Iatrogenic, Congenic, and Transgenic Models of Hypertension

  • David R. Gross


Human essential hypertension is a multifactorial and complex disease involving several genes that have, thus far, defied complete characterization. Congenic models such as the spontaneously hypertensive stroke-prone rats are genetically homogeneous and thus aid the search for causative genes. The identification of quantitative trait loci (QTL) responsible for blood pressure regulation by genome-wide scanning is most commonly employed;1 however, the identification of a QTL is just the first step to identify the gene(s) of interest. Congenic strains must be produced to verify the QTL and identify the chromosomal region that must then be reduced to an appropriate size for positional cloning of the gene(s). So-called “speed congenic strategies” have been used to confirm blood pressure QTLs on rat chromosome 2.2

The number of articles published each year suggests that the various animal models of hypertension are probably the most used in cardiovascular research. The volume of significant, i.e., leading to effective treatment of the human condition, research conducted using these models verifies their importance.


Cardiac Hypertrophy Atrial Natriuretic Peptide Renovascular Hypertension Congenic Strain Brown Norway 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Graham D, McBride MW, Brain NJ, Dominiczak AF. Congenic/consomic models of hypertension. Methods Mol Med. 2005;108:3–15.PubMedGoogle Scholar
  2. 2.
    Jeffs B, Negrin CD, Graham D, et al. Applicability of a “speed” congenic strategy to dissect blood pressure quantitative trait loci on rat chromosome 2. Hypertension. 2000;35:179–187.PubMedGoogle Scholar
  3. 3.
    Gross DR. Animal Models in Cardiovascular Research, Second Revised Edition. Boston: Kluwer Academic; 1994.Google Scholar
  4. 4.
    Glodny B, Glodny DE. John Loesch, discoverer of renovascular hypertension, and Harry Goldblatt: Two great pioneers in circulation research. Ann Intern Med. 2006;144:286–295.PubMedGoogle Scholar
  5. 5.
    Pinto YM, Paul M, Ganten D. Lessons from rat models of hypertension: From goldblatt to genetic engineering. Cardiovasc Res. 1998;39:77–88.PubMedGoogle Scholar
  6. 6.
    Kirchhoff F, Krebs C, Abdulhag UN,.et al. Rapid development of severe end-organ damage in C57BL/6 mice by combining DOCA salt and angiotensin II. Kidney Int. 2008;73:643–650.PubMedGoogle Scholar
  7. 7.
    Johns C, Gavras I, Handy DE, Salomao A, Gavras H. Models of experimental hypertension in mice. Hypertension. 1996;28:1064–1069PubMedGoogle Scholar
  8. 8.
    Wiesel P, Mazzolai L, Nussberger J, Pedrazzini T. Two-kidney, one clip and one-kidney, one clip hypertension in mice. Hypertension. 1997;29:1025–1030.PubMedGoogle Scholar
  9. 9.
    Gross DR. Unpublished data.Google Scholar
  10. 10.
    Sadjadi J, Puttaparthi K, Welborn MB III, et al. Upregulation of autocrine–paracrine renin–angiotensin systems in chronic renovascular hypertension. J Vasc Surg. 2002;36:386–392.PubMedGoogle Scholar
  11. 11.
    Gauer S, Hartner A, Hauser IA, Fierlbeck W, Eberhardt W, Geiger H. Differential regulation of osteopontin expression in the clipped and nonclipped kidney of two-kidney, one-clip hypertensive rats. Am J Hypertens. 2003;16:214–222.PubMedGoogle Scholar
  12. 12.
    Muller DN, Klanke B, Feldt S, et al. (Pro)renin receptor peptide inhibitor “handle-region” peptide does not affect hypertensive nephrosclerosis in Goldblatt rats. Hypertension. 2008;51:676–681.PubMedGoogle Scholar
  13. 13.
    Callera GE, Yeh E, Tostes RC, Caperuto LC, Carvalho CR, Bendhack LM. Changes in the vascular beta-adrenoceptor-activated signaling pathway in 2 kidney-1 clip hypertensive rats. Br J Pharmacol. 2004;141:1151–1158.PubMedGoogle Scholar
  14. 14.
    Gudbrandsen OA, Hultstrom M, Leh S, et al. Prevention of hypertension and organ damage in 2-kidney, 1-clip rats by tetradecylthioacetic acid. Hypertension. 2006;48:460–466.PubMedGoogle Scholar
  15. 15.
    Ostrowska H, Kruszewski K, Kasacka I. Immuno-proteasome subunit LMP7 is up-regulated in the ischemic kidney in an experimental model of renovascular hypertension. Int J Biochem Cell Biol. 2006;38:1778–1785.PubMedGoogle Scholar
  16. 16.
    Gouvea SA, Bissoli NS, Moyses MR, Cicilini MA, Pires JG, Abreu GR. Activity of angiotensin-converting enzyme after treatment with l-arginine in renovascular hypertension. Clin Exp Hypertens. 2004;26:569–579.PubMedGoogle Scholar
  17. 17.
    Maliszewska-Scislo M, Chen H, Augustyniak RA, Seth D, Rossi NF. Subfornical organ differentially modulates baroreflex function in normotensive and two-kidney, one-clip hypertensive rats. Am J Physiol Regul Integr Comp Physiol. 2008;295:R741–R750.PubMedGoogle Scholar
  18. 18.
    Souza HC, Martins-Pinge MC, da Silva VJD, et al. Heart rate and arterial pressure variability in the experimental renovascular hypertension model in rats. Auton Neurosci. 2008;139:38–45.PubMedGoogle Scholar
  19. 19.
    Zeng J, Huang R, Su Z. Stroke-prone renovascular hypertensive rats. Chin Med J (Engl). 1998;111:741–744.Google Scholar
  20. 20.
    Olson JL, Boitnott JK, Heptinstall RH. Clip-ablation. A model of experimental hypertension in the rat. Lab Invest. 1987;57:291–296.PubMedGoogle Scholar
  21. 21.
    Wang DS, Xie HH, Shen FM, Cai GJ, Su DF. Blood pressure variability, cardiac baroreflex sensitivity and organ damage in experimentally hypertensive rats. Clin Exp Pharmacol Physiol. 2005;32:545–552.PubMedGoogle Scholar
  22. 22.
    Hacioglu G, Yalcin O, Bor-Kucukatay M, Ozkaya G, Baskurt OK. Red blood cell rheological properties in various rat hypertension models. Clin Hemorheol Microcirc. 2002;26:27–32.PubMedGoogle Scholar
  23. 23.
    Rodriguez-Iturbe B, Quiroz Y, Kim CH, Vaziri ND. Hypertension induced by aortic coarctation above the renal arteries is associated with immune cell infiltration of the kidneys. Am J Hypertens. 2005;18:1449–1456.PubMedGoogle Scholar
  24. 24.
    Kharin SN, Krandycheva VV. Method of experimental constriction of renal artery for modeling of renovascular hypertension in rats. Bull Exp Biol Med. 2004;138:103–105.PubMedGoogle Scholar
  25. 25.
    Madeddu P, Milia AF, Salis MB, et al. Renovascular hypertension in bradykinin B2-receptor knockout mice. Hypertension. 1998;32:503–509.PubMedGoogle Scholar
  26. 26.
    Handtrack C, Cordasic N, Klanke B, Veelken R, Hilgers KF. Effect of the angiotensinogen genotype on experimental hypertension in mice. J Mol Med. 2007;85:343–350.PubMedGoogle Scholar
  27. 27.
    Cervenka L, Horacek V, Vaneckova I, et al. Essential role of AT1A receptor in the development of 2K1C hypertension. Hypertension. 2002;40:735–741.PubMedGoogle Scholar
  28. 28.
    Cervenka L, Vaneckova I, Huskova Z, et al. Pivotal role of angiotensin II receptor subtype 1A in the development of two-kidney, one-clip hypertension: Study in angiotensin II receptor subtype 1A knockout mice. J Hypertens. 2008;26:1379–1389.PubMedGoogle Scholar
  29. 29.
    Wiesel P, Patel AP, Carvajal IM, et al. Exacerbation of chronic renovascular hypertension and acute renal failure in heme oxygenase-1-deficient mice. Circ Res. 2001;88:1088–1094.PubMedGoogle Scholar
  30. 30.
    Duplain H, Burcelin R, Sartori C, et al. Insulin resistance, hyperlipidemia, and hypertension in mice lacking endothelial nitric oxide synthase. Circulation. 2001;104:342–345.PubMedGoogle Scholar
  31. 31.
    Gava AL, Peotta VA, Cabral AM, Vasquez EC, Meyrelles SS. Overexpression of eNOS prevents the development of renovascular hypertension in mice. Can J Physiol Pharmacol. 2008;86:458–464.PubMedGoogle Scholar
  32. 32.
    Nogueira BV, Peotta VA, Meyrelles SS, Vasquez EC. Evaluation of aortic remodeling in apolipoprotein E-deficient mice and renovascular hypertensive mice. Arch Med Res. 2007;38:816–821.PubMedGoogle Scholar
  33. 33.
    Heo HJ, Yun MR, Jung KH, et al. Endogenous angiotensin II enhances atherogenesis in apoprotein E-deficient mice with renovascular hypertension through activation of vascular smooth muscle cells. Life Sci. 2007;80:1057–1063.PubMedGoogle Scholar
  34. 34.
    Mazzolai L, Korber M, Bouzourene K, et al. Severe hyperlipidemia causes impaired renin-angiotensin system function in apolipoprotein E deficient mice. Atherosclerosis. 2006;186:86–91.PubMedGoogle Scholar
  35. 35.
    Cohn HI, Harris DM, Pesant S, et al. Inhibition of vascular smooth muscle G protein-coupled receptor kinase 2 enhances {alpha}1DAR constriction. Am J Physiol Heart Circ Physiol. 2008.Google Scholar
  36. 36.
    Higashiyama H, Sugai M, Inoue H, et al. Histopathological study of time course changes in inter-renal aortic banding-induced left ventricular hypertrophy of mice. Int J Exp Pathol. 2007;88:31–38.PubMedGoogle Scholar
  37. 37.
    Foronjy RF, Sun J, Lemaitre V, D’Armiento JM. Transgenic expression of matrix metalloproteinase-1 inhibits myocardial fibrosis and prevents the transition to heart failure in a pressure overload mouse model. Hypertens Res. 2008;31:725–735.PubMedGoogle Scholar
  38. 38.
    Signolet IL, Bousquet PP, Monassier LJ. Improvement of cardiac diastolic function by long-term centrally mediated sympathetic inhibition in one-kidney, one-clip hypertensive rabbits. Am J Hypertens. 2008;21:54–60.PubMedGoogle Scholar
  39. 39.
    Biagetti MO, Quinteiro RA. Gender differences in electrical remodeling and susceptibility to ventricular arrhythmias in rabbits with left ventricular hypertrophy. Heart Rhythm. 2006;3:832–839.PubMedGoogle Scholar
  40. 40.
    Anderson WP, Shweta A, Evans RG, Edgley AJ, Gao Y. Total peripheral resistance responsiveness during the development of secondary renal hypertension in dogs. J Hypertens. 2007;25:649–662.PubMedGoogle Scholar
  41. 41.
    Katsenis K, Vlahakos DV, Antoniadis P, et al. Renal-portal shunt ameliorates renovascular hypertension in pigs. Artif Organs. 2005;29:333–337.PubMedGoogle Scholar
  42. 42.
    Fossum TW, Baltzer WI, Miller MW, et al. A novel aortic coarctation model for studying hypertension in the pig. J Invest Surg. 2003;16:35–44.PubMedGoogle Scholar
  43. 43.
    Chade AR, Zhu XY, Grande JP, Krier JD, Lerman A, Lerman LO. Simvastatin abates development of renal fibrosis in experimental renovascular disease. J Hypertens. 2008;26:1651–1660.PubMedGoogle Scholar
  44. 44.
    Kurtz TW, Montano M, Chan L, Kabra P. Molecular evidence of genetic heterogeneity in Wistar-Kyoto rats: Implications for research with the spontaneously hypertensive rat. Hypertension. 1989;13:188–192.PubMedGoogle Scholar
  45. 45.
    Louis WJ, Howes LG. Genealogy of the spontaneously hypertensive rat and Wistar-Kyoto rat strains: Implications for studies of inherited hypertension. J Cardiovasc Pharmacol. 1990;16 Suppl 7:S1–S5.PubMedGoogle Scholar
  46. 46.
    Turner ME, Johnson ML, Ely DL. Separate sex-influenced and genetic components in spontaneously hypertensive rat hypertension. Hypertension. 1991;17:1097–1103.PubMedGoogle Scholar
  47. 47.
    Samani NJ, Lodwick D. SA gene and hypertension. J Hum Hypertens. 1995;9:501–503.PubMedGoogle Scholar
  48. 48.
    Frantz S, Clemitson JR, Bihoreau MT, Gauguier D, Samani NJ. Genetic dissection of region around the sa gene on rat chromosome 1: Evidence for multiple loci affecting blood pressure. Hypertension. 2001;38:216–221.PubMedGoogle Scholar
  49. 49.
    Walsh V, Somody L, Farrell A, et al. Analysis of the role of the SA gene in blood pressure regulation by gene targeting. Hypertension. 2003;41:1212–1218.PubMedGoogle Scholar
  50. 50.
    Clemitson JR, Dixon RJ, Haines S, et al. Genetic dissection of a blood pressure quantitative trait locus on rat chromosome 1 and gene expression analysis identifies SPON1 as a novel candidate hypertension gene. Circ Res. 2007;100:992–999.PubMedGoogle Scholar
  51. 51.
    Schork NJ, Krieger JE, Trolliet MR, et al. A biometrical genome search in rats reveals the multigenic basis of blood pressure variation. Genome Res. 1995;5:164–172.PubMedGoogle Scholar
  52. 52.
    Arendshorst WJ, Chatziantoniou C, Daniels FH. Role of angiotensin in the renal vasoconstriction observed during the development of genetic hypertension. Kidney Int Suppl. 1990;30:S92–S96.PubMedGoogle Scholar
  53. 53.
    Chao J, Wang C, Chao L. Gene therapy for hypertension: A review of potential targets. BioDrugs. 1999;11:43–53.PubMedGoogle Scholar
  54. 54.
    Zhang L, Summers KM, West MJ. Angiotensin I converting enzyme gene cosegregates with blood pressure and heart weight in F2 progeny derived from spontaneously hypertensive and normotensive Wistar-Kyoto rats. Clin Exp Hypertens. 1996;18:753–771.PubMedGoogle Scholar
  55. 55.
    Miao CY, Xie HH, Zhan LS, Su DF. Blood pressure variability is more important than blood pressure level in determination of end-organ damage in rats. J Hypertens. 2006;24:1125–1135.PubMedGoogle Scholar
  56. 56.
    Bertagnolli M, Schenkel PC, Campos C, et al. Exercise training reduces sympathetic modulation on cardiovascular system and cardiac oxidative stress in spontaneously hypertensive rats. Am J Hypertens. 2008;21:1188–1193.PubMedGoogle Scholar
  57. 57.
    de Andrade TU, Abreu GR, Moyses MR, de Melo Cabral A, Bissoli NS. Role of cardiac hypertrophy in reducing the sensitivity of cardiopulmonary reflex control of renal sympathetic nerve activity in spontaneously hypertensive rats. Clin Exp Pharmacol Physiol. 2008;35:1104–1108.PubMedGoogle Scholar
  58. 58.
    Coste SC, Qi Y, Brooks VL, McCarron DA, Hatton DC. Captopril and stress-induced hypertension in the borderline hypertensive rat. J Hypertens. 1995;13:1391–1398.PubMedGoogle Scholar
  59. 59.
    Bernatova I, Csizmadiova Z. Effect of chronic social stress on nitric oxide synthesis and vascular function in rats with family history of hypertension. Life Sci. 2006;78:1726–1732.PubMedGoogle Scholar
  60. 60.
    Pietranera L, Saravia FE, Roig P, Lima A, De Nicola AF. Protective effects of estradiol in the brain of rats with genetic or mineralocorticoid-induced hypertension. Psychoneuroendocrinology. 2008;33:270–281.PubMedGoogle Scholar
  61. 61.
    Van Huysse JW. Endogenous brain na pumps, brain ouabain-like substance and the alpha2 isoform in salt-dependent hypertension. Pathophysiology. 2007;14:213–220.PubMedGoogle Scholar
  62. 62.
    Ndisang JF, Lane N, Jadhav A. Crosstalk between the heme oxygenase system, aldosterone, and phospholipase C in hypertension. J Hypertens. 2008;26:1188–1199.PubMedGoogle Scholar
  63. 63.
    Ashton N, Balment RJ. Blood pressure and renal function in a novel vasopressin-deficient, genetically hypertensive rat strain. J Physiol. 1989;410:21–34.PubMedGoogle Scholar
  64. 64.
    Cohen AM, Rosenmann E, Rosenthal T. The cohen diabetic (non-insulin-dependent) hypertensive rat model. Description of the model and pathologic findings. Am J Hypertens. 1993;6:989–995.PubMedGoogle Scholar
  65. 65.
    Wickens JR, Macfarlane J, Booker C, McNaughton N. Dissociation of hypertension and fixed interval responding in two separate strains of genetically hypertensive rat. Behav Brain Res. 2004;152:393–401.PubMedGoogle Scholar
  66. 66.
    Deschepper CF, Prescott G, Hendley ED, Reudelhuber TL. Genetic characterization of novel strains of rats derived from crosses between Wistar-Kyoto and spontaneously hypertensive rats, and comparisons with their parental strains. Lab Anim Sci. 1997;47:638–646.PubMedGoogle Scholar
  67. 67.
    Graham D, McBride MW, Gaasenbeek M, et al. Candidate genes that determine response to salt in the stroke-prone spontaneously hypertensive rat: Congenic analysis. Hypertension. 2007;50:1134–1141.PubMedGoogle Scholar
  68. 68.
    Lindpaintner K, Takahashi S, Ganten D. Structural alterations of the renin gene in stroke-prone spontaneously hypertensive rats: Examination of genotype-phenotype correlations. J Hypertens. 1990;8:763–773.PubMedGoogle Scholar
  69. 69.
    Ueno T, Takagi H, Fukuda N, et al. Cardiovascular remodeling and metabolic abnormalities in SHRSP.Z-lepr(fa)/IzmDmcr rats as a new model of metabolic syndrome. Hypertens Res. 2008;31:1021–1031.PubMedGoogle Scholar
  70. 70.
    Yousif MH, Benter IF, Abul AH, Abraham S, Walther T, Akhtar S. Inhibition of ras-GTPase signaling by FPTIII ameliorates development of cardiovascular dysfunction in diabetic-hypertensive rats. Vascul Pharmacol. 2008;49:151–157.PubMedGoogle Scholar
  71. 71.
    Shehata MF. Important genetic checkpoints for insulin resistance in salt-sensitive (S) Dahl rats. Cardiovasc Diabetol. 2008;7:19.PubMedGoogle Scholar
  72. 72.
    Saad Y, Toland EJ, Yerga-Woolwine S, Farms P, Joe B. Congenic mapping of a blood pressure QTL region on rat chromosome 10 using the Dahl salt-sensitive rat with introgressed alleles from the milan normotensive strain. Mamm Genome. 2008;19:85–91.PubMedGoogle Scholar
  73. 73.
    Koyanagi T, Wong LY, Inagaki K, Petrauskene OV, Mochly-Rosen D. Alteration of gene expression during progression of hypertension-induced cardiac dysfunction in rats. Am J Physiol Heart Circ Physiol. 2008;295:H220–H226.PubMedGoogle Scholar
  74. 74.
    Tian Z, Greene AS, Usa K, et al. Renal regional proteomes in young Dahl salt-sensitive rats. Hypertension. 2008;51:899–904.PubMedGoogle Scholar
  75. 75.
    Tawar U, Kotlo K, Jain S, Shukla S, Setty S, Danziger RS. Renal phosphodiesterase 4B is activated in the Dahl salt-sensitive rat. Hypertension. 2008;51:762–766.PubMedGoogle Scholar
  76. 76.
    Takeda Y, Zhu A, Yoneda T, Usukura M, Takata H, Yamagishi M. Effects of aldosterone and angiotensin II receptor blockade on cardiac angiotensinogen and angiotensin-converting enzyme 2 expression in Dahl salt-sensitive hypertensive rats. Am J Hypertens. 2007;20:1119–1124.PubMedGoogle Scholar
  77. 77.
    Xu J, Desir GV. Renalase, a new renal hormone: Its role in health and disease. Curr Opin Nephrol Hypertens. 2007;16:373–378.PubMedGoogle Scholar
  78. 78.
    Kobayashi N, Ohno T, Yoshida K, et al. Cardioprotective mechanism of telmisartan via PPAR-gamma-eNOS pathway in Dahl salt-sensitive hypertensive rats. Am J Hypertens. 2008;21:576–581.PubMedGoogle Scholar
  79. 79.
    Dai Q, Lin J, Craig T, Chou YM, Hinojosa-Laborde C, Lindsey ML. Estrogen effects on MMP-13 and MMP-14 regulation of left ventricular mass in Dahl salt-induced hypertension. Gen Med. 2008;5:74–85.Google Scholar
  80. 80.
    Sharma N, Okere IC, Barrows BR, et al. High-sugar diets increase cardiac dysfunction and mortality in hypertension compared to low-carbohydrate or high-starch diets. J Hypertens. 2008;26:1402–1410.PubMedGoogle Scholar
  81. 81.
    Jaimes EA, Zhou MS, Pearse DD, Puzis L, Raij L. Upregulation of cortical COX-2 in salt-sensitive hypertension: Role of angiotensin II and reactive oxygen species. Am J Physiol Renal Physiol. 2008;294:F385–F392.PubMedGoogle Scholar
  82. 82.
    Vasdev S, Gill VD, Parai S, Gadag V. Effect of moderately high dietary salt and lipoic acid on blood pressure in Wistar-Kyoto rats. Exp Clin Cardiol. 2007;12:77–81.PubMedGoogle Scholar
  83. 83.
    Mojiminiyi FB, Anigbogu CN, Sofola OA, Adigun SA. Role of nitric oxide in salt and water excretion in experimental hypertension in hooded (aguti) rats. Niger Postgrad Med J. 2007;14:99–104.PubMedGoogle Scholar
  84. 84.
    Chen J, Zhao M, He W, et al. Increased dietary NaCl induces renal medullary PGE2 production and natriuresis via the EP2 receptor. Am J Physiol Renal Physiol. 2008;295:F818–F825.PubMedGoogle Scholar
  85. 85.
    Caprioli J, Mele C, Mossali C, et al. Polymorphisms of EDNRB, ATG, and ACE genes in salt-sensitive hypertension. Can J Physiol Pharmacol. 2008;86:505–510.PubMedGoogle Scholar
  86. 86.
    Franco M, Martinez F, Quiroz Y, et al. Renal angiotensin II concentration and interstitial infiltration of immune cells are correlated with blood pressure levels in salt-sensitive hypertension. Am J Physiol Regul Integr Comp Physiol. 2007;293:R251–R256.PubMedGoogle Scholar
  87. 87.
    Tostes RC, Fortes ZB, Callera GE, et al. Endothelin, sex and hypertension. Clin Sci (Lond). 2008;114:85–97.Google Scholar
  88. 88.
    Majid DS, Kopkan L. Nitric oxide and superoxide interactions in the kidney and their implication in the development of salt-sensitive hypertension. Clin Exp Pharmacol Physiol. 2007;34:946–952.PubMedGoogle Scholar
  89. 89.
    Orlov SN, Mongin AA. Salt-sensing mechanisms in blood pressure regulation and hypertension. Am J Physiol Heart Circ Physiol. 2007;293:H2039–H2053.PubMedGoogle Scholar
  90. 90.
    Gibson KJ, Boyce AC, Thomson CL, Chinchen S, Lumbers ER. Interactions between subtotal nephrectomy and salt: Effects on blood pressure and renal function in pregnant and nonpregnant ewes. Am J Physiol Regul Integr Comp Physiol. 2008;294:R1227–R1233.PubMedGoogle Scholar
  91. 91.
    Morrison RG, Mills C, Moran AL, et al. A moderately high fat diet promotes salt-sensitive hypertension in obese zucker rats by impairing nitric oxide production. Clin Exp Hypertens. 2007;29:369–381.PubMedGoogle Scholar
  92. 92.
    Rose P, Bond J, Tighe S, et al. Genes overexpressed in cerebral arteries following salt-induced hypertensive disease are regulated by angiotensin II, JunB, and CREB. Am J Physiol Heart Circ Physiol. 2008;294:H1075–H1085.PubMedGoogle Scholar
  93. 93.
    Qin Z. Newly developed angiotensin II-infused experimental models in vascular biology. Regul Pept. 2008;150:1–6.PubMedGoogle Scholar
  94. 94.
    Liao TD, Yang XP, Liu YH, et al. Role of inflammation in the development of renal damage and dysfunction in angiotensin II-induced hypertension. Hypertension. 2008;52:256–263.PubMedGoogle Scholar
  95. 95.
    Guzik TJ, Hoch NE, Brown KA, et al. Role of the T cell in the genesis of angiotensin II induced hypertension and vascular dysfunction. J Exp Med. 2007;204:2449–2460.PubMedGoogle Scholar
  96. 96.
    De Ciuceis C, Amiri F, Brassard P, Endemann DH, Touyz RM, Schiffrin EL. Reduced vascular remodeling, endothelial dysfunction, and oxidative stress in resistance arteries of angiotensin II-infused macrophage colony-stimulating factor-deficient mice: Evidence for a role in inflammation in angiotensin-induced vascular injury. Arterioscler Thromb Vasc Biol. 2005;25:2106–2113.PubMedGoogle Scholar
  97. 97.
    Vera T, Kelsen S, Stec DE. Kidney-specific induction of heme oxygenase-1 prevents angiotensin II hypertension. Hypertension. 2008;52:660–665.PubMedGoogle Scholar
  98. 98.
    Ebrahimian T, Sairam MR, Schiffrin EL, Touyz RM. Cardiac hypertrophy is associated with altered thioredoxin and ASK1 signaling in a mouse model of menopause. Am J Physiol Heart Circ Physiol. 2008;295:H1481–H1488.PubMedGoogle Scholar
  99. 99.
    Bruner CA, Fink GD. Neurohumoral contributions to chronic angiotensin-induced hypertension. Am J Physiol. 1986;250:H52–H61.PubMedGoogle Scholar
  100. 100.
    Ployngam T, Collister JP. Role of the median preoptic nucleus in chronic angiotensin II-induced hypertension. Brain Res. 2008;1238:75–84.PubMedGoogle Scholar
  101. 101.
    Fink GD, Bruner CA, Mangiapane ML. Area postrema is critical for angiotensin-induced hypertension in rats. Hypertension. 1987;9:355–361.PubMedGoogle Scholar
  102. 102.
    Castoldi G, di Gioia CR, Pieruzzi F, et al. Angiotensin II modulates calponin gene expression in rat vascular smooth muscle cells in vivo. J Hypertens. 2001;19:2011–2018.PubMedGoogle Scholar
  103. 103.
    Welch WJ, Blau J, Xie H, Chabrashvili T, Wilcox CS. Angiotensin-induced defects in renal oxygenation: Role of oxidative stress. Am J Physiol Heart Circ Physiol. 2005;288:H22–H28.PubMedGoogle Scholar
  104. 104.
    Virdis A, Neves MF, Amiri F, Viel E, Touyz RM, Schiffrin EL. Spironolactone improves angiotensin-induced vascular changes and oxidative stress. Hypertension. 2002;40:504–510.PubMedGoogle Scholar
  105. 105.
    Dilley RJ, Nataatmadja MI. Heparin inhibits mesenteric vascular hypertrophy in angiotensin II-infusion hypertension in rats. Cardiovasc Res. 1998;38:247–255.PubMedGoogle Scholar
  106. 106.
    Luft FC, Wilcox CS, Unger T, et al. Angiotensin-induced hypertension in the rat: Sympathetic nerve activity and prostaglandins. Hypertension. 1989;14:396–403.PubMedGoogle Scholar
  107. 107.
    Ichihara A, Inscho EW, Imig JD, Michel RE, Navar LG. Role of renal nerves in afferent arteriolar reactivity in angiotensin-induced hypertension. Hypertension. 1997;29:442–449.PubMedGoogle Scholar
  108. 108.
    Sampson AK, Moritz KM, Jones ES, Flower RL, Widdop RE, Denton KM. Enhanced angiotensin II type 2 receptor mechanisms mediate decreases in arterial pressure attributable to chronic low-dose angiotensin II in female rats. Hypertension. 2008;52:666–671.PubMedGoogle Scholar
  109. 109.
    Kelly PA, Thomas CL, Ritchie IM, Arbuthnott GW. Cerebrovascular autoregulation in response to hypertension induced by NG-nitro-l-arginine methyl ester. Neuroscience. 1994;59:13–20.PubMedGoogle Scholar
  110. 110.
    Hutter JF, Dehn A, Schmidt W. Hemodynamic effects of new angiotensin converting enzyme inhibitors during continuous angiotensin I infusion on conscious dogs. Arzneimittelforschung. 1988;38:896–901.PubMedGoogle Scholar
  111. 111.
    Werner C, Kochs E, Hoffman WE, Blanc IF, Schulte AM, Esch J. Cerebral blood flow and cerebral blood flow velocity during angiotensin-induced arterial hypertension in dogs. Can J Anaesth. 1993;40:755–760.PubMedGoogle Scholar
  112. 112.
    Komjati K, Velkei-Harvich M, Toth J, Dallos G, Nyary I, Sandor P. Endogenous opioid mechanisms in hypothalamic blood flow autoregulation during haemorrhagic hypotension and angiotensin-induced acute hypertension in cats. Acta Physiol Scand. 1996;157:53–61.PubMedGoogle Scholar
  113. 113.
    Viel EC, Benkirane K, Javeshghani D, Touyz RM, Schiffrin EL. Xanthine oxidase and mitochondria contribute to vascular superoxide anion generation in DOCA-salt hypertensive rats. Am J Physiol Heart Circ Physiol. 2008;295:H281–H288.PubMedGoogle Scholar
  114. 114.
    Qin Z, Gongora MC, Ozumi K, et al Role of Menkes ATPase in angiotensin II-induced hypertension. A key modulator for extracellular superoxide dismutase function. Hypertension. 2008;52:945–951.PubMedGoogle Scholar
  115. 115.
    Hu C, Dandapat A, Sun L, et al. Modulation of angiotensin II-mediated hypertension and cardiac remodeling by lectin-like oxidized low-density lipoprotein receptor-1 deletion. Hypertension. 2008;52:556–562.PubMedGoogle Scholar
  116. 116.
    Xue B, Zhao Y, Johnson AK, Hay M. Central estrogen inhibition of angiotensin II-induced hypertension in male mice and the role of reactive oxygen species. Am J Physiol Heart Circ Physiol. 2008;295:H1025–H1032.PubMedGoogle Scholar
  117. 117.
    Lin CX, Rhaleb NE, Yang XP, Liao TD, D’Ambrosio MA, Carretero OA. Prevention of aortic fibrosis by N-acetyl-seryl-aspartyl-lysyl-proline in angiotensin II-induced hypertension. Am J Physiol Heart Circ Physiol. 2008;295:H1253–H1261.PubMedGoogle Scholar
  118. 118.
    Salazar F, Reverte V, Saez F, Loria A, Llinas MT, Salazar FJ. Age- and sodium-sensitive hypertension and sex-dependent renal changes in rats with a reduced nephron number. Hypertension. 2008;51:1184–1189.PubMedGoogle Scholar
  119. 119.
    Gross V, Lippoldt A, Bohlender J, Bader M, Hansson A, Luft FC. Cortical and medullary hemodynamics in deoxycorticosterone acetate-salt hypertensive mice. J Am Soc Nephrol. 1998;9:346–354.PubMedGoogle Scholar
  120. 120.
    Li X, Woodard GE, Brown J, Rosado JA. Renal atrial natriuretic peptide receptors binding properties and function are resistant to DOCA-salt-induced hypertension in rats. Regul Pept. 2006;137:114–120.PubMedGoogle Scholar
  121. 121.
    Fujii A, Nakano D, Katsuragi M, et al. Role of gp91phox-containing NADPH oxidase in the deoxycorticosterone acetate-salt-induced hypertension. Eur J Pharmacol. 2006;552:131–134.PubMedGoogle Scholar
  122. 122.
    Elmarakby AA, Quigley JE, Imig JD, Pollock JS, Pollock DM. TNF-alpha inhibition reduces renal injury in DOCA-salt hypertensive rats. Am J Physiol Regul Integr Comp Physiol. 2008;294:R76–R83.PubMedGoogle Scholar
  123. 123.
    Watts SW, Rondelli C, Thakali K, et al. Morphological and biochemical characterization of remodeling in aorta and vena cava of DOCA-salt hypertensive rats. Am J Physiol Heart Circ Physiol. 2007;292:H2438–H2448.PubMedGoogle Scholar
  124. 124.
    Ni W, Zhou H, Diaz J, Murphy DL, Haywood JR, Watts SW. Lack of the serotonin transporter does not prevent mineralocorticoid hypertension in rat and mouse. Eur J Pharmacol. 2008;589:225–227.PubMedGoogle Scholar
  125. 125.
    O’Donaughy TL, Qi Y, Brooks VL. Central action of increased osmolality to support blood pressure in deoxycorticosterone acetate-salt rats. Hypertension. 2006;48:658–663.PubMedGoogle Scholar
  126. 126.
    Swoap SJ, Boddell P, Baldwin KM. Interaction of hypertension and caloric restriction on cardiac mass and isomyosin expression. Am J Physiol. 1995;268:R33–R39.PubMedGoogle Scholar
  127. 127.
    Fatehi-Hassanabad Z, Fatehi M, Shahidi MI. Endothelial dysfunction in aortic rings and mesenteric beds isolated from deoxycorticosterone acetate hypertensive rats: Possible involvement of protein kinase C. Eur J Pharmacol. 2004;494:199–204.PubMedGoogle Scholar
  128. 128.
    Kh R, Khullar M, Kashyap M, Pandhi P, Uppal R. Effect of oral magnesium supplementation on blood pressure, platelet aggregation and calcium handling in deoxycorticosterone acetate induced hypertension in rats. J Hypertens. 2000;18:919–926.PubMedGoogle Scholar
  129. 129.
    Hartner A, Cordasic N, Klanke B, Veelken R, Hilgers KF. Strain differences in the development of hypertension and glomerular lesions induced by deoxycorticosterone acetate salt in mice. Nephrol Dial Transplant. 2003;18:1999–2004.PubMedGoogle Scholar
  130. 130.
    Nath KA, d’Uscio LV, Juncos JP, et al. An analysis of the DOCA-salt model of hypertension in HO-1−/− mice and the gunn rat. Am J Physiol Heart Circ Physiol. 2007;293:H333–H342.PubMedGoogle Scholar
  131. 131.
    Zhou Y, Luo P, Chang HH, et al. Colfibrate attenuates blood pressure and sodium retention in DOCA-salt hypertension. Kidney Int. 2008;74:1040–1048.PubMedGoogle Scholar
  132. 132.
    Wang Y, Babankova D, Huang J, Swain GM, Wang DH. Deletion of transient receptor potential vanilloid type 1 receptors exaggerates renal damage in deoxycorticosterone acetate-salt hypertension. Hypertension. 2008;52:264–270.PubMedGoogle Scholar
  133. 133.
    Rhaleb NE, Peng H, Alfie ME, Shesely EG, Carretero OA. Effect of ACE inhibitor on DOCA-salt- and aortic coarctation-induced hypertension in mice: Do kinin B2 receptors play a role? Hypertension. 1999;33:329–334.PubMedGoogle Scholar
  134. 134.
    Nakano D, Itoh C, Ishii F, et al. Effects of sesamin on aortic oxidative stress and endothelial dysfunction in deoxycorticosterone acetate-salt hypertensive rats. Biol Pharm Bull. 2003;26:1701–1705.PubMedGoogle Scholar
  135. 135.
    Callera GE, Montezano AC, Touyz RM, et al. ETA receptor mediates altered leukocyte-endothelial cell interaction and adhesion molecules expression in DOCA-salt rats. Hypertension. 2004;43:872–879.PubMedGoogle Scholar
  136. 136.
    Korshunov VA, Daul M, Massett MP, Berk BC. Axl mediates vascular remodeling induced by deoxycorticosterone acetate-salt hypertension. Hypertension. 2007;50:1057–1062.PubMedGoogle Scholar
  137. 137.
    Hamlyn JM. Increased levels of a humoral digitalis-like factor in deoxycorticosterone acetate-induced hypertension in the pig. J Endocrinol. 1989;122:409–420.PubMedGoogle Scholar
  138. 138.
    Dai S, McNeill JH. Myocardial performance of STZ-diabetic DOCA-hypertensive rats. Am J Physiol. 1992;263:H1798–H1805.PubMedGoogle Scholar
  139. 139.
    Schenk J, Hebden RA, Dai S, McNeill JH. Integrated cardiovascular function in the conscious streptozotocin-diabetic deoxycorticosterone-acetate-hypertensive rats. Pharmacology. 1994;48:211–215.PubMedGoogle Scholar
  140. 140.
    Cunha RS, Cabral AM, Vasquez EC. Evidence that the autonomic nervous system plays a major role in the l-NAME-induced hypertension in conscious rats. Am J Hypertens. 1993;6:806–809.PubMedGoogle Scholar
  141. 141.
    Kanematsu Y, Yamaguchi K, Ohnishi H, et al. Dietary doses of nitrite restore the circulating nitric oxide level and improve renal injury in l-NAME-induced hypertensive rats. Am J Physiol Renal Physiol. 2008;295:F1457–F1462.PubMedGoogle Scholar
  142. 142.
    K-Laflamme A, Foucart S, Moreau P, Lambert C, Cardinal R, de Champlain J. Sympathetic functions in NG-nitro-l-arginine-methyl-ester-induced hypertension: Modulation by the renin-angiotensin system. J Hypertens. 1998;16:63–76.PubMedGoogle Scholar
  143. 143.
    Rodriguez-Perez JC, Brenner BM. Renal effects of an acute NaCl load in chronic nitric oxide blockade-induced hypertensive rats. J Physiol Biochem. 1998;54:127–133.PubMedGoogle Scholar
  144. 144.
    Kobayashi N, Yanaka H, Tojo A, Kobayashi K, Matsuoka H. Effects of amlodipine on nitric oxide synthase mRNA expression and coronary microcirculation in prolonged nitric oxide blockade-induced hypertensive rats. J Cardiovasc Pharmacol. 1999;34:173–181.PubMedGoogle Scholar
  145. 145.
    Senturk UK, Kaputlu I, Gunduz F, Kuru O, Gokalp O. Tissue and blood levels of zinc, copper, and magnesium in nitric oxide synthase blockade-induced hypertension. Biol Trace Elem Res. 2000;77:97–106.PubMedGoogle Scholar
  146. 146.
    De Angelis K, Ogawa T, Sanches IC, Rigatto KV, Krieger EM, Irigoyen MC. Impairment on cardiac output and blood flow adjustments to exercise in l-NAME-induced hypertensive rats. J Cardiovasc Pharmacol. 2006;47:371–376.PubMedGoogle Scholar
  147. 147.
    Ebose EJ, Campbell PI, Okorodudu AO. Electrolytes and pH changes in pre-eclamptic rats. Clin Chim Acta. 2007;384:135–140.PubMedGoogle Scholar
  148. 148.
    Miguel-Carrasco JL, Mate A, Monserrat MT, Arias JL, Aramburu O, Vazquez CM. The role of inflammatory markers in the cardioprotective effect of l-carnitine in l-NAME-induced hypertension. Am J Hypertens. 2008;21:1231–1237.PubMedGoogle Scholar
  149. 149.
    Francois H, Makhanova N, Ruiz P, et al. A role for the thromboxane (tp) receptor in l-NAME hypertension. Am J Physiol Renal Physiol. 2008;295:F1096–F1102.PubMedGoogle Scholar
  150. 150.
    Kurihara N, Alfie ME, Sigmon DH, Rhaleb NE, Shesely EG, Carretero OA. Role of nNOS in blood pressure regulation in eNOS null mutant mice. Hypertension. 1998;32:856–861.PubMedGoogle Scholar
  151. 151.
    Placier S, Boffa JJ, Dussaule JC, Chatziantoniou C. Reversal of renal lesions following interruption of nitric oxide synthesis inhibition in transgenic mice. Nephrol Dial Transplant. 2006;21:881–888.PubMedGoogle Scholar
  152. 152.
    Schyvens CG, Andrews MC, Tam R, et al. Antioxidant vitamins and adrenocorticotrophic hormone-induced hypertension in rats. Clin Exp Hypertens. 2007;29:465–478.PubMedGoogle Scholar
  153. 153.
    Zhang Y, Hu L, Mori TA, Barden A, Croft KD, Whitworth JA. Arachidonic acid metabolism in glucocorticoid-induced hypertension. Clin Exp Pharmacol Physiol. 2008;35:557–562.PubMedGoogle Scholar
  154. 154.
    Schyvens CG, Mangos GJ, Zhang Y, McKenzie KU, Whitworth JA. Telemetric monitoring of adrenocorticotrophin-induced hypertension in mice. Clin Exp Pharmacol Physiol. 2001;28:758–760.PubMedGoogle Scholar
  155. 155.
    Fraser TB, Mangos GJ, Turner SW, Whitworth JA. Adrenocorticotrophic hormone-induced hypertension in the rat: Effects of the endothelin antagonist bosentan. Clin Exp Pharmacol Physiol. 1999;26:628–633.PubMedGoogle Scholar
  156. 156.
    Grayson TH, Ohms SJ, Brackenbury TD, et al. Vascular microarray profiling in two models of hypertension identifies caveolin-1, Rgs2 and Rgs5 as antihypertensive targets. BMC Genomics. 2007;8:404.PubMedGoogle Scholar
  157. 157.
    Lorenz JN, Loreaux EL, Dostanic-Larson I, et al. ACTH-induced hypertension is dependent on the ouabain-binding site of the alpha2-Na+-K+-ATPase subunit. Am J Physiol Heart Circ Physiol. 2008;295:H273–H280.PubMedGoogle Scholar
  158. 158.
    Ramirez-Gil JF, Trouve P, Mougenot N, Carayon A, Lechat P, Charlemagne D. Modifications of myocardial Na+,K(+)-ATPase isoforms and Na+/Ca2+ exchanger in aldosterone/salt-induced hypertension in guinea pigs. Cardiovasc Res. 1998;38:451–462.PubMedGoogle Scholar
  159. 159.
    Scoggins BA, Allen KJ, Coghlan JP, et al Haemodynamics of ACTH-induced hypertension in sheep. Clin Sci (Lond). 1979;57 Suppl 5:333s–336s.Google Scholar
  160. 160.
    Scoggins BA, Coghlan JP, Congiu M, et al. Alterations in osmotic but not pressor responses to ACTH by optic recess lesions in sheep. Hypertension. 1982;4:154–158.PubMedGoogle Scholar
  161. 161.
    Ojeda NB, Grigore D, Alexander BT. Intrauterine growth restriction: Fetal programming of hypertension and kidney disease. Adv Chronic Kidney Dis. 2008;15:101–106.PubMedGoogle Scholar
  162. 162.
    Grigore D, Ojeda NB, Alexander BT. Sex differences in the fetal programming of hypertension. Gend Med. 2008;5 Suppl A:S121–S132.PubMedGoogle Scholar
  163. 163.
    Sedeek M, Gilbert JS, Lamarca BB, et al. Role of reactive oxygen species in hypertension produced by reduced uterine perfusion in pregnant rats. Am J Hypertens. 2008;21:1152–1156.PubMedGoogle Scholar
  164. 164.
    Elmes MJ, Haase A, Gardner DS, Langley-Evans SC. Sex differences in sensitivity to beta-adrenergic agonist isoproterenol in the isolated adult rat heart following prenatal protein restriction. Br J Nutr. 2008:1-10.Google Scholar
  165. 165.
    Ojeda NB, Grigore D, Robertson EB, Alexander BT. Estrogen protects against increased blood pressure in postpubertal female growth restricted offspring. Hypertension. 2007;50:679–685.PubMedGoogle Scholar
  166. 166.
    Ojeda NB, Grigore D, Alexander BT. Developmental programming of hypertension: Insight from animal models of nutritional manipulation. Hypertension. 2008;52:44–50.PubMedGoogle Scholar
  167. 167.
    Woods LL, Weeks DA, Rasch R. Programming of adult blood pressure by maternal protein restriction: Role of nephrogenesis. Kidney Int. 2004;65:1339–1348.PubMedGoogle Scholar
  168. 168.
    Harrison M, Langley-Evans SC. Intergenerational programming of impaired nephrogenesis and hypertension in rats following maternal protein restriction during pregnancy. Br J Nutr. 2008:1-11.Google Scholar
  169. 169.
    O’Regan D, Kenyon CJ, Seckl JR, Holmes MC. Prenatal dexamethasone ‘programmes’ hypotension, but stress-induced hypertension in adult offspring. J Endocrinol. 2008;196:343–352.PubMedGoogle Scholar
  170. 170.
    Baserga M, Hale MA, Wang ZM, et al. Uteroplacental insufficiency alters nephrogenesis and downregulates cyclooxygenase-2 expression in a model of IUGR with adult-onset hypertension. Am J Physiol Regul Integr Comp Physiol. 2007;292:R1943–R1955.PubMedGoogle Scholar
  171. 171.
    Rexhepaj R, Boini KM, Huang DY, et al. Role of maternal glucocorticoid inducible kinase SGK1 in fetal programming of blood pressure in response to prenatal diet. Am J Physiol Regul Integr Comp Physiol. 2008;294:R2008–R2013.PubMedGoogle Scholar
  172. 172.
    Hayden MR, Chowdhury N, Govindarajan G, Karuparthi PR, Habibi J, Sowers JR. Myocardial myocyte remodeling and fibrosis in the cardiometabolic syndrome. J Cardiometab Syndr. 2006;1:326–333.PubMedGoogle Scholar
  173. 173.
    DeMarco VG, Habibi J, Whaley-Connell AT, et al. Oxidative stress contributes to pulmonary hypertension in the transgenic (mRen2)27 rat. Am J Physiol Heart Circ Physiol. 2008;294:H2659–H2668.PubMedGoogle Scholar
  174. 174.
    Chappell MC, Westwood BM, Yamaleyeva LM. Differential effects of sex steroids in young and aged female mRen2.lewis rats: A model of estrogen and salt-sensitive hypertension. Gen Med. 2008;5 Suppl A:S65–S75.Google Scholar
  175. 175.
    Chabova VC, Kramer HJ, Vaneckova I, et al. Effects of chronic cytochrome P-450 inhibition on the course of hypertension and end-organ damage in ren-2 transgenic rats. Vascul Pharmacol. 2007;47:145–159.PubMedGoogle Scholar
  176. 176.
    Brosnihan KB, Li P, Figueroa JP, Ganten D, Ferrario CM. Estrogen, nitric oxide, and hypertension differentially modulate agonist-induced contractile responses in female transgenic (mRen2)27 hypertensive rats. Am J Physiol Heart Circ Physiol. 2008;294:H1995–H2001.PubMedGoogle Scholar
  177. 177.
    Wei Y, Whaley-Connell AT, Chen K, et al. NADPH oxidase contributes to vascular inflammation, insulin resistance, and remodeling in the transgenic (mRen2) rat. Hypertension. 2007;50:384–391.PubMedGoogle Scholar
  178. 178.
    Vaneckova I, Kopkan L, Huskova Z, et al. AT1 receptor antisense therapy transiently lowers blood pressure in ren-2 transgenic rats. Vascul Pharmacol. 2007;47:63–67.PubMedGoogle Scholar
  179. 179.
    Billet S, Aguilar F, Baudry C, Clauser E. Role of angiotensin II AT(1) receptor activation in cardiovascular diseases. Kidney Int. 2008;74:1379–1384.PubMedGoogle Scholar
  180. 180.
    van den Brink OW, Delbridge LM, Pedrazzini T, Rosenfeldt FL, Pepe S. Augmented myocardial methionine-enkephalin in a murine model of cardiac angiotensin II-overexpression. J Renin Angiotensin Aldosterone Syst. 2007;8:153–159.PubMedGoogle Scholar
  181. 181.
    Heximer SP, Knutsen RH, Sun X, et al. Hypertension and prolonged vasoconstrictor signaling in RGS2-deficient mice. J Clin Invest. 2003;111:445–452.PubMedGoogle Scholar
  182. 182.
    Eckhart AD, Ozaki T, Tevaearai H, Rockman HA, Koch WJ. Vascular-targeted overexpression of G protein-coupled receptor kinase-2 in transgenic mice attenuates beta-adrenergic receptor signaling and increases resting blood pressure. Mol Pharmacol. 2002;61:749–758.PubMedGoogle Scholar
  183. 183.
    Hercule HC, Tank J, Plehm R, et al. Regulator of G protein signaling 2 ameliorates angiotensin II-induced hypertension in mice. Exp Physiol. 2007;92:1014–1022.PubMedGoogle Scholar
  184. 184.
    Keys JR, Zhou RH, Harris DM, Druckman CA, Eckhart AD. Vascular smooth muscle overexpression of G protein-coupled receptor kinase 5 elevates blood pressure, which segregates with sex and is dependent on gi-mediated signaling. Circulation. 2005;112:1145–1153.PubMedGoogle Scholar
  185. 185.
    Hassanain HH, Gregg D, Marcelo ML, et al. Hypertension caused by transgenic overexpression of Rac1. Antioxid Redox Signal. 2007;9:91–100.PubMedGoogle Scholar
  186. 186.
    Wirth A, Benyo Z, Lukasova M, et al. G12-G13-LARG-mediated signaling in vascular smooth muscle is required for salt-induced hypertension. Nat Med. 2008;14:64–68.PubMedGoogle Scholar
  187. 187.
    da Costa-Goncalves AC, Tank J, Plehm R, et al. Role of the multidomain protein spinophilin in blood pressure and cardiac function regulation. Hypertension. 2008;52:702–707.PubMedGoogle Scholar
  188. 188.
    Kim J, Keys JR, Eckhart AD. Vascular smooth muscle migration and proliferation in response to lysophosphatidic acid (LPA) is mediated by LPA receptors coupling to gq. Cell Signal. 2006;18:1695–1701.PubMedGoogle Scholar
  189. 189.
    Kulandavelu S, Qu D, Adamson SL. Cardiovascular function in mice during normal pregnancy and in the absence of endothelial NO synthase. Hypertension. 2006;47:1175–1182.PubMedGoogle Scholar
  190. 190.
    Ge Y, Bagnall AJ, Stricklett PK, Webb DJ, Kotelevtsev YV, Kohan DE. Combined knockout of collecting duct endothelin A and B receptors causes hypertension and sodium retention. Am J Physiol Renal Physiol. 2008;295:F1635–F1640.PubMedGoogle Scholar
  191. 191.
    Amiri F, Virdis A, Neves MF, et al. Endothelium-restricted overexpression of human endothelin-1 causes vascular remodeling and endothelial dysfunction. Circulation. 2004;110:2233–2240.PubMedGoogle Scholar
  192. 192.
    Li MW, Dai X, Watts SW, Kreulen DL, Fink GD. Increased superoxide levels in ganglia and sympathoexcitation are involved in sarafotoxin 6c-induced hypertension. Am J Physiol Regul Integr Comp Physiol. 2008;295:R1546–R1554.PubMedGoogle Scholar
  193. 193.
    Angelone T, Quintieri AM, Brar BK, et al. The antihypertensive chromogranin A-derived peptide catestatin as a novel endocrine/paracrine modulator of cardiac function: Inotropic and lusitropic actions on the rat heart. Endocrinology. 2008;149:4780–4793.PubMedGoogle Scholar
  194. 194.
    Mahapatra NR. Catestatin is a novel endogenous peptide that regulates cardiac function and blood pressure. Cardiovasc Res. 2008;80:330–338.PubMedGoogle Scholar
  195. 195.
    Obih P, Oyekan AO. Regulation of blood pressure, natriuresis and renal thiazide/amiloride sensitivity in PPARalpha null mice. Blood Press. 2008;17:55–63.PubMedGoogle Scholar
  196. 196.
    Osorio JC, Cheema FH, Martens TP, et al. Simvastatin reverses cardiac hypertrophy caused by disruption of the bradykinin 2 receptor. Can J Physiol Pharmacol. 2008;86:633–642.PubMedGoogle Scholar
  197. 197.
    Tsutsumi S, Zhang X, Takata K, et al. Differential regulation of the inducible nitric oxide synthase gene by estrogen receptors {alpha}and {beta}. J Endocrinol. 2008;199:267.PubMedGoogle Scholar
  198. 198.
    Belo NO, Sairam MR, Dos Reis AM. Impairment of the natriuretic peptide system in follitropin receptor knockout mice and reversal by estradiol: Implications for obesity-associated hypertension in menopause. Endocrinology. 2008;149:1399–1406.PubMedGoogle Scholar
  199. 199.
    Wu Q, Xu-Cai YO, Chen S, Wang W. Corin: New insights into the natriuretic peptide system. Kidney Int. 2009;75:142–146.PubMedGoogle Scholar
  200. 200.
    Bouillon R, Carmeliet G, Verlinden L, et al. Vitamin D and human health: Lessons from vitamin D receptor null mice. Endocr Rev. 2008;29:726–776.PubMedGoogle Scholar
  201. 201.
    Michailidou Z, Carter RN, Marshall E, et al. Glucocorticoid receptor haploinsufficiency causes hypertension and attenuates hypothalamic-pituitary-adrenal axis and blood pressure adaptions to high-fat diet. FASEB J. 2008;22:3896–3907.PubMedGoogle Scholar
  202. 202.
    Rensen SS, Niessen PM, van Deursen JM, et al. Smoothelin-B deficiency results in reduced arterial contractility, hypertension, and cardiac hypertrophy in mice. Circulation. 2008;118:828–836.PubMedGoogle Scholar
  203. 203.
    Ohashi K, Iwatani H, Kihara S, et al. Exacerbation of albuminuria and renal fibrosis in subtotal renal ablation model of adiponectin-knockout mice. Arterioscler Thromb Vasc Biol. 2007;27:1910–1917.PubMedGoogle Scholar
  204. 204.
    Lund AK, Agbor LN, Zhang N, et al. Loss of the aryl hydrocarbon receptor induces hypoxemia, endothelin-1, and systemic hypertension at modest altitude. Hypertension. 2008;51:803–809.PubMedGoogle Scholar
  205. 205.
    Fritsch S, Lindner V, Welsch S, et al. Intravenous delivery of PTH/PTHrP type 1 receptor cDNA to rats decreases heart rate, blood pressure, renal tone, renin angiotensin system, and stress-induced cardiovascular responses. J Am Soc Nephrol. 2004;15:2588–2600.PubMedGoogle Scholar
  206. 206.
    Moustafa-Bayoumi M, Alhaj MA, El-Sayed O, et al. Vascular hypertrophy and hypertension caused by transgenic overexpression of profilin 1. J Biol Chem. 2007;282:37632–37639.PubMedGoogle Scholar
  207. 207.
    Li N, Chen L, Yi F, Xia M, Li PL. Salt-sensitive hypertension induced by decoy of transcription factor hypoxia-inducible factor-1alpha in the renal medulla. Circ Res. 2008;102:1101–1108.PubMedGoogle Scholar
  208. 208.
    Fischer R, Dechend R, Qadri F, et al. Dietary n-3 polyunsaturated fatty acids and direct renin inhibition improve electrical remodeling in a model of high human renin hypertension. Hypertension. 2008;51:540–546.PubMedGoogle Scholar
  209. 209.
    Peters B, Grisk O, Becher B, et al. Dose-dependent titration of prorenin and blood pressure in Cyp1a1ren-2 transgenic rats: Absence of prorenin-induced glomerulosclerosis. J Hypertens. 2008;26:102–109.PubMedGoogle Scholar
  210. 210.
    Radi ZA, Ostroski R. Pulmonary and cardiorenal cyclooxygenase-1 (COX-1), -2 (COX-2), and microsomal prostaglandin E synthase-1 (mPGES-1) and -2 (mPGES-2) expression in a hypertension model. Mediators Inflamm. 2007;2007:85091.PubMedGoogle Scholar
  211. 211.
    Tordjman KM, Semenkovich CF, Coleman T, et al. Absence of peroxisome proliferator-activated receptor-alpha abolishes hypertension and attenuates atherosclerosis in the Tsukuba hypertensive mouse. Hypertension. 2007;50:945–951.PubMedGoogle Scholar
  212. 212.
    Lamounier-Zepter V, Bornstein SR, Kunes J, et al. Adrenocortical changes and arterial hypertension in lipoatrophic A-ZIP/F-1 mice. Mol Cell Endocrinol. 2008;280:39–46.PubMedGoogle Scholar
  213. 213.
    Lloyd DJ, McCormick J, Helmering J, et al. Generation and characterization of two novel mouse models exhibiting the phenotypes of the metabolic syndrome: Apob48−/−Lepob/ob mice devoid of ApoE or ldlr. Am J Physiol Endocrinol Metab. 2008;294:E496–E505.PubMedGoogle Scholar
  214. 214.
    Su W, Guo Z, Randall DC, Cassis LA, Brown DR, Gong MC. Hypertension and disrupted blood pressure circadian rhythm in type 2 diabetic db/db mice. Am J Physiol Heart Circ Physiol. 2008;295:H1634–1641.PubMedGoogle Scholar
  215. 215.
    Liang M, Lee NH, Wang H, et al. Molecular networks in Dahl salt-sensitive hypertension based on transcriptome analysis of a panel of consomic rats. Physiol Genomics. 2008;34:54–64.PubMedGoogle Scholar
  216. 216.
    Mattson DL, Dwinell MR, Greene AS, et al. Chromosome substitution reveals the genetic basis of Dahl salt-sensitive hypertension and renal disease. Am J Physiol Renal Physiol. 2008;295:F837–F842.PubMedGoogle Scholar
  217. 217.
    Pendergrass KD, Pirro NT, Westwood BM, Ferrario CM, Brosnihan KB, Chappell MC. Sex differences in circulating and renal angiotensins of hypertensive mRen(2).lewis but not normotensive lewis rats. Am J Physiol Heart Circ Physiol. 2008;295:H10–H20.PubMedGoogle Scholar
  218. 218.
    Harris DM, Cohn HI, Pesant S, Zhou RH, Eckhart AD. Vascular smooth muscle G(q) signaling is involved in high blood pressure in both induced renal and genetic vascular smooth muscle-derived models of hypertension. Am J Physiol Heart Circ Physiol. 2007;293:H3072–H3079.PubMedGoogle Scholar
  219. 219.
    Hang L, Stephen-Larson PM, Henry JP, Dixon FJ. Transfer of renovascular hypertension and coronary heart disease by lymphoid cells from SLE-prone mice. Am J Pathol. 1984;115:42–46.PubMedGoogle Scholar
  220. 220.
    Peredo HA, Mayer M, Faya IR, Puyo AM, Carranza A. Dehydroepiandrosterone (DHEA) prevents the prostanoid imbalance in mesenteric bed of fructose-induced hypertensive rats. Eur J Nutr. 2008;47:349–356.PubMedGoogle Scholar
  221. 221.
    Ma SK, Bae EH, Kim IJ, et al. Increased renal expression of nitric oxide synthase and atrial natriuretic peptide in rats with glycyrrhizic-acid-induced hypertension. Phytother Res. 2009;23:206–211.PubMedGoogle Scholar
  222. 222.
    Beltowski J, Jamroz-Wisniewska A, Wojcicka G, Lowicka E, Wojtak A. Renal antioxidant enzymes and glutathione redox status in leptin-induced hypertension. Mol Cell Biochem. 2008;319:163–174.PubMedGoogle Scholar
  223. 223.
    Satoh Y, Ide Y, Sugano T, Koda K, Momose Y, Tagami M. Hypotensive and hypertensive effects of acetaldehyde on blood pressure in rats. Nihon Arukoru Yakubutsu Igakkai Zasshi. 2008;43:188–193.PubMedGoogle Scholar
  224. 224.
    Wang S, Xu J, Song P, et al. Acute inhibition of guanosine triphosphate cyclohydrolase 1 uncouples endothelial nitric oxide synthase and elevates blood pressure. Hypertension. 2008;52:484–490.PubMedGoogle Scholar
  225. 225.
    Satoh K, Fukumoto Y, Nakano M, et al. Statin ameliorates hypoxia-induced pulmonary hypertension associated with down-regulated stromal cell-derived factor-1. Cardiovasc Res. 2009;81:226–234.PubMedGoogle Scholar
  226. 226.
    Kwapiszewska G, Wygrecka M, Marsh LM, et al. Fhl-1, a new key protein in pulmonary hypertension. Circulation. 2008;118:1183–1194.PubMedGoogle Scholar
  227. 227.
    Yu L, Quinn DA, Garg HG, Hales CA. Deficiency of the NHE1 gene prevents hypoxia-induced pulmonary hypertension and vascular remodeling. Am J Respir Crit Care Med. 2008;177:1276–1284.PubMedGoogle Scholar
  228. 228.
    De Franceschi L, Platt OS, Malpeli G, et al. Protective effects of phosphodiesterase-4 (PDE-4) inhibition in the early phase of pulmonary arterial hypertension in transgenic sickle cell mice. FASEB J. 2008;22:1849–1860.PubMedGoogle Scholar
  229. 229.
    Henriques-Coelho T, Brandao-Nogueira A, Moreira-Goncalves D, Correia-Pinto J, Leite-Moreira AF. Effects of TNF-alpha blockade in monocrotaline-induced pulmonary hypertension. Rev Port Cardiol. 2008;27:341–348.PubMedGoogle Scholar
  230. 230.
    Qin N, Gong QH, Wei LW, Wu Q, Huang XN. Total ginsenosides inhibit the right ventricular hypertrophy induced by monocrotaline in rats. Biol Pharm Bull. 2008;31:1530–1535.PubMedGoogle Scholar
  231. 231.
    Rakotoniaina Z, Guerard P, Lirussi F, et al. Celecoxib but not the combination of celecoxib + atorvastatin prevents the development of monocrotaline-induced pulmonary hypertension in the rat. Naunyn Schmiedebergs Arch Pharmacol. 2008;378:241–251.PubMedGoogle Scholar
  232. 232.
    Henriques-Coelho T, Oliveira SM, Moura RS, et al. Thymulin inhibits monocrotaline-induced pulmonary hypertension modulating interleukin-6 expression and suppressing p38 pathway. Endocrinology. 2008;149:4367–4373.PubMedGoogle Scholar
  233. 233.
    Sauvageau S, Thorin E, Villeneuve L, Dupuis J. Endothelin-3-dependent pulmonary vasoconstriction in monocrotaline-induced pulmonary arterial hypertension. Peptides. 2008;29:2039–2045.PubMedGoogle Scholar
  234. 234.
    Hong KH, Lee YJ, Lee E, et al. Genetic ablation of the BMPR2 gene in pulmonary endothelium is sufficient to predispose to pulmonary arterial hypertension. Circulation. 2008;118:722–730.PubMedGoogle Scholar
  235. 235.
    Song Y, Coleman L, Shi J, et al. Inflammation, endothelial injury, and persistent pulmonary hypertension in heterozygous BMPR2-mutant mice. Am J Physiol Heart Circ Physiol. 2008;295:H677–H690.PubMedGoogle Scholar
  236. 236.
    Shifren A, Durmowicz AG, Knutsen RH, Faury G, Mecham RP. Elastin insufficiency predisposes to elevated pulmonary circulatory pressures through changes in elastic artery structure. J Appl Physiol. 2008;105:1610–1619.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • David R. Gross
    • 1
  1. 1.Department of Veterinary BiosciencesUniversity of Illinois, Urbana Champaign College of Veterinary MedicineUrbanaUSA

Personalised recommendations