in stroke-prone spontaneously hypertensive rats. Hypertens Res. 2001;24:735–742.PubMedGoogle Scholar
  33. 33.
    Matsushita T, Takaki M, Fujii W, Matsubara H, Suga H. Left ventricular mechanoenergetics under altered coronary perfusion in guinea pig hearts. Jpn J Physiol. 1995;45:991–1004.PubMedGoogle Scholar
  34. 34.
    Royse CF, Royse AG. The myocardial and vascular effects of bupivacaine, levobupivacaine, and ropivacaine using pressure volume loops. Anesth Analg. 2005;101:679–87.PubMedGoogle Scholar
  35. 35.
    Roosens CD, Ama R, Leather HA, et al. Hemodynamic effects of different lung-protective ventilation strategies in closed-chest pigs with normal lungs. Crit Care Med. 2006;34:2990–2996.PubMedGoogle Scholar
  36. 36.
    Huang W, Kingsbury MP, Turner MA, Donnelly JL, Flores NA, Sheridan DJ. Capillary filtration is reduced in lungs adapted to chronic heart failure: Morphological and haemodynamic correlates. Cardiovasc Res. 2001;49:207–217.PubMedGoogle Scholar
  37. 37.
    Christiansen S, Redmann K, Autschbach R. Intrathoracic implantation of a continuous flow left ventricular assist device – the microdiagonal blood pump. J Cardiovasc Surg (Torino). 2006;47:329–335.Google Scholar
  38. 38.
    Olsson K, Hansson A, Hydbring E, von Walter LW, Haggstrom J. A serial study of heart function during pregnancy, lactation and the dry period in dairy goats using echocardiography. Exp Physiol. 2001;86:93–99.PubMedGoogle Scholar
  39. 39.
    Kramer CM, Ferrari VA, Rogers WJ, et al. Angiotensin-converting enzyme inhibition limits dysfunction in adjacent noninfarcted regions during left ventricular remodeling. J Am Coll Cardiol. 1996;27:211–217.PubMedGoogle Scholar
  40. 40.
    Liakopoulos OJ, Tomioka H, Buckberg GD, Tan Z, Hristov N, Trummer G. Sequential deformation and physiological considerations in unipolar right or left ventricular pacing. Eur J Cardiothorac Surg. 2006;29(Suppl 1):S188–S197.PubMedGoogle Scholar
  41. 41.
    Lewis CW, Atkins BZ, Hutcheson KA, et al. A load-independent in vivo model for evaluating therapeutic interventions in injured myocardium. Am J Physiol. 1998;275:H1834–H1844.PubMedGoogle Scholar
  42. 42.
    Rodriguez F, Langer F, Harrington KB, et al. Importance of mitral valve second-order chordae for left ventricular geometry, wall thickening mechanics, and global systolic function. Circulation. 2004;110:II115–II122.PubMedGoogle Scholar
  43. 43.
    Schmidt MR, Smerup M, Konstantinov IE, et al. Intermittent peripheral tissue ischemia during coronary ischemia reduces myocardial infarction: First demonstration of remote ischemic perconditioning. Am J Physiol Heart Circ Physiol. 2007;292(4):H1883–H1890.PubMedGoogle Scholar
  44. 44.
    Joho S, Ishizaka S, Sievers R, Foster E, Simpson PC, Grossman W. Left ventricular pressure-volume relationship in conscious mice. Am J Physiol Heart Circ Physiol. 2007;292(1):H369–377.PubMedGoogle Scholar
  45. 45.
    Yin GQ, Qiu HB, Du KH, Tang JQ, Lu CP, Fang ZX. Endotoxic shock model with fluid resuscitation in macaca mulatta. Lab Anim. 2005;39:269–279.PubMedGoogle Scholar
  46. 46.
    Wauthy P, Pagnamenta A, Vassalli F, Naeije R, Brimioulle S. Right ventricular adaptation to pulmonary hypertension: An interspecies comparison. Am J Physiol Heart Circ Physiol. 2004;286:H1441–H1447.PubMedGoogle Scholar
  47. 47.
    Mutschler D, Wikstrom G, Lind L, Larsson A, Lagrange A, Eriksson M. Etanercept reduces late endotoxin-induced pulmonary hypertension in the pig. J Interferon Cytokine Res. 2006;26:661–667.PubMedGoogle Scholar
  48. 48.
    Katsuda S, Miyashita H, Takazawa K, et al. Mild hypertension in young kurosawa and kusanagi-hypercholesterolaemic (KHC) rabbits. Physiol Meas. 2006;27:1361–1371.PubMedGoogle Scholar
  49. 49.
    Stoyanova E, Trudel M, Felfly H, Garcia D, Cloutier G. Characterization of circulatory disorders in {beta}-thalassemic mice by non-invasive ultrasound biomicroscopy. Physiol Genomics. 2007;29:84–90PubMedGoogle Scholar
  50. 50.
    Dekker AL, Reesink KD, van der Veen FH, et al. Intra-aortic balloon pumping in acute mitral regurgitation reduces aortic impedance and regurgitant fraction. Shock. 2003;19:334–338.PubMedGoogle Scholar
  51. 51.
    Reitan O, Steen S, Ohlin H. Left ventricular heart failure model for testing cardiac assist devices. ASAIO J. 2002;48:71–75.PubMedGoogle Scholar
  52. 52.
    Zuckerman BD, Orton EC, Latham LP, Barbiere CC, Stenmark KR, Reeves JT. Pulmonary vascular impedance and wave reflections in the hypoxic calf. J Appl Physiol. 1992;72:2118–2127.PubMedGoogle Scholar
  53. 53.
    Markov AK, Warren ET, Cohly HH, Sauls DJ, Skelton TN. Influence of fructose-1,6-diphosphate on endotoxin-induced lung injuries in sheep. J Surg Res. 2007;138(1):45–50.PubMedGoogle Scholar
  54. 54.
    Hassoun PM, Thompson BT, Hales CA. Partial reversal of hypoxic pulmonary hypertension by heparin. Am Rev Respir Dis. 1992;145:193–196.PubMedGoogle Scholar
  55. 55.
    Deb B, Bradford K, Pearl RG. Additive effects of inhaled nitric oxide and intravenous milrinone in experimental pulmonary hypertension. Crit Care Med. 2000;28:795–799.PubMedGoogle Scholar
  56. 56.
    Tuchscherer HA, Vanderpool RR, Chesler NC. Pulmonary vascular remodeling in isolated mouse lungs: Effects on pulsatile pressure-flow relationships. J Biomech. 2007;40(5):993–1001.PubMedGoogle Scholar
  57. 57.
    Kawaguchi O, Pae WE, Daily BB, Pierce WS. Ventriculoarterial coupling with intra-aortic balloon pump in acute ischemic heart failure. J Thorac Cardiovasc Surg. 1999;117:164–171.PubMedGoogle Scholar
  58. 58.
    Shiomi T, Tsutsui H, Hayashidani S, et al. Pioglitazone, a peroxisome proliferator-activated receptor-gamma agonist, attenuates left ventricular remodeling and failure after experimental myocardial infarction. Circulation. 2002;106:3126–3132.PubMedGoogle Scholar
  59. 59.
    Gonon AT, Bulhak A, Broijersen A, Pernow J. Cardioprotective effect of an endothelin receptor antagonist during ischaemia/reperfusion in the severely atherosclerotic mouse heart. Br J Pharmacol. 2005;144:860–866.PubMedGoogle Scholar
  60. 60.
    Tsutsumi YM, Patel HH, Lai NC, Takahashi T, Head BP, Roth DM. Isoflurane produces sustained cardiac protection after ischemia-reperfusion injury in mice. Anesthesiology. 2006;104:495–502.PubMedGoogle Scholar
  61. 61.
    Buchanan J, Mazumder PK, Hu P, et al. Reduced cardiac efficiency and altered substrate metabolism precedes the onset of hyperglycemia and contractile dysfunction in two mouse models of insulin resistance and obesity. Endocrinology. 2005;146:5341–5349.PubMedGoogle Scholar
  62. 62.
    Zhou YQ, Foster FS, Parkes R, Adamson SL. Developmental changes in left and right ventricular diastolic filling patterns in mice. Am J Physiol Heart Circ Physiol. 2003;285:H1563–H1575.PubMedGoogle Scholar
  63. 63.
    Amory H, McEntee K, Linden AS, et al. Comparative assessment of right ventricular performance from the pressure-volume relationship in double-muscled and conventional calves. Can J Vet Res. 1995;59:135–141.PubMedGoogle Scholar
  64. 64.
    Mather LE, Duke CC, Ladd LA, Copeland SE, Gallagher G, Chang DH. Direct cardiac effects of coronary site-directed thiopental and its enantiomers: A comparison to propofol in conscious sheep. Anesthesiology. 2004;101:354–364.PubMedGoogle Scholar
  65. 65.
    Cohen JE, Atluri P, Taylor MD, et al. Fructose 1,6-diphosphate administration attenuates post-ischemic ventricular dysfunction. Heart Lung Circ. 2006;15:119–123.PubMedGoogle Scholar
  66. 66.
    Murashita T, Kempsford RD, Hearse DJ. Oxygen supply and oxygen demand in the isolated working rabbit heart perfused with asanguineous crystalloid solution. Cardiovasc Res. 1991;25:198–206.PubMedGoogle Scholar
  67. 67.
    Squires JE, Sun J, Caffrey JL, Yoshishige D, Mallet RT. Acetoacetate augments beta-adrenergic inotropism of stunned myocardium by an antioxidant mechanism. Am J Physiol Heart Circ Physiol. 2003;284:H1340–H1347.PubMedGoogle Scholar
  68. 68.
    Ramirez-Gil JF, Delcayre C, Robert V, et al. In vivo left ventricular function and collagen expression in aldosterone/salt-induced hypertension. J Cardiovasc Pharmacol. 1998;32:927–934.PubMedGoogle Scholar
  69. 69.
    Pestel GJ, Hiltebrand LB, Fukui K, Cohen D, Hager H, Kurz AM. Assessing intravascular volume by difference in pulse pressure in pigs submitted to graded hemorrhage. Shock. 2006;26:391–395.PubMedGoogle Scholar
  70. 70.
    Chandler MP, Chavez PN, McElfresh TA, Huang H, Harmon CS, Stanley WC. Partial inhibition of fatty acid oxidation increases regional contractile power and efficiency during demand-induced ischemia. Cardiovasc Res. 2003;59:143–151.PubMedGoogle Scholar
  71. 71.
    Segers P, Tchana-Sato V, Leather HA, et al. Determinants of left ventricular preload-adjusted maximal power. Am J Physiol Heart Circ Physiol. 2003;284:H2295–H2301.PubMedGoogle Scholar
  72. 72.
    Portman MA, Xiao Y, Broers BG, Ning XH. Hypoxic pHi and function modulation by Na+/H+ exchange and alpha-adrenoreceptor inhibition in heart in vivo. Am J Physiol. 1997;272:H2664–H2670.PubMedGoogle Scholar
  73. 73.
    Saitoh T, Nakajima T, Takahashi T, Kawahara K. Changes in cardiovascular function on treatment of inhibitors of apoptotic signal transduction pathways in left ventricular remodeling after myocardial infarction. Cardiovasc Pathol. 2006;15:130–138.PubMedGoogle Scholar
  74. 74.
    Tracey WR, Treadway JL, Magee WP, et al. Cardioprotective effects of ingliforib, a novel glycogen phosphorylase inhibitor. Am J Physiol Heart Circ Physiol. 2004;286:H1177–H1184.PubMedGoogle Scholar
  75. 75.
    Marktanner R, Nacke P, Feindt P, Hohlfeld T, Schipke JD, Gams E. Delayed preconditioning via angiotensin-converting enzyme inhibition: Pros and cons from an experimental study. Clin Exp Pharmacol Physiol. 2006;33:787–792.PubMedGoogle Scholar
  76. 76.
    Shen W, Tian R, Saupe KW, Spindler M, Ingwall JS. Endogenous nitric oxide enhances coupling between O2 consumption and ATP synthesis in guinea pig hearts. Am J Physiol Heart Circ Physiol. 2001;281:H838–H846.PubMedGoogle Scholar
  77. 77.
    Wang X, Hu Q, Mansoor A, et al. Bioenergetic and functional consequences of stem cell-based VEGF delivery in pressure-overloaded swine hearts. Am J Physiol Heart Circ Physiol. 2006;290:H1393–H1405.PubMedGoogle Scholar
  78. 78.
    Lin HC, Thurmon JC, Tranquilli WJ, Benson GJ, Olson WA. Hemodynamic response of calves to tiletamine-zolazepam-xylazine anesthesia. Am J Vet Res. 1991;52:1606–1610.PubMedGoogle Scholar
  79. 79.
    Toorop GP, Hardjowijono R, Dalinghaus M, et al. Myocardial blood flow and VO2 in conscious lambs with an aortopulmonary shunt. Am J Physiol. 1987;252:H681–H686.PubMedGoogle Scholar
  80. 80.
    Hikasa Y, Okuyama K, Kakuta T, Takase K, Ogasawara S. Anesthetic potency and cardiopulmonary effects of sevoflurane in goats: Comparison with isoflurane and halothane. Can J Vet Res. 1998;62:299–306.PubMedGoogle Scholar
  81. 81.
    Talan MI, Engel BT. Learned control of heart rate during dynamic exercise in nonhuman primates. J Appl Physiol. 1986;61:545–553.PubMedGoogle Scholar
  82. 82.
    Kobayashi S, Yoshikawa Y, Sakata S, et al. Left ventricular mechanoenergetics after hyperpolarized cardioplegic arrest by nicorandil and after depolarized cardioplegic arrest by KCl. Am J Physiol Heart Circ Physiol. 2004;287:H1072–H1080.PubMedGoogle Scholar
  83. 83.
    Noguchi T, Chen Z, Bell SP, Nyland L, LeWinter MM. Activation of PKC decreases myocardial O2 consumption and increases contractile efficiency in rats. Am J Physiol Heart Circ Physiol. 2001;281:H2191–H2197.PubMedGoogle Scholar
  84. 84.
    Palmer BM, Noguchi T, Wang Y, et al. Effect of cardiac myosin binding protein-C on mechanoenergetics in mouse myocardium. Circ Res. 2004;94:1615–1622.PubMedGoogle Scholar
  85. 85.
    Dankelman J, Van der Ploeg CP, Spaan JA. Transients in myocardial O2 consumption after abrupt changes in perfusion pressure in goats. Am J Physiol. 1996;270:H492–H499.PubMedGoogle Scholar
  86. 86.
    Boluyt MO, Converso K, Hwang HS, Mikkor A, Russell MW. Echocardiographic assessment of age-associated changes in systolic and diastolic function of the female F344 rat heart. J Appl Physiol. 2004;96:822–828.PubMedGoogle Scholar
  87. 87.
    Motte S, Mathieu M, Brimioulle S, et al. Respiratory-related heart rate variability in progressive experimental heart failure. Am J Physiol Heart Circ Physiol. 2005;289:H1729–H1735.PubMedGoogle Scholar
  88. 88.
    Courtois M, Vered Z, Barzilai B, Ricciotti NA, Perez JE, Ludbrook PA. The transmitral pressure-flow velocity relation. Effect of abrupt preload reduction. Circulation. 1988;78:1459–1468.PubMedGoogle Scholar
  89. 89.
    Bright JM, Herrtage ME, Schneider JF. Pulsed Doppler assessment of left ventricular diastolic function in normal and cardiomyopathic cats. J Am Anim Hosp Assoc. 1999;35:285–291.PubMedGoogle Scholar
  90. 90.
    Teyssier G, Fouron JC, Maroto E, Lessard M, Bard H, van Doesburg NH. Cardiac two-dimensional imaging and reference values for blood flow velocities in the ovine fetus. J Dev Physiol. 1992;17:21–27.PubMedGoogle Scholar
  91. 91.
    Kirberger RM, van den Berg JS. Pulsed wave Doppler echocardiographic evaluation of intracardiac blood flow in normal sheep. Res Vet Sci. 1993;55:189–194.PubMedGoogle Scholar
  92. 92.
    Rennison JH, McElfresh TA, Okere IC, et al. High fat diet post infarction enhances mitochondrial function and does not exacerbate left ventricular dysfunction. Am J Physiol Heart Circ Physiol. 2007;292(3): H1498–H1506.PubMedGoogle Scholar
  93. 93.
    Rungwerth K, Schindler U, Gerl M, et al. Inhibition of Na+-H+ exchange by cariporide reduces inflammation and heart failure in rabbits with myocardial infarction. Br J Pharmacol. 2004;142:1147–1154.PubMedGoogle Scholar
  94. 94.
    Rhodes SS, Ropella KM, Camara AK, Chen Q, Riess ML, Stowe DF. How inotropic drugs alter dynamic and static indices of cyclic myoplasmic [Ca2+] to contractility relationships in intact hearts. J Cardiovasc Pharmacol. 2003;42:539–553.PubMedGoogle Scholar
  95. 95.
    White DJ, Carlson D, Ordway GA, Horton JW. Protective role of heat stress in burn trauma. Crit Care Med. 2004;32:1338–1345.PubMedGoogle Scholar
  96. 96.
    Mueller XM, Tevaearai HT, Tucker O, Boone Y, von Segesser LK. Reshaping the remodeled left ventricle: A new concept. Eur J Cardiothorac Surg. 2001;20:786–791.PubMedGoogle Scholar
  97. 97.
    McConnell PI, del Rio CL, Jacoby DB, et al. Correlation of autologous skeletal myoblast survival with changes in left ventricular remodeling in dilated ischemic heart failure. J Thorac Cardiovasc Surg. 2005;130:1001.PubMedGoogle Scholar
  98. 98.
    Manohar M, Parks CM, Busch MA, et al. Regional myocardial blood flow and coronary vascular reserve in unanesthetized young calves exposed to a simulated altitude of 3500 m for 8–10 weeks. Circ Res. 1982;50:714–726.PubMedGoogle Scholar
  99. 99.
    Lee JC, Taylor FN, Downing SE. A comparison of ventricular weights and geometry in newborn, young, and adult mammals. J Appl Physiol. 1975;38:147–150.PubMedGoogle Scholar
  100. 100.
    Taillefer M, Di Fruscia R. Benazepril and subclinical feline hypertrophic cardiomyopathy: A prospective, blinded, controlled study. Can Vet J. 2006;47:437–445.PubMedGoogle Scholar
  101. 101.
    Steudel W, Scherrer-Crosbie M, Bloch KD, et al. Sustained pulmonary hypertension and right ventricular hypertrophy after chronic hypoxia in mice with congenital deficiency of nitric oxide synthase 3. J Clin Invest. 1998;101:2468–2477.PubMedGoogle Scholar
  102. 102.
    Hohimer AR, Mysliwiec M, Lee K, Davis LE, Pantely GA. Perinatal hypoxia causes ventricular enlargement associated with increased atrial natriuretic peptide (ANP) mRNA levels in newborn mice. High Alt Med Biol. 2003;4:241–254.PubMedGoogle Scholar
  103. 103.
    Emoto N, Raharjo SB, Isaka D, et al. Dual ECE/NEP inhibition on cardiac and neurohumoral function during the transition from hypertrophy to heart failure in rats. Hypertension. 2005;45:1145–1152.PubMedGoogle Scholar
  104. 104.
    Howard PG, MacLeod BA, Walker MJ. Quinacainol, a new antiarrhythmic with class I antiarrhythmic actions in the rat. Eur J Pharmacol. 1992;219:1–8.PubMedGoogle Scholar
  105. 105.
    Aberra A, Komukai K, Howarth FC, Orchard CH. The effect of acidosis on the ECG of the rat heart. Exp Physiol. 2001;86:27–31.PubMedGoogle Scholar
  106. 106.
    Appleton GO, Li Y, Taffet GE, et al. Determinants of cardiac electrophysiological properties in mice. J Interv Card Electrophysiol. 2004;11:5–14.PubMedGoogle Scholar
  107. 107.
    Chiba K, Sugiyama A, Hagiwara T, Takahashi S, Takasuna K, Hashimoto K. In vivo experimental approach for the risk assessment of fluoroquinolone antibacterial agents-induced long QT syndrome. Eur J Pharmacol. 2004;486:189–200.PubMedGoogle Scholar
  108. 108.
    Dhein S, Krusemann K, Schaefer T. Effects of the gap junction uncoupler palmitoleic acid on the activation and repolarization wavefronts in isolated rabbit hearts. Br J Pharmacol. 1999;128:1375–1384.PubMedGoogle Scholar
  109. 109.
    Pereira GG, Larsson MH, Yamaki FL, et al. Effects of propofol on the electrocardiogram and systolic blood pressure of healthy cats pre-medicated with acepromazine. Vet Anaesth Analg. 2004;31:235–238.PubMedGoogle Scholar
  110. 110.
    Winterton SJ, Turner MA, O’Gorman DJ, Flores NA, Sheridan DJ. Hypertrophy causes delayed conduction in human and guinea pig myocardium: Accentuation during ischaemic perfusion. Cardiovasc Res. 1994;28:47–54.PubMedGoogle Scholar
  111. 111.
    Rang WQ, Du YH, Hu CP, et al. Protective effects of calcitonin gene-related peptide-mediated evodiamine on guinea-pig cardiac anaphylaxis. Naunyn Schmiedebergs Arch Pharmacol. 2003;367:306–311.PubMedGoogle Scholar
  112. 112.
    Cojoc A, Reeves JG, Schmarkey L, et al. Effects of single-site versus biventricular epicardial pacing on myocardial performance in an immature animal model of atrioventricular block. J Cardiovasc Electrophysiol. 2006;17:884–889.PubMedGoogle Scholar
  113. 113.
    Gelzer AR, Attmann T, Radicke D, Nydam D, Candinas R, Lutter G. Effects of acute systemic endothelin receptor blockade on cardiac electrophysiology in vivo. J Cardiovasc Pharmacol. 2004;44:564–570.PubMedGoogle Scholar
  114. 114.
    Weber KT, Dennison BH, Fuqua JM, Jr, Speaker DM, Hastings FW. Hemodynamic measurements in unanesthetized calves. J Surg Res. 1971;11:383–389.PubMedGoogle Scholar
  115. 115.
    Mohan NH, Niyogi D, Singh HN. Analysis of normal electrocardiograms of jamunapari goats. J Vet Sci. 2005;6:295–298.PubMedGoogle Scholar
  116. 116.
    Chaves AA, Keller WJ, O’Sullivan S, et al. Cardiovascular monkey telemetry: Sensitivity to detect QT interval prolongation. J Pharmacol Toxicol Methods. 2006;54:150–158.PubMedGoogle Scholar
  117. 117.
    Dowell RT, Gairola CG, Diana JN. Reproductive organ blood flow measured using radioactive microspheres in diestrous and estrous mice. Am J Physiol. 1992;262:R666–R670.PubMedGoogle Scholar
  118. 118.
    Sarin SK, Sabba C, Groszmann RJ. Splanchnic and systemic hemodynamics in mice using a radioactive microsphere technique. Am J Physiol. 1990;258:G365–G369.PubMedGoogle Scholar
  119. 119.
    Chung CS, Yang S, Song GY, et al. Inhibition of Fas signaling prevents hepatic injury and improves organ blood flow during sepsis. Surgery. 2001;130:339–345.PubMedGoogle Scholar
  120. 120.
    Bauerfeind P, Hof R, Hof A, et al. Effects of hCGRP I and II on gastric blood flow and acid secretion in anesthetized rabbits. Am J Physiol. 1989;256:G145–G149.PubMedGoogle Scholar
  121. 121.
    Curran-Everett D, Morris KG, Jr, Moore LG. Regional circulatory contributions to increased systemic vascular conductance of pregnancy. Am J Physiol. 1991;261:H1842–H1847.PubMedGoogle Scholar
  122. 122.
    Bloomfield SA, Hogan HA, Delp MD. Decreases in bone blood flow and bone material properties in aging fischer-344 rats. Clin Orthop Relat Res. 2002;396:248–257.PubMedGoogle Scholar
  123. 123.
    Seifert EL, Sant Anna GM, Rohlicek CV. Effect of body warming on regional blood flow distribution in conscious hypoxic one-month-old rabbits. Biol Neonate. 2006;90:104–112.PubMedGoogle Scholar
  124. 124.
    Eckardt H, Lind M, Christensen KS, Hansen ES, Hvid I. Mid-tibial distraction osteogenesis redistributes bone blood flow: A microsphere study in rabbits. Acta Orthop. 2005;76:459–464.PubMedGoogle Scholar
  125. 125.
    Vertrees RA, Bidani A, Deyo DJ, Tao W, Zwischenberger JB. Venovenous perfusion-induced systemic hyperthermia: Hemodynamics, blood flow, and thermal gradients. Ann Thorac Surg. 2000;70:644–652.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • David R. Gross
    • 1
  1. 1.Department of Veterinary BiosciencesUniversity of Illinois, Urbana Champaign College of Veterinary MedicineUrbanaUSA

Personalised recommendations