Other Transgenic Animal Models Used in Cardiovascular Studies

  • David R. Gross


Previous chapters have described a large number of transgenic animal models used to study specific cardiovascular syndromes. This chapter will fill in some gaps. Many of these transgenic animals were developed to study normal and/or abnormal physiological responses in other organ systems, or to study basic biochemical and molecular reactions or pathways. These models were then discovered to also have effects on the cardiovascular system, some of them unanticipated.

A word of caution, particularly when highly inbred mouse strains are used to develop transgenic models - not all strains of a particular species are created equal. When cardiovascular parameters of age- and sex-matched A/J and C57BL/6J inbred mice were compared the C57BL/6J mice demonstrated eccentric physiologic ventricular hypertrophy, increased ventricular function, lower heart rates, and increased exercise endurance.1


Transgenic Mouse Sarcoplasmic Reticulum Reverse Cholesterol Transport Regulatory Light Chain Phosphorylation BERKO Mouse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Hoit BD, Kiatchoosakun S, Restivo J, et al. Naturally occurring variation in cardiovascular traits among inbred mouse strains. Genomics. 2002;79:679–685.PubMedGoogle Scholar
  2. 2.
    Cowan PJ, Shinkel TA, Fisicaro N, et al. Targeting gene expression to endothelium in transgenic animals: A comparison of the human ICAM-2, PECAM-1 and endoglin promoters. Xenotransplantation. 2003;10:223–231.PubMedGoogle Scholar
  3. 3.
    Singbartl K, Thatte J, Smith ML, Wethmar K, Day K, Ley K. A CD2-green fluorescence protein-transgenic mouse reveals very late antigen-4-dependent CD8+ lymphocyte rolling in inflamed venules. J Immunol. 2001;166:7520–7526.PubMedGoogle Scholar
  4. 4.
    Placier S, Boffa JJ, Dussaule JC, Chatziantoniou C. Reversal of renal lesions following interruption of nitric oxide synthesis inhibition in transgenic mice. Nephrol Dial Transplant. 2006;21:881–888.PubMedGoogle Scholar
  5. 5.
    Pichler A, Prior JL, Luker GD, Piwnica-Worms D. Generation of a highly inducible Gal4®Fluc universal reporter mouse for in vivo bioluminescence imaging. Proc Natl Acad Sci USA. 2008;105:15932–15937.PubMedGoogle Scholar
  6. 6.
    Viswanathan S, Burch JB, Fishman GI, Moskowitz IP, Benson DW. Characterization of sinoatrial node in four conduction system marker mice. J Mol Cell Cardiol. 2007;42:946–953.PubMedGoogle Scholar
  7. 7.
    Zhai P, Eurell TE, Cotthaus R, Jeffery EH, Bahr JM, Gross DR. Effect of estrogen on global myocardial ischemia-reperfusion injury in female rats. Am J Physiol Heart Circ Physiol. 2000;279:H2766–H2775.PubMedGoogle Scholar
  8. 8.
    Zhai P, Eurell TE, Cotthaus RP, Jeffery EH, Bahr JM, Gross DR. Effects of dietary phytoestrogen on global myocardial ischemia-reperfusion injury in isolated female rat hearts. Am J Physiol Heart Circ Physiol. 2001;281:H1223–H1232.PubMedGoogle Scholar
  9. 9.
    Arias-Loza PA, Jazbutyte V, Pelzer T. Genetic and pharmacologic strategies to determine the function of estrogen receptor alpha and estrogen receptor beta in cardiovascular system. Gend Med. 2008;5 Suppl A:S34–S45.PubMedGoogle Scholar
  10. 10.
    Seli E, Guzeloglu-Kayisli O, Kayisli UA, Kizilay G, Arici A. Estrogen increases apoptosis in the arterial wall in a murine atherosclerosis model. Fertil Steril. 2007;88:1190–1196.PubMedGoogle Scholar
  11. 11.
    Simpson ER, Jones ME. Of mice and men: The many guises of estrogens. Ernst Schering Found Symp Proc. 2006;1:45–67.PubMedGoogle Scholar
  12. 12.
    Sun D, Yan C, Jacobson A, Jiang H, Carroll MA, Huang A. Contribution of epoxyeicosatrienoic acids to flow-induced dilation in arteries of male ERalpha knockout mice: Role of aromatase. Am J Physiol Regul Integr Comp Physiol. 2007;293:R1239–R1246.PubMedGoogle Scholar
  13. 13.
    Zhai P, Eurell TE, Cooke PS, Lubahn DB, Gross DR. Myocardial ischemia-reperfusion injury in estrogen receptor-alpha knockout and wild-type mice. Am J Physiol Heart Circ Physiol. 2000;278:H1640–H1647.PubMedGoogle Scholar
  14. 14.
    Huss JM, Imahashi K, Dufour CR, et al. The nuclear receptor ERRα is required for the bioenergetic and functional adaptation to cardiac pressure overload. Cell Metab. 2007;6:25–37.PubMedGoogle Scholar
  15. 15.
    Corbacho AM, Eiserich JP, Zuniga LA, Valacchi G, Villablanca AC. Compromised aortic vasoreactivity in male estrogen receptor-alpha-deficient mice during acute lipopolysaccharide-induced inflammation. Endocrinology. 2007;148:1403–1411.PubMedGoogle Scholar
  16. 16.
    Babiker FA, Lips D, Meyer R, et al. Estrogen receptor beta protects the murine heart against left ventricular hypertrophy. Arterioscler Thromb Vasc Biol. 2006;26:1524–1530.PubMedGoogle Scholar
  17. 17.
    Pedram A, Razandi M, Lubahn D, Liu J, Vannan M, Levin ER. Estrogen inhibits cardiac hypertrophy: Role of estrogen receptor-beta to inhibit calcineurin. Endocrinology. 2008;149:3361–3369.PubMedGoogle Scholar
  18. 18.
    Foryst-Ludwig A, Clemenz M, Hohmann S, et al Metabolic actions of estrogen receptor beta (ERbeta) are mediated by a negative cross-talk with PPARgamma. PLoS Genet. 2008;4:e1000108.PubMedGoogle Scholar
  19. 19.
    Wang M, Crisostomo PR, Markel T, Wang Y, Lillemoe KD, Meldrum DR. Estrogen receptor beta mediates acute myocardial protection following ischemia. Surgery. 2008;144:233–238.PubMedGoogle Scholar
  20. 20.
    Pelzer T, Loza PA, Hu K, et al. Increased mortality and aggravation of heart failure in estrogen receptor-beta knockout mice after myocardial infarction. Circulation. 2005;111:1492–1498.PubMedGoogle Scholar
  21. 21.
    Ullrich ND, Krust A, Collins P, MacLeod KT. Genomic deletion of estrogen receptors ERalpha and ERbeta does not alter estrogen-mediated inhibition of Ca2+ influx and contraction in murine cardiomyocytes. Am J Physiol Heart Circ Physiol. 2008;294:H2421–H2427.PubMedGoogle Scholar
  22. 22.
    O’Lone R, Knorr K, Jaffe IZ, et al. Estrogen receptors alpha and beta mediate distinct pathways of vascular gene expression, including genes involved in mitochondrial electron transport and generation of reactive oxygen species. Mol Endocrinol. 2007;21:1281–1296.PubMedGoogle Scholar
  23. 23.
    Luksha L, Poston L, Gustafsson JA, Aghajanova L, Kublickiene K. Gender-specific alteration of adrenergic responses in small femoral arteries from estrogen receptor-beta knockout mice. Hypertension. 2005;46:1163–1168.PubMedGoogle Scholar
  24. 24.
    Luksha L, Poston L, Gustafsson JA, Hultenby K, Kublickiene K. The oestrogen receptor beta contributes to sex related differences in endothelial function of murine small arteries via EDHF. J Physiol. 2006;577:945–955.PubMedGoogle Scholar
  25. 25.
    Cruz MN, Douglas G, Gustafsson JA, Poston L, Kublickiene K. Dilatory responses to estrogenic compounds in small femoral arteries of male and female estrogen receptor-beta knockout mice. Am J Physiol Heart Circ Physiol. 2006;290:H823–H829.PubMedGoogle Scholar
  26. 26.
    Douglas G, Cruz MN, Poston L, Gustafsson JA, Kublickiene K. Functional characterization and sex differences in small mesenteric arteries of the estrogen receptor-beta knockout mouse. Am J Physiol Regul Integr Comp Physiol. 2008;294:R112–R120.PubMedGoogle Scholar
  27. 27.
    Tsutsumi S, Zhang X, Takata K, et al. Differential regulation of the inducible nitric oxide synthase geneby estrogen receptors {alpha}and {beta}. J Endocrinol. 2008 Nov; 199(2):267-273.Google Scholar
  28. 28.
    Umetani M, Domoto H, Gormley AK, et al. 27-Hydroxycholesterol is an endogenous SERM that inhibits the cardiovascular effects of estrogen. Nat Med. 2007;13:1185–1192.PubMedGoogle Scholar
  29. 29.
    Belo NO, Sairam MR, Dos Reis AM. Impairment of the natriuretic peptide system in follitropin receptor knockout mice and reversal by estradiol: Implications for obesity-associated hypertension in menopause. Endocrinology. 2008;149:1399–1406.PubMedGoogle Scholar
  30. 30.
    Ebrahimian T, Sairam MR, Schiffrin EL, Touyz RM. Cardiac hypertrophy is associated with altered thioredoxin and ASK1 signaling in a mouse model of menopause. Am J Physiol Heart Circ Physiol. 2008.Google Scholar
  31. 31.
    Matsui Y, Nakano N, Shao D, et al. Lats2 is a negative regulator of myocyte size in the heart. Circ Res. 2008;103:1309–1318.PubMedGoogle Scholar
  32. 32.
    Cohn HI, Harris DM, Pesant S, et al. Inhibition of vascular smooth muscle G protein-coupled receptor kinase 2 enhances {alpha}1DAR constriction. Am J Physiol Heart Circ Physiol. 2008;295:H1695–H1704.PubMedGoogle Scholar
  33. 33.
    Yu X, Huang S, Patterson E, et al. Proteasome degradation of GRK2 during ischemia and ventricular tachyarrhythmias in a canine model of myocardial infarction. Am J Physiol Heart Circ Physiol. 2005;289:H1960–H1967.PubMedGoogle Scholar
  34. 34.
    Iaccarino G, Rockman HA, Shotwell KF, Tomhave ED, Koch WJ. Myocardial overexpression of GRK3 in transgenic mice: Evidence for in vivo selectivity of GRKs. Am J Physiol. 1998;275:H1298–H1306.PubMedGoogle Scholar
  35. 35.
    Hirotani S, Zhai P, Tomita H, et al. Inhibition of glycogen synthase kinase 3β during heart failure is protective. Circ Res. 2007;101:1164–1174.PubMedGoogle Scholar
  36. 36.
    Luckey SW, Mansoori J, Fair K, Antos CL, Olson EN, Leinwand LA. Blocking cardiac growth in hypertrophic cardiomyopathy induces cardiac dysfunction and decreased survival only in males. Am J Physiol Heart Circ Physiol. 2007;292:H838–H845.PubMedGoogle Scholar
  37. 37.
    Korshunov VA, Daul M, Massett MP, Berk BC. Axl mediates vascular remodeling induced by deoxycorticosterone acetate-salt hypertension. Hypertension. 2007;50:1057–1062.PubMedGoogle Scholar
  38. 38.
    Rexhepaj R, Boini KM, Huang DY, et al. Role of maternal glucocorticoid inducible kinase SGK1 in fetal programming of blood pressure in response to prenatal diet. Am J Physiol Regul Integr Comp Physiol. 2008;294:R2008–R2013.PubMedGoogle Scholar
  39. 39.
    Mayr M, Metzler B, Chung YL, et al. Ischemic preconditioning exaggerates cardiac damage in PKC-delta null mice. Am J Physiol Heart Circ Physiol. 2004;287:H946–H956.PubMedGoogle Scholar
  40. 40.
    Huang J, Shelton JM, Richardson JA, Kamm KE, Stull JT. Myosin regulatory light chain phosphorylation attenuates cardiac hypertrophy. J Biol Chem. 2008;283:19748–19756.PubMedGoogle Scholar
  41. 41.
    Ofir M, Arad M, Porat E, et al. Increased glycogen stores due to gamma-AMPK overexpression protects against ischemia and reperfusion damage. Biochem Pharmacol. 2008;75:1482–1491.PubMedGoogle Scholar
  42. 42.
    Tsukada S, Iwai M, Nishiu J, et al. Inhibition of experimental intimal thickening in mice lacking a novel G-protein-coupled receptor. Circulation. 2003;107:313–319.PubMedGoogle Scholar
  43. 43.
    McMullen JR, Amirahmadi F, Woodcock EA, et al. Protective effects of exercise and phosphoinositide 3-kinase(p110alpha) signaling in dilated and hypertrophic cardiomyopathy. Proc Natl Acad Sci USA. 2007;104:612–617.PubMedGoogle Scholar
  44. 44.
    Fujii A, Nakano D, Katsuragi M, et al. Role of gp91phox-containing NADPH oxidase in the deoxycorticosterone acetate-salt-induced hypertension. Eur J Pharmacol. 2006;552:131–134.PubMedGoogle Scholar
  45. 45.
    Salguero G, Akin E, Templin C, et al. Renovascular hypertension by two-kidney one-clip enhances endothelial progenitor cell mobilization in a p47phox-dependent manner. J Hypertens. 2008;26:257–268.PubMedGoogle Scholar
  46. 46.
    Frantz S, Brandes RP, Hu K, et al. Left ventricular remodeling after myocardial infarction in mice with targeted deletion of the NADPH oxidase subunit gp91PHOX. Basic Res Cardiol. 2006;101:127–132.PubMedGoogle Scholar
  47. 47.
    Wiesel P, Patel AP, Carvajal IM, et al. Exacerbation of chronic renovascular hypertension and acute renal failure in heme oxygenase-1-deficient mice. Circ Res. 2001;88:1088–1094.PubMedGoogle Scholar
  48. 48.
    Nath KA, d’Uscio LV, Juncos JP, et al. An analysis of the DOCA-salt model of hypertension in HO-1−/− mice and the Gunn rat. Am J Physiol Heart Circ Physiol. 2007;293:H333–H342.PubMedGoogle Scholar
  49. 49.
    Yaar R, Jones MR, Chen JF, Ravid K. Animal models for the study of adenosine receptor function. J Cell Physiol. 2005;202:9–20.PubMedGoogle Scholar
  50. 50.
    Tikh EI, Fenton RA, Dobson JG, Jr. Contractile effects of adenosine A1 and A2A receptors in isolated murine hearts. Am J Physiol Heart Circ Physiol. 2006;290:H348–H356.PubMedGoogle Scholar
  51. 51.
    Tang T, Lai NC, Roth DM, et al. Adenylyl cyclase type V deletion increases basal left ventricular function and reduces left ventricular contractile responsiveness to beta-adrenergic stimulation. Basic Res Cardiol. 2006;101:117–126.PubMedGoogle Scholar
  52. 52.
    Egli RE, Kash TL, Choo K, et al. Norepinephrine modulates glutamatergic transmission in the bed nucleus of the stria terminalis. Neuropsychopharmacology. 2005;30:657–668.PubMedGoogle Scholar
  53. 53.
    Ihalainen JA, Tanila H. In vivo regulation of dopamine and noradrenaline release by alpha2A-adrenoceptors in the mouse nucleus accumbens. J Neurochem. 2004;91:49–56.PubMedGoogle Scholar
  54. 54.
    Zhu QM, Lesnick JD, Jasper JR, et al. Cardiovascular effects of rilmenidine, moxonidine and clonidine in conscious wild-type and D79N alpha2A-adrenoceptor transgenic mice. Br J Pharmacol. 1999;126:1522–1530.PubMedGoogle Scholar
  55. 55.
    Sallinen J, Haapalinna A, MacDonald E, et al. Genetic alteration of the alpha2-adrenoceptor subtype c in mice affects the development of behavioral despair and stress-induced increases in plasma corticosterone levels. Mol Psychiatry. 1999;4:443–452.PubMedGoogle Scholar
  56. 56.
    Rockman HA, Choi DJ, Akhter SA, et al. Control of myocardial contractile function by the level of beta-adrenergic receptor kinase 1 in gene-targeted mice. J Biol Chem. 1998;273:18180–18184.PubMedGoogle Scholar
  57. 57.
    Cristina C, Diaz-Torga G, Baldi A, et al. Increased pituitary vascular endothelial growth factor-a in dopaminergic D2 receptor knockout female mice. Endocrinology. 2005;146:2952–2962.PubMedGoogle Scholar
  58. 58.
    Tavernier G, Jimenez M, Giacobino JP, et al. Norepinephrine induces lipolysis in beta1/beta2/beta3-adrenoceptor knockout mice. Mol Pharmacol. 2005;68:793–799.PubMedGoogle Scholar
  59. 59.
    Kurihara N, Alfie ME, Sigmon DH, Rhaleb NE, Shesely EG, Carretero OA. Role of nNOS in blood pressure regulation in eNOS null mutant mice. Hypertension. 1998;32:856–861.PubMedGoogle Scholar
  60. 60.
    Duplain H, Burcelin R, Sartori C, et al. Insulin resistance, hyperlipidemia, and hypertension in mice lacking endothelial nitric oxide synthase. Circulation. 2001;104:342–345.PubMedGoogle Scholar
  61. 61.
    Grasselli A, Nanni S, Colussi C, et al. Estrogen receptor-alpha and endothelial nitric oxide synthase nuclear complex regulates transcription of human telomerase. Circ Res. 2008;103:34–42.PubMedGoogle Scholar
  62. 62.
    Billon A, Lehoux S, Lam Shang Leen L, et al. The estrogen effects on endothelial repair and mitogen-activated protein kinase activation are abolished in endothelial nitric-oxide (NO) synthase knockout mice, but not by NO synthase inhibition by N-nitro-l-arginine methyl ester. Am J Pathol. 2008;172:830–838.PubMedGoogle Scholar
  63. 63.
    Takenaka K, Nishimura Y, Nishiuma T, et al. Ventilator-induced lung injury is reduced in transgenic mice that overexpress endothelial nitric oxide synthase. Am J Physiol Lung Cell Mol Physiol. 2006;290:L1078–L1086.PubMedGoogle Scholar
  64. 64.
    Gava AL, Peotta VA, Cabral AM, Vasquez EC, Meyrelles SS. Overexpression of eNOS prevents the development of renovascular hypertension in mice. Can J Physiol Pharmacol. 2008;86:458–464.PubMedGoogle Scholar
  65. 65.
    Hao YH, Yong HY, Murphy CN, et al. Production of endothelial nitric oxide synthase (eNOS) over-expressing piglets. Transgenic Res. 2006;15:739–750.PubMedGoogle Scholar
  66. 66.
    Kadowaki T, Yamauchi T. Adiponectin and adiponectin receptors. Endocr Rev. 2005;26:439–451.PubMedGoogle Scholar
  67. 67.
    Otabe S, Yuan X, Fukutani T, et al. Overexpression of human adiponectin in transgenic mice results in suppression of fat accumulation and prevention of premature death by high-calorie diet. Am J Physiol Endocrinol Metab. 2007;293:E210–E218.PubMedGoogle Scholar
  68. 68.
    Ohashi K, Iwatani H, Kihara S, et al. Exacerbation of albuminuria and renal fibrosis in subtotal renal ablation model of adiponectin-knockout mice. Arterioscler Thromb Vasc Biol. 2007;27:1910–1917.PubMedGoogle Scholar
  69. 69.
    Bauche IB, El Mkadem SA, Pottier AM, et al. Overexpression of adiponectin targeted to adipose tissue in transgenic mice: Impaired adipocyte differentiation. Endocrinology. 2007;148:1539–1549.PubMedGoogle Scholar
  70. 70.
    Shinmura K, Tamaki K, Saito K, Nakano Y, Tobe T, Bolli R. Cardioprotective effects of short-term caloric restriction are mediated by adiponectin via activation of AMP-activated protein kinase. Circulation. 2007;116:2809–2817.PubMedGoogle Scholar
  71. 71.
    Lin HV, Kim JY, Pocai A, et al. Adiponectin resistance exacerbates insulin resistance in insulin receptor transgenic/knockout mice. Diabetes. 2007;56:1969–1976.PubMedGoogle Scholar
  72. 72.
    Carvalho E, Kotani K, Peroni OD, Kahn BB. Adipose-specific overexpression of GLUT4 reverses insulin resistance and diabetes in mice lacking GLUT4 selectively in muscle. Am J Physiol Endocrinol Metab. 2005;289:E551–E561.PubMedGoogle Scholar
  73. 73.
    Hertzel AV, Smith LA, Berg AH, et al. Lipid metabolism and adipokine levels in fatty acid-binding protein null and transgenic mice. Am J Physiol Endocrinol Metab. 2006;290:E814–E823.PubMedGoogle Scholar
  74. 74.
    Jurczak MJ, Danos AM, Rehrmann VR, Allison MB, Greenberg CC, Brady MJ. Transgenic overexpression of protein targeting to glycogen markedly increases adipocytic glycogen storage in mice. Am J Physiol Endocrinol Metab. 2007;292:E952–E963.PubMedGoogle Scholar
  75. 75.
    Yamaguchi M, Nakagawa T. Change in lipid components in the adipose and liver tissues of regucalcin transgenic rats with increasing age: Suppression of leptin and adiponectin gene expression. Int J Mol Med. 2007;20:323–328.PubMedGoogle Scholar
  76. 76.
    Huang J, Gabrielsen JS, Cooksey RC, et al. Increased glucose disposal and AMP-dependent kinase signaling in a mouse model of hemochromatosis. J Biol Chem. 2007;282:37501–37507.PubMedGoogle Scholar
  77. 77.
    Al-Aly Z, Shao JS, Lai CF, et al. Aortic Msx2-wnt calcification cascade is regulated by TNF-alpha-dependent signals in diabetic ldlr−/− mice. Arterioscler Thromb Vasc Biol. 2007;27:2589–2596.PubMedGoogle Scholar
  78. 78.
    Ye Z, Ahmed KA, Hao S, et al. Active CD4+ helper T cells directly stimulate CD8+ cytotoxic T lymphocyte responses in wild-type and MHC II gene knockout C57BL/6 mice and transgenic RIP-mOVA mice expressing islet beta-cell ovalbumin antigen leading to diabetes. Autoimmunity. 2008;41:501–511.PubMedGoogle Scholar
  79. 79.
    Costa C, Zhao L, Burton WV, et al. Transgenic pigs designed to express human CD59 and H-transferase to avoid humoral xenograft rejection. Xenotransplantation. 2002;9:45–57.PubMedGoogle Scholar
  80. 80.
    Smolenski RT, Forni M, Maccherini M, et al. Reduction of hyperacute rejection and protection of metabolism and function in hearts of human decay accelerating factor (hDAF)-expressing pigs. Cardiovasc Res. 2007;73:143–152.PubMedGoogle Scholar
  81. 81.
    Lee JM, Tu CF, Tai HC, et al. The hDAF exogene protects swine endothelial and peripheral blood mononuclear cells from xenoreactive antibody mediated cytotoxicity in hDAF transgenic pigs. Transplant Proc. 2006;38:2270–2272.PubMedGoogle Scholar
  82. 82.
    Brandl U, Erhardt M, Michel S, et al. Soluble galalpha(1,3)gal conjugate combined with hDAF preserves morphology and improves function of cardiac xenografts. Xenotransplantation. 2007;14:323–332.PubMedGoogle Scholar
  83. 83.
    Brandl U, Jockle H, Erhardt M, et al. Reduced fibrin deposition and intravascular thrombosis in hDAF transgenic pig hearts perfused with tirofiban. Transplantation. 2007;84:1667–1676.PubMedGoogle Scholar
  84. 84.
    Warnecke G, Severson SR, Ugurlu MM, et al. Endothelial function in pigs transgenic for human complement regulating factor. Transplantation. 2002;73:1060–1067.PubMedGoogle Scholar
  85. 85.
    Zhou CY, McInnes E, Parsons N, et al. Production and characterization of a pig line transgenic for human membrane cofactor protein. Xenotransplantation. 2002;9:183–190.PubMedGoogle Scholar
  86. 86.
    Grabie N, Hsieh DT, Buono C, et al. Neutrophils sustain pathogenic CD8+ T cell responses in the heart. Am J Pathol. 2003;163:2413–2420.PubMedGoogle Scholar
  87. 87.
    Adachi O, Yamato E, Kawamoto S, et al. High-level expression of viral interleukin-10 in cardiac allografts fails to prolong graft survival. Transplantation. 2002;74:1603–1608.PubMedGoogle Scholar
  88. 88.
    Klugewitz K, Blumenthal-Barby F, Schrage A, Knolle PA, Hamann A, Crispe IN. Immunomodulatory effects of the liver: Deletion of activated CD4+ effector cells and suppression of IFN-gamma-producing cells after intravenous protein immunization. J Immunol. 2002;169:2407–2413.PubMedGoogle Scholar
  89. 89.
    Fischbein MP, Yun J, Laks H, et al. Regulated interleukin-10 expression prevents chronic rejection of transplanted hearts. J Thorac Cardiovasc Surg. 2003;126:216–223.PubMedGoogle Scholar
  90. 90.
    Takeuchi T, Ueki T, Sunaga S, et al. Murine interleukin 4 transgenic heart allograft survival prolonged with down-regulation of the Th1 cytokine mRNA in grafts. Transplantation. 1997;64:152–157.PubMedGoogle Scholar
  91. 91.
    Rothermel AL, Wang Y, Schechner J, et al. Endothelial cells present antigens in vivo. BMC Immunol. 2004;5:5.PubMedGoogle Scholar
  92. 92.
    Reuter H, Philipson KD. Sodium-calcium exchanger overexpression in the heart - Insights from a transgenic mouse model. Basic Res Cardiol. 2002;97 Suppl 1:131–135.Google Scholar
  93. 93.
    Muller JG, Isomatsu Y, Koushik SV, et al. Cardiac-specific expression and hypertrophic upregulation of the feline Na(+)-Ca(2+) exchanger gene H1-promoter in a transgenic mouse model. Circ Res. 2002;90:158–164.PubMedGoogle Scholar
  94. 94.
    Maxwell K, Scott J, Omelchenko A, et al. Functional role of ionic regulation of Na+/Ca2+ exchange assessed in transgenic mouse hearts. Am J Physiol. 1999;277:H2212–H2221.PubMedGoogle Scholar
  95. 95.
    Weber CR, Ginsburg KS, Philipson KD, Shannon TR, Bers DM. Allosteric regulation of Na/Ca exchange current by cytosolic Ca in intact cardiac myocytes. J Gen Physiol. 2001;117:119–131.PubMedGoogle Scholar
  96. 96.
    Yao A, Su Z, Nonaka A, et al. Effects of overexpression of the Na+-Ca2+ exchanger on [Ca2+]i transients in murine ventricular myocytes. Circ Res. 1998;82:657–665.PubMedGoogle Scholar
  97. 97.
    Cho CH, Lee SY, Shin HS, Philipson KD, Lee CO. Partial rescue of the Na+-Ca2+ exchanger (NCX1) knock-out mouse by transgenic expression of NCX1. Exp Mol Med. 2003;35:125–135.PubMedGoogle Scholar
  98. 98.
    Karashima E, Nishimura J, Iwamoto T, et al. Involvement of Na+-Ca2+ exchanger in cAMP-mediated relaxation in mice aorta: Evaluation using transgenic mice. Br J Pharmacol. 2007;150:434–444.PubMedGoogle Scholar
  99. 99.
    Su Z, Bridge JH, Philipson KD, Spitzer KW, Barry WH. Quantitation of Na/Ca exchanger function in single ventricular myocytes. J Mol Cell Cardiol. 1999;31:1125–1135.PubMedGoogle Scholar
  100. 100.
    Nakamura TY, Iwata Y, Arai Y, Komamura K, Wakabayashi S. Activation of Na+/H+ exchanger 1 is sufficient to generate Ca2+ signals that induce cardiac hypertrophy and heart failure. Circ Res. 2008;103:891–899.PubMedGoogle Scholar
  101. 101.
    Dibbs ZI, Diwan A, Nemoto S, et al. Targeted overexpression of transmembrane tumor necrosis factor provokes a concentric cardiac hypertrophic phenotype. Circulation. 2003;108:1002–1008.PubMedGoogle Scholar
  102. 102.
    Huber SA, Feldman AM, Sartini D. Coxsackievirus B3 induces T regulatory cells, which inhibit cardiomyopathy in tumor necrosis factor-alpha transgenic mice. Circ Res. 2006;99:1109–1116.PubMedGoogle Scholar
  103. 103.
    Mori S, Gibson G, McTiernan CF. Differential expression of MMPs and TIMPs in moderate and severe heart failure in a transgenic model. J Card Fail. 2006;12:314–325.PubMedGoogle Scholar
  104. 104.
    Sawaya SE, Rajawat YS, Rami TG, et al. Downregulation of connexin40 and increased prevalence of atrial arrhythmias in transgenic mice with cardiac-restricted overexpression of tumor necrosis factor. Am J Physiol Heart Circ Physiol. 2007;292:H1561–H1567.PubMedGoogle Scholar
  105. 105.
    Sekiguchi K, Tian Q, Ishiyama M, et al. Inhibition of PPAR-alpha activity in mice with cardiac-restricted expression of tumor necrosis factor: Potential role of TGF-beta/Smad3. Am J Physiol Heart Circ Physiol. 2007;292:H1443–H1451.PubMedGoogle Scholar
  106. 106.
    Panagopoulou P, Davos CH, Milner DJ, et al. Desmin mediates TNF-alpha-induced aggregate formation and intercalated disk reorganization in heart failure. J Cell Biol. 2008;181:761–775.PubMedGoogle Scholar
  107. 107.
    Sakata Y, Chancey AL, Divakaran VG, Sekiguchi K, Sivasubramanian N, Mann DL. Transforming growth factor-beta receptor antagonism attenuates myocardial fibrosis in mice with cardiac-restricted overexpression of tumor necrosis factor. Basic Res Cardiol. 2008;103:60–68.PubMedGoogle Scholar
  108. 108.
    Pinderski Oslund LJ, Hedrick CC, Olvera T, et al. Interleukin-10 blocks atherosclerotic events in vitro and in vivo. Arterioscler Thromb Vasc Biol. 1999;19:2847–2853.PubMedGoogle Scholar
  109. 109.
    Pinderski LJ, Fischbein MP, Subbanagounder G, et al. Overexpression of interleukin-10 by activated T lymphocytes inhibits atherosclerosis in LDL receptor-deficient mice by altering lymphocyte and macrophage phenotypes. Circ Res. 2002;90:1064–1071.PubMedGoogle Scholar
  110. 110.
    Willuweit A, Sass G, Schoneberg A, Eisel U, Tiegs G, Clauss M. Chronic inflammation and protection from acute hepatitis in transgenic mice expressing TNF in endothelial cells. J Immunol. 2001;167:3944–3952.PubMedGoogle Scholar
  111. 111.
    Reifenberg K, Lehr HA, Torzewski M, et al. Interferon-gamma induces chronic active myocarditis and cardiomyopathy in transgenic mice. Am J Pathol. 2007;171:463–472.PubMedGoogle Scholar
  112. 112.
    Arsenijevic D, Garcia I, Vesin C, et al. Differential roles of tumor necrosis factor-alpha and interferon-gamma in mouse hypermetabolic and anorectic responses induced by LPS. Eur Cytokine Netw. 2000;11:662–668.PubMedGoogle Scholar
  113. 113.
    Monraats PS, Pires NM, Schepers A, et al. Tumor necrosis factor-alpha plays an important role in restenosis development. FASEB J. 2005;19:1998–2004.PubMedGoogle Scholar
  114. 114.
    Metzler B, Mair J, Lercher A, et al. Mouse model of myocardial remodelling after ischemia: Role of intercellular adhesion molecule-1. Cardiovasc Res. 2001;49:399–407.PubMedGoogle Scholar
  115. 115.
    Metzler B, Haubner B, Conci E, et al. Myocardial ischaemia-reperfusion injury in haematopoietic cell-restricted {beta}1 integrin knockout mice. Exp Physiol. 2008;93:825–833.PubMedGoogle Scholar
  116. 116.
    Son NH, Park TS, Yamashita H, et al. Cardiomyocyte expression of PPARgamma leads to cardiac dysfunction in mice. J Clin Invest. 2007;117:2791–2801.PubMedGoogle Scholar
  117. 117.
    Cresci S, Jones PG, Sucharov CC, et al. Interaction between PPARA genotype and beta-blocker treatment influences clinical outcomes following acute coronary syndromes. Pharmacogenomics. 2008;9:1403–1417.PubMedGoogle Scholar
  118. 118.
    Marionneau C, Aimond F, Brunet S, et al. PPARalpha-mediated remodeling of repolarizing voltage-gated K+ (kv) channels in a mouse model of metabolic cardiomyopathy. J Mol Cell Cardiol. 2008;44:1002–1015.PubMedGoogle Scholar
  119. 119.
    Zhou Y, Luo P, Chang HH, et al. Colfibrate attenuates blood pressure and sodium retention in DOCA-salt hypertension. Kidney Int. 2008;74:1040–1048.PubMedGoogle Scholar
  120. 120.
    Obih P, Oyekan AO. Regulation of blood pressure, natriuresis and renal thiazide/amiloride sensitivity in PPARalpha null mice. Blood Press. 2008;17:55–63.PubMedGoogle Scholar
  121. 121.
    Odegaard JI, Ricardo-Gonzalez RR, Goforth MH, et al. Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance. Nature. 2007;447:1116–1120.PubMedGoogle Scholar
  122. 122.
    Murtaza I, Wang HX, Feng X, et al. Down-regulation of catalase and oxidative modification of protein kinase CK2 lead to the failure of apoptosis repressor with caspase recruitment domain to inhibit cardiomyocyte hypertrophy. J Biol Chem. 2008;283:5996–6004.PubMedGoogle Scholar
  123. 123.
    Liu F, Wei CC, Wu SJ, et al. Apocynin attenuates tubular apoptosis and tubulointerstitial fibrosis in transgenic mice independent of hypertension. Kidney Int. 2009;75:156–166.PubMedGoogle Scholar
  124. 124.
    Park JK, Fischer R, Dechend R, et al. p38 Mitogen-activated protein kinase inhibition ameliorates angiotensin II-induced target organ damage. Hypertension. 2007;49:481–489.PubMedGoogle Scholar
  125. 125.
    Cervenka L, Horacek V, Vaneckova I, et al. Essential role of AT1A receptor in the development of 2K1C hypertension. Hypertension. 2002;40:735–741.PubMedGoogle Scholar
  126. 126.
    Cervenka L, Vaneckova I, Huskova Z, et al. Pivotal role of angiotensin II receptor subtype 1A in the development of two-kidney, one-clip hypertension: Study in angiotensin II receptor subtype 1A knockout mice. J Hypertens. 2008;26:1379–1389.PubMedGoogle Scholar
  127. 127.
    Osorio JC, Cheema FH, Martens TP, et al. Simvastatin reverses cardiac hypertrophy caused by disruption of the bradykinin 2 receptor. Can J Physiol Pharmacol. 2008;86:633–642.PubMedGoogle Scholar
  128. 128.
    Rhaleb NE, Peng H, Alfie ME, Shesely EG, Carretero OA. Effect of ACE inhibitor on DOCA-salt- and aortic coarctation-induced hypertension in mice: Do kinin B2 receptors play a role? Hypertension. 1999;33:329–334.PubMedGoogle Scholar
  129. 129.
    Madeddu P, Milia AF, Salis MB, et al. Renovascular hypertension in bradykinin B2-receptor knockout mice. Hypertension. 1998;32:503–509.PubMedGoogle Scholar
  130. 130.
    Nogueira BV, Peotta VA, Meyrelles SS, Vasquez EC. Evaluation of aortic remodeling in apolipoprotein E-deficient mice and renovascular hypertensive mice. Arch Med Res. 2007;38:816–821.PubMedGoogle Scholar
  131. 131.
    Heo HJ, Yun MR, Jung KH, et al. Endogenous angiotensin II enhances atherogenesis in apoprotein E-deficient mice with renovascular hypertension through activation of vascular smooth muscle cells. Life Sci. 2007;80:1057–1063.PubMedGoogle Scholar
  132. 132.
    Mazzolai L, Korber M, Bouzourene K, et al. Severe hyperlipidemia causes impaired renin-angiotensin system function in apolipoprotein E deficient mice. Atherosclerosis. 2006;186:86–91.PubMedGoogle Scholar
  133. 133.
    Basso F, Amar MJ, Wagner EM, et al. Enhanced ABCG1 expression increases atherosclerosis in LDLr-KO mice on a western diet. Biochem Biophys Res Commun. 2006;351:398–404.PubMedGoogle Scholar
  134. 134.
    Watari Y, Yamamoto Y, Brydun A, et al. Ablation of the bach1 gene leads to the suppression of atherosclerosis in bach1 and apolipoprotein E double knockout mice. Hypertens Res. 2008;31:783–792.PubMedGoogle Scholar
  135. 135.
    Liu H, Zheng F, Li Z, et al. Reduced acute vascular injury and atherosclerosis in hyperlipidemic mice transgenic for lysozyme. Am J Pathol. 2006;169:303–313.PubMedGoogle Scholar
  136. 136.
    Oyama J, Blais C, Jr, Liu X, et al. Reduced myocardial ischemia-reperfusion injury in toll-like receptor 4-deficient mice. Circulation. 2004;109:784–789.PubMedGoogle Scholar
  137. 137.
    Riad A, Jager S, Sobirey M, et al. Toll-like receptor-4 modulates survival by induction of left ventricular remodeling after myocardial infarction in mice. J Immunol. 2008;180:6954–6961.PubMedGoogle Scholar
  138. 138.
    Shishido T, Nozaki N, Yamaguchi S, et al. Toll-like receptor-2 modulates ventricular remodeling after myocardial infarction. Circulation. 2003;108:2905–2910.PubMedGoogle Scholar
  139. 139.
    Shishido T, Nozaki N, Takahashi H, et al. Central role of endogenous toll-like receptor-2 activation in regulating inflammation, reactive oxygen species production, and subsequent neointimal formation after vascular injury. Biochem Biophys Res Commun. 2006;345:1446–1453.PubMedGoogle Scholar
  140. 140.
    Papanikolaou A, Papafotika A, Murphy C, et al. Cholesterol-dependent lipid assemblies regulate the activity of the ecto-nucleotidase CD39. J Biol Chem. 2005;280:26406–26414.PubMedGoogle Scholar
  141. 141.
    Bauer PM, Yu J, Chen Y, et al. Endothelial-specific expression of caveolin-1 impairs microvascular permeability and angiogenesis. Proc Natl Acad Sci USA. 2005;102:204–209.PubMedGoogle Scholar
  142. 142.
    Odening KE, Hyder O, Chaves L, et al. Pharmacogenomics of anesthetic drugs in transgenic LQT1 and LQT2 rabbits reveal genotype-specific differential effects on cardiac repolarization. Am J Physiol Heart Circ Physiol. 2008;295:H2264–H2272.PubMedGoogle Scholar
  143. 143.
    Brunner M, Peng X, Liu GX, et al. Mechanisms of cardiac arrhythmias and sudden death in transgenic rabbits with long QT syndrome. J Clin Invest. 2008;118:2246–2259.PubMedGoogle Scholar
  144. 144.
    Koren G. Electrical remodeling and arrhythmias in long-QT syndrome: Lessons from genetic models in mice. Ann Med. 2004;36 Suppl 1:22–27.PubMedGoogle Scholar
  145. 145.
    Killeen MJ, Thomas G, Sabir IN, Grace AA, Huang CL. Mouse models of human arrhythmia syndromes. Acta Physiol (Oxf). 2008;192:455–469.Google Scholar
  146. 146.
    Tillmanns J, Carlsen H, Blomhoff R, et al. Caught in the act: In vivo molecular imaging of the transcription factor NF-kappaB after myocardial infarction. Biochem Biophys Res Commun. 2006;342:773–774.PubMedGoogle Scholar
  147. 147.
    Frantz S, Hu K, Bayer B, et al. Absence of NF-kappaB subunit p50 improves heart failure after myocardial infarction. FASEB J. 2006;20:1918–1920.PubMedGoogle Scholar
  148. 148.
    Frantz S, Tillmanns J, Kuhlencordt PJ, et al. Tissue-specific effects of the nuclear factor kappaB subunit p50 on myocardial ischemia-reperfusion injury. Am J Pathol. 2007;171:507–512.PubMedGoogle Scholar
  149. 149.
    Ramana KV, Willis MS, White MD, et al. Endotoxin-induced cardiomyopathy and systemic inflammation in mice is prevented by aldose reductase inhibition. Circulation. 2006;114:1838–1846.PubMedGoogle Scholar
  150. 150.
    Henke N, Schmidt-Ullrich R, Dechend R, et al. Vascular endothelial cell-specific NF-kappaB suppression attenuates hypertension-induced renal damage. Circ Res. 2007;101:268–276.PubMedGoogle Scholar
  151. 151.
    Li HL, Zhuo ML, Wang D, et al. Targeted cardiac overexpression of A20 improves left ventricular performance and reduces compensatory hypertrophy after myocardial infarction. Circulation. 2007;115:1885–1894.PubMedGoogle Scholar
  152. 152.
    Dufour CR, Wilson BJ, Huss JM, et al. Genome-wide orchestration of cardiac functions by the orphan nuclear receptors ERRalpha and gamma. Cell Metab. 2007;5:345–356.PubMedGoogle Scholar
  153. 153.
    Alaynick WA, Kondo RP, Xie W, et al. ERRgamma directs and maintains the transition to oxidative metabolism in the postnatal heart. Cell Metab. 2007;6:13–24.PubMedGoogle Scholar
  154. 154.
    Nosek TM, Brotto MA, Jin JP. Troponin T isoforms alter the tolerance of transgenic mouse cardiac muscle to acidosis. Arch Biochem Biophys. 2004;430:178–184.PubMedGoogle Scholar
  155. 155.
    Takimoto E, Soergel DG, Janssen PM, Stull LB, Kass DA, Murphy AM. Frequency- and afterload-dependent cardiac modulation in vivo by troponin I with constitutively active protein kinase A phosphorylation sites. Circ Res. 2004;94:496–504.PubMedGoogle Scholar
  156. 156.
    Pena JR, Wolska BM. Troponin I phosphorylation plays an important role in the relaxant effect of beta-adrenergic stimulation in mouse hearts. Cardiovasc Res. 2004;61:756–763.PubMedGoogle Scholar
  157. 157.
    Angelone T, Quintieri AM, Brar BK, et al. The antihypertensive chromogranin A-derived peptide catestatin as a novel endocrine/paracrine modulator of cardiac function: Inotropic and lusitropic actions on the rat heart. Endocrinology. 2008 Oct; 149(10):4780-4793.Google Scholar
  158. 158.
    Mahapatra NR. Catestatin is a novel endogenous peptide that regulates cardiac function and blood pressure. Cardiovasc Res. 2008;80:330–338.PubMedGoogle Scholar
  159. 159.
    Hu C, Dandapat A, Sun L, et al. Modulation of angiotensin II-mediated hypertension and cardiac remodeling by lectin-like oxidized low-density lipoprotein receptor-1 deletion. Hypertension. 2008;52:556–562.PubMedGoogle Scholar
  160. 160.
    Adamek A, Jung S, Dienesch C, et al. Role of 5-lipoxygenase in myocardial ischemia-reperfusion injury in mice. Eur J Pharmacol. 2007;571:51–54.PubMedGoogle Scholar
  161. 161.
    Kirchhefer U, Baba HA, Hanske G, et al. Age-dependent biochemical and contractile properties in atrium of transgenic mice overexpressing junctin. Am J Physiol Heart Circ Physiol. 2004;287:H2216–H2225.PubMedGoogle Scholar
  162. 162.
    Kirchhefer U, Hanske G, Jones LR, et al. Overexpression of junctin causes adaptive changes in cardiac myocyte Ca(2+) signaling. Cell Calcium. 2006;39:131–142.PubMedGoogle Scholar
  163. 163.
    Zhang L, Franzini-Armstrong C, Ramesh V, Jones LR. Structural alterations in cardiac calcium release units resulting from overexpression of junctin. J Mol Cell Cardiol. 2001;33:233–247.PubMedGoogle Scholar
  164. 164.
    Kirchhefer U, Klimas J, Baba HA, et al. Triadin is a critical determinant of cellular Ca cycling and contractility in the heart. Am J Physiol Heart Circ Physiol. 2007;293:H3165–H3174.PubMedGoogle Scholar
  165. 165.
    Hagendorff A, Schumacher B, Kirchhoff S, Luderitz B, Willecke K. Conduction disturbances and increased atrial vulnerability in Connexin40-deficient mice analyzed by transesophageal stimulation. Circulation. 1999;99:1508–1515.PubMedGoogle Scholar
  166. 166.
    Hagendorff A, Kirchhoff S, Kruger O, et al. Electrophysiological characterization of connexin 40 deficient hearts - In vivo studies in mice. Z Kardiol. 2001;90:898–905.PubMedGoogle Scholar
  167. 167.
    Hanner F, Schnichels M, Zheng-Fischhofer Q, et al. Connexin 30.3 is expressed in the kidney but not regulated by dietary salt or high blood pressure. Cell Commun Adhes. 2008;15:219–230.PubMedGoogle Scholar
  168. 168.
    Hanner F, von Maltzahn J, Maxeiner S, et al. Connexin45 is expressed in the juxtaglomerular apparatus and is involved in the regulation of renin secretion and blood pressure. Am J Physiol Regul Integr Comp Physiol. 2008;295:R371–R380.PubMedGoogle Scholar
  169. 169.
    Wagner C, de Wit C, Gerl M, Kurtz A, Hocherl K. Increased expression of cyclooxygenase 2 contributes to aberrant renin production in connexin 40-deficient kidneys. Am J Physiol Regul Integr Comp Physiol. 2007;293:R1781–R1786.PubMedGoogle Scholar
  170. 170.
    Krattinger N, Capponi A, Mazzolai L, et al. Connexin40 regulates renin production and blood pressure. Kidney Int. 2007;72:814–822.PubMedGoogle Scholar
  171. 171.
    Winterhager E, Pielensticker N, Freyer J, et al. Replacement of connexin43 by connexin26 in transgenic mice leads to dysfunctional reproductive organs and slowed ventricular conduction in the heart. BMC Dev Biol. 2007;7:26.PubMedGoogle Scholar
  172. 172.
    Hattori K, Nakamura K, Hisatomi Y, et al. Arrhythmia induced by spatiotemporal overexpression of calreticulin in the heart. Mol Genet Metab. 2007;91:285–293.PubMedGoogle Scholar
  173. 173.
    Pattison JS, Waggoner JR, James J, et al. Phospholamban overexpression in transgenic rabbits. Transgenic Res. 2008;17:157–170.PubMedGoogle Scholar
  174. 174.
    Sag CM, Dybkova N, Neef S, Maier LS. Effects on recovery during acidosis in cardiac myocytes overexpressing CaMKII. J Mol Cell Cardiol. 2007;43:696–709.PubMedGoogle Scholar
  175. 175.
    Purevjav E, Nelson DP, Varela JJ, et al. Myocardial fas ligand expression increases susceptibility to AZT-induced cardiomyopathy. Cardiovasc Toxicol. 2007;7:255–263.PubMedGoogle Scholar
  176. 176.
    Niu J, Azfer A, Kolattukudy PE. Protection against lipopolysaccharide-induced myocardial dysfunction in mice by cardiac-specific expression of soluble fas. J Mol Cell Cardiol. 2008;44:160–169.PubMedGoogle Scholar
  177. 177.
    Niu J, Azfer A, Kolattukudy PE. Monocyte-specific bcl-2 expression attenuates inflammation and heart failure in monocyte chemoattractant protein-1 (MCP-1)-induced cardiomyopathy. Cardiovasc Res. 2006;71:139–148.PubMedGoogle Scholar
  178. 178.
    Niu J, Azfer A, Deucher MF, Goldschmidt-Clermont PJ, Kolattukudy PE. Targeted cardiac expression of soluble fas prevents the development of heart failure in mice with cardiac-specific expression of MCP-1. J Mol Cell Cardiol. 2006;40:810–820.PubMedGoogle Scholar
  179. 179.
    Barnes JA, Singh S, Gomes AV. Protease activated receptors in cardiovascular function and disease. Mol Cell Biochem. 2004;263:227–239.PubMedGoogle Scholar
  180. 180.
    Hamilton JR, Cornelissen I, Coughlin SR. Impaired hemostasis and protection against thrombosis in protease-activated receptor 4-deficient mice is due to lack of thrombin signaling in platelets. J Thromb Haemost. 2004;2:1429–1435.PubMedGoogle Scholar
  181. 181.
    McGuire JJ, Van Vliet BN, Halfyard SJ. Blood pressures, heart rate and locomotor activity during salt loading and angiotensin II infusion in protease-activated receptor 2 (PAR2) knockout mice. BMC Physiol. 2008;8:20.PubMedGoogle Scholar
  182. 182.
    Busso N, Chobaz-Peclat V, Hamilton J, Spee P, Wagtmann N, So A. Essential role of platelet activation via protease activated receptor 4 in tissue factor-initiated inflammation. Arthritis Res Ther. 2008;10:R42.PubMedGoogle Scholar
  183. 183.
    Wu Q, Xu-Cai YO, Chen S, Wang W. Corin: New insights into the natriuretic peptide system. Kidney Int. 2009;75:142–146.PubMedGoogle Scholar
  184. 184.
    Foronjy RF, Sun J, Lemaitre V, D’Armiento JM. Transgenic expression of matrix metalloproteinase-1 inhibits myocardial fibrosis and prevents the transition to heart failure in a pressure overload mouse model. Hypertens Res. 2008;31:725–735.PubMedGoogle Scholar
  185. 185.
    Yamada S, Wang KY, Tanimoto A, et al. Matrix metalloproteinase 12 accelerates the initiation of atherosclerosis and stimulates the progression of fatty streaks to fibrous plaques in transgenic rabbits. Am J Pathol. 2008;172:1419–1429.PubMedGoogle Scholar
  186. 186.
    Janssen A, Hoellenriegel J, Fogarasi M, et al. Abnormal vessel formation in the choroid of mice lacking tissue inhibitor of metalloprotease-3. Invest Ophthalmol Vis Sci. 2008;49:2812–2822.PubMedGoogle Scholar
  187. 187.
    Holdt LM, Thiery J, Breslow JL, Teupser D. Increased ADAM17 mRNA expression and activity is associated with atherosclerosis resistance in LDL-receptor deficient mice. Arterioscler Thromb Vasc Biol. 2008;28:1097–1103.PubMedGoogle Scholar
  188. 188.
    Qin Z, Gongora MC, Ozumi K, et al Role of menkes ATPase in angiotensin II-induced hypertension. A key modulator for extracellular superoxide dismutase function. Hypertension. 2008;52:945–951.PubMedGoogle Scholar
  189. 189.
    Yang A, Sonin D, Jones L, Barry WH, Liang BT. A beneficial role of cardiac P2X4 receptors in heart failure: Rescue of the calsequestrin overexpression model of cardiomyopathy. Am J Physiol Heart Circ Physiol. 2004;287:H1096–H1103.PubMedGoogle Scholar
  190. 190.
    Angelis E, Tse MY, Adams MA, Pang SC. Effect of AT2 blockade on cardiac hypertrophy as induced by high dietary salt in the proatrial natriuretic peptide (ANP) gene-disrupted mouse. Can J Physiol Pharmacol. 2006;84:625–634.PubMedGoogle Scholar
  191. 191.
    De Ciuceis C, Amiri F, Brassard P, Endemann DH, Touyz RM, Schiffrin EL. Reduced vascular remodeling, endothelial dysfunction, and oxidative stress in resistance arteries of angiotensin II-infused macrophage colony-stimulating factor-deficient mice: Evidence for a role in inflammation in angiotensin-induced vascular injury. Arterioscler Thromb Vasc Biol. 2005;25:2106–2113.PubMedGoogle Scholar
  192. 192.
    Shiba Y, Takahashi M, Yoshioka T, et al. M-CSF accelerates neointimal formation in the early phase after vascular injury in mice: The critical role of the SDF-1-CXCR4 system. Arterioscler Thromb Vasc Biol. 2007;27:283–289.PubMedGoogle Scholar
  193. 193.
    Amiri F, Virdis A, Neves MF, et al. Endothelium-restricted overexpression of human endothelin-1 causes vascular remodeling and endothelial dysfunction. Circulation. 2004;110:2233–2240.PubMedGoogle Scholar
  194. 194.
    Lund AK, Agbor LN, Zhang N, et al. Loss of the aryl hydrocarbon receptor induces hypoxemia, endothelin-1, and systemic hypertension at modest altitude. Hypertension. 2008;51:803–809.PubMedGoogle Scholar
  195. 195.
    Dietz HC, Mecham RP. Mouse models of genetic diseases resulting from mutations in elastic fiber proteins. Matrix Biol. 2000;19:481–488.PubMedGoogle Scholar
  196. 196.
    Faury G, Pezet M, Knutsen RH, et al. Developmental adaptation of the mouse cardiovascular system to elastin haploinsufficiency. J Clin Invest. 2003;112:1419–1428.PubMedGoogle Scholar
  197. 197.
    Hirano E, Knutsen RH, Sugitani H, Ciliberto CH, Mecham RP. Functional rescue of elastin insufficiency in mice by the human elastin gene: Implications for mouse models of human disease. Circ Res. 2007;101:523–531.PubMedGoogle Scholar
  198. 198.
    Hou Y, Okada K, Okamoto C, Ueshima S, Matsuo O. Alpha2-antiplasmin is a critical regulator of angiotensin II-mediated vascular remodeling. Arterioscler Thromb Vasc Biol. 2008;28:1257–1262.PubMedGoogle Scholar
  199. 199.
    Huggins GS, Lepore JJ, Greytak S, et al. The CREB leucine zipper regulates CREB phosphorylation, cardiomyopathy, and lethality in a transgenic model of heart failure. Am J Physiol Heart Circ Physiol. 2007;293:H1877–H1882.PubMedGoogle Scholar
  200. 200.
    Koonen DP, Febbraio M, Bonnet S, et al. CD36 expression contributes to age-induced cardiomyopathy in mice. Circulation. 2007;116:2139–2147.PubMedGoogle Scholar
  201. 201.
    Nahrendorf M, Hu K, Frantz S, et al. Factor XIII deficiency causes cardiac rupture, impairs wound healing, and aggravates cardiac remodeling in mice with myocardial infarction. Circulation. 2006;113:1196–1202.PubMedGoogle Scholar
  202. 202.
    Kuba K, Zhang L, Imai Y, et al Impaired heart contractility in apelin gene-deficient mice associated with aging and pressure overload. Circ Res. 2007;101:e32–e42.PubMedGoogle Scholar
  203. 203.
    Hatcher CJ, Kim MS, Mah CS, et al. TBX5 transcription factor regulates cell proliferation during cardiogenesis. Dev Biol. 2001;230:177–188.PubMedGoogle Scholar
  204. 204.
    Isenberg JS, Frazier WA, Krishna MC, Wink DA, Roberts DD. Enhancing cardiovascular dynamics by inhibition of thrombospondin-1/CD47 signaling. Curr Drug Targets. 2008;9:833–841.PubMedGoogle Scholar
  205. 205.
    Wang YA, Zheng JW, Fei ZL, et al. A novel transgenic mice model for venous malformation. Transgenic Res. 2009 Apr; 18(2):193–201.Google Scholar
  206. 206.
    Tiedt R, Coers J, Ziegler S, et al. Pronounced thrombocytosis in transgenic mice expressing reduced levels of mpl in platelets and terminally differentiated megakaryocytes. Blood. 2009;113:1768–1777.PubMedGoogle Scholar
  207. 207.
    van Eeden PE, Tee LB, Lukehurst S, et al. Early vascular and neuronal changes in a VEGF transgenic mouse model of retinal neovascularization. Invest Ophthalmol Vis Sci. 2006;47:4638–4645.PubMedGoogle Scholar
  208. 208.
    Isoda K, Kamezawa Y, Ayaori M, Kusuhara M, Tada N, Ohsuzu F. Osteopontin transgenic mice fed a high-cholesterol diet develop early fatty-streak lesions. Circulation. 2003;107:679–681.PubMedGoogle Scholar
  209. 209.
    Ohashi R, Mu H, Wang X, Yao Q, Chen C. Reverse cholesterol transport and cholesterol efflux in atherosclerosis. QJM. 2005;98:845–856.PubMedGoogle Scholar
  210. 210.
    Rust MB, Faulhaber J, Budack MK, et al. Neurogenic mechanisms contribute to hypertension in mice with disruption of the K-cl cotransporter KCC3. Circ Res. 2006;98:549–556.PubMedGoogle Scholar
  211. 211.
    Garnier A, Bendall JK, Fuchs S, et al. Cardiac specific increase in aldosterone production induces coronary dysfunction in aldosterone synthase-transgenic mice. Circulation. 2004;110:1819–1825.PubMedGoogle Scholar
  212. 212.
    Sagave JF, Moser M, Ehler E, et al. Targeted disruption of the mouse Csrp2 gene encoding the cysteine- and glycine-rich LIM domain protein CRP2 result in subtle alteration of cardiac ultrastructure. BMC Dev Biol. 2008;8:80.PubMedGoogle Scholar
  213. 213.
    Fritsch S, Lindner V, Welsch S, et al. Intravenous delivery of PTH/PTHrP type 1 receptor cDNA to rats decreases heart rate, blood pressure, renal tone, renin angiotensin system, and stress-induced cardiovascular responses. J Am Soc Nephrol. 2004;15:2588–2600.PubMedGoogle Scholar
  214. 214.
    Bouillon R, Carmeliet G, Verlinden L, et al. Vitamin D and human health: Lessons from vitamin D receptor null mice. Endocr Rev. 2008;29:726–776.PubMedGoogle Scholar
  215. 215.
    Francois H, Makhanova N, Ruiz P, et al. A role for the thromboxane (tp) receptor in l-NAME hypertension. Am J Physiol Renal Physiol. 2008;295:F1096–F1102.PubMedGoogle Scholar
  216. 216.
    Guzik TJ, Hoch NE, Brown KA, et al. Role of the T cell in the genesis of angiotensin II induced hypertension and vascular dysfunction. J Exp Med. 2007;204:2449–2460.PubMedGoogle Scholar
  217. 217.
    Wang Y, Babankova D, Huang J, Swain GM, Wang DH. Deletion of transient receptor potential vanilloid type 1 receptors exaggerates renal damage in deoxycorticosterone acetate-salt hypertension. Hypertension. 2008;52:264–270.PubMedGoogle Scholar
  218. 218.
    Ni W, Zhou H, Diaz J, Murphy DL, Haywood JR, Watts SW. Lack of the serotonin transporter does not prevent mineralocorticoid hypertension in rat and mouse. Eur J Pharmacol. 2008;589:225–227.PubMedGoogle Scholar
  219. 219.
    Liao TD, Yang XP, Liu YH, et al. Role of inflammation in the development of renal damage and dysfunction in angiotensin II-induced hypertension. Hypertension. 2008;52:256–263.PubMedGoogle Scholar
  220. 220.
    Hinkel R, El-Aouni C, Olson T, et al. Thymosin beta4 is an essential paracrine factor of embryonic endothelial progenitor cell-mediated cardioprotection. Circulation. 2008;117:2232–2240.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • David R. Gross
    • 1
  1. 1.Department of Veterinary BiosciencesUniversity of Illinois, Urbana Champaign College of Veterinary MedicineUrbanaUSA

Personalised recommendations