Iatrogenic, Transgenic, and Naturally Occurring Models of Cardiomyopathy and Heart Failure

  • David R. Gross


Cardiomyopathy is a general term applied to a wide variety of conditions that result in myocardial lesions not related to specific disease states. The term encompasses a wide variety of conditions initiated by numerous etiologies. The disease usually presents as either hypertrophic or dilated cardiomyopathy (HCM or DCM). Naturally occurring cardiomyopathy seems to be caused by mutations in one or more sarcomeric proteins. Inherited DCM can result from mutations in the genes encoding cardiac troponin T, troponin C, and alpha-tropomyosin, while different mutations in the same genes cause HCM. DCM mutations depress myofibrillar function as a result of thin filament mutations while HCM has the opposite effect.1

Familial HCM is described as an autosomal dominant disorder that manifests as cardiac hypertrophy with myocyte disarray. Mutations in five different loci result in the disease. Beta cardiac myosin heavy-chain, alpha tropomyosin, and cardiac troponin T have been identified as distinct disease genes.26 Liu et al.7 compared the morphological features of spontaneously occurring HCM in 38 humans, 51 cats, and 10 dogs. They found that asymmetric hypertrophy of the ventricular septum, marked disorganization of myocardial cells, abnormal intramural coronary arteries, and myocardial fibrosis were common to all three species. Transgenic mice expressing cardiac troponin T (cTnT)-Q92 develop HCM characterized by enhanced systolic function and have higher levels of cardiac troponin I, cardiac alpha-actin, cardiac alpha-tropomyosin, and cardiac troponin than wild type.8


Transgenic Mouse Diastolic Dysfunction Brain Natriuretic Peptide Atrial Natriuretic Peptide Myocardial Fibrosis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Mirza M, Marston S, Willott R, Ashley C, Mogensen J, McKenna W, Robinson P, Redwood C, Watkins H. Dilated cardiomyopathy mutations in three thin filament regulatory proteins result in a common functional phenotype. J Biol Chem. 2005;280:28498–28506.PubMedGoogle Scholar
  2. 2.
    Thierfelder L, Watkins H, MacRae C, Lamas R, McKenna W, Vosberg HP, Seidman JG, Seidman CE. Alpha-tropomyosin and cardiac troponin T mutations cause familial hypertrophic cardiomyopathy: A disease of the sarcomere. Cell. 1994;77:701–712.PubMedGoogle Scholar
  3. 3.
    Watkins H, Seidman JG, Seidman CE. Familial hypertrophic cardiomyopathy: A genetic model of cardiac hypertrophy. Hum Mol Genet. 1995;4 Spec No:1721–1727.PubMedGoogle Scholar
  4. 4.
    Watkins H, Conner D, Thierfelder L, Jarcho JA, MacRae C, McKenna WJ, Maron BJ, Seidman JG, Seidman CE. Mutations in the cardiac myosin binding protein-C gene on chromosome 11 cause familial hypertrophic cardiomyopathy. Nat Genet. 1995;11:434–437.PubMedGoogle Scholar
  5. 5.
    Watkins H, Seidman CE, Seidman JG, Feng HS, Sweeney HL. Expression and functional assessment of a truncated cardiac troponin T that causes hypertrophic cardiomyopathy. Evidence for a dominant negative action. J Clin Invest. 1996;98:2456–2461.PubMedGoogle Scholar
  6. 6.
    Anan R, Greve G, Thierfelder L, Watkins H, McKenna WJ, Solomon S, Vecchio C, Shono H, Nakao S, Tanaka H. Prognostic implications of novel beta cardiac myosin heavy chain gene mutations that cause familial hypertrophic cardiomyopathy. J Clin Invest. 1994;93:280–285.PubMedGoogle Scholar
  7. 7.
    Liu SK, Roberts WC, Maron BJ. Comparison of morphologic findings in spontaneously occurring hypertrophic cardiomyopathy in humans, cats and dogs. Am J Cardiol. 1993;72:944–951.PubMedGoogle Scholar
  8. 8.
    Lombardi R, Bell A, Senthil V, Sidhu J, Noseda M, Roberts R, Marian AJ. Differential interactions of thin filament proteins in two cardiac troponin T mouse models of hypertrophic and dilated cardiomyopathies. Cardiovasc Res. 2008;79:109–117.PubMedGoogle Scholar
  9. 9.
    Jane-wit D, Altuntas CZ, Monti J, Johnson JM, Forsthuber TG, Tuohy VK. Sex-defined T-cell responses to cardiac self determine differential outcomes of murine dilated cardiomyopathy. Am J Pathol. 2008;172:11–21.PubMedGoogle Scholar
  10. 10.
    Gross DR. Animal Models in Cardiovascular Research, 2nd Revised Edition. Boston: Kluwer Academic Publishers; 1994.Google Scholar
  11. 11.
    MacDonald KA, Kittleson MD, Larson RF, Kass P, Klose T, Wisner ER. The effect of ramipril on left ventricular mass, myocardial fibrosis, diastolic function, and plasma neurohormones in Maine coon cats with familial hypertrophic cardiomyopathy without heart failure. J Vet Intern Med. 2006;20:1093–1105.PubMedGoogle Scholar
  12. 12.
    MacDonald KA, Wisner ER, Larson RF, Klose T, Kass PH, Kittleson MD. Comparison of myocardial contrast enhancement via cardiac magnetic resonance imaging in healthy cats and cats with hypertrophic cardiomyopathy. Am J Vet Res. 2005;66:1891–1894.PubMedGoogle Scholar
  13. 13.
    Gundler S, Tidholm A, Haggstrom J. Prevalence of myocardial hypertrophy in a population of asymptomatic Swedish Maine coon cats. Acta Vet Scand. 2008;50:22.PubMedGoogle Scholar
  14. 14.
    Fries R, Heaney AM, Meurs KM. Prevalence of the myosin-binding protein C mutation in Maine coon cats. J Vet Intern Med. 2008;22:893–896.PubMedGoogle Scholar
  15. 15.
    Carlos Sampedrano C, Chetboul V, Gouni V, Nicolle AP, Pouchelon JL, Tissier R. Systolic and diastolic myocardial dysfunction in cats with hypertrophic cardiomyopathy or systemic hypertension. J Vet Intern Med. 2006;20:1106–1115.PubMedGoogle Scholar
  16. 16.
    Koffas H, Dukes-McEwan J, Corcoran BM, Moran CM, French A, Sboros V, Simpson K, McDicken WN. Pulsed tissue Doppler imaging in normal cats and cats with hypertrophic cardiomyopathy. J Vet Intern Med. 2006;20:65–77.PubMedGoogle Scholar
  17. 17.
    Wall M, Calvert CA, Sanderson SL, Leonhardt A, Barker C, Fallaw TK. Evaluation of extended-release diltiazem once daily for cats with hypertrophic cardiomyopathy. J Am Anim Hosp Assoc. 2005;41:98–103.PubMedGoogle Scholar
  18. 18.
    Yang VK, Freeman LM, Rush JE. Comparisons of morphometric measurements and serum insulin-like growth factor concentration in healthy cats and cats with hypertrophic cardiomyopathy. Am J Vet Res. 2008;69:1061–1066.PubMedGoogle Scholar
  19. 19.
    Prosek R, Sisson DD, Oyama MA, Biondo AW, Solter PE. Measurements of plasma endothelin immunoreactivity in healthy cats and cats with cardiomyopathy. J Vet Intern Med. 2004;18:826–830.PubMedGoogle Scholar
  20. 20.
    Baty CJ. Feline hypertrophic cardiomyopathy: An update. Vet Clin North Am Small Anim Pract. 2004;34:1227–1234.PubMedGoogle Scholar
  21. 21.
    Nakagawa K, Takemura N, Machida N, Kawamura M, Amasaki H, Hirose H. Hypertrophic cardiomyopathy in a mixed breed cat family. J Vet Med Sci. 2002;64:619–621.PubMedGoogle Scholar
  22. 22.
    Bright JM, Herrtage ME, Schneider JF. Pulsed Doppler assessment of left ventricular diastolic function in normal and cardiomyopathic cats. J Am Anim Hosp Assoc. 1999;35:285–291.PubMedGoogle Scholar
  23. 23.
    Riesen SC, Kovacevic A, Lombard CW, Amberger C. Echocardiographic screening of purebred cats: An overview from 2002 to 2005. Schweiz Arch Tierheilkd. 2007;149:73–76.PubMedGoogle Scholar
  24. 24.
    Rush JE, Freeman LM, Fenollosa NK, Brown DJ. Population and survival characteristics of cats with hypertrophic cardiomyopathy: 260 cases (1990-1999). J Am Vet Med Assoc. 2002;220:202–207.PubMedGoogle Scholar
  25. 25.
    Meurs KM, Norgard MM, Ederer MM, Hendrix KP, Kittleson MD. A substitution mutation in the myosin binding protein C gene in ragdoll hypertrophic cardiomyopathy. Genomics. 2007;90:261–264.PubMedGoogle Scholar
  26. 26.
    Connolly DJ, Cannata J, Boswood A, Archer J, Groves EA, Neiger R. Cardiac troponin I in cats with hypertrophic cardiomyopathy. J Feline Med Surg. 2003;5:209–216.PubMedGoogle Scholar
  27. 27.
    Herndon WE, Kittleson MD, Sanderson K, Drobatz KJ, Clifford CA, Gelzer A, Summerfield NJ, Linde A, Sleeper MM. Cardiac troponin I in feline hypertrophic cardiomyopathy. J Vet Intern Med. 2002;16:558–564.PubMedGoogle Scholar
  28. 28.
    Cesta MF, Baty CJ, Keene BW, Smoak IW, Malarkey DE. Pathology of end-stage remodeling in a family of cats with hypertrophic cardiomyopathy. Vet Pathol. 2005;42:458–467.PubMedGoogle Scholar
  29. 29.
    Taugner FM. Stimulation of the renin-angiotensin system in cats with hypertrophic cardiomyopathy. J Comp Pathol. 2001;125:122–129.PubMedGoogle Scholar
  30. 30.
    MacDonald KA, Kittleson MD, Garcia-Nolen T, Larson RF, Wisner ER. Tissue Doppler imaging and gradient echo cardiac magnetic resonance imaging in normal cats and cats with hypertrophic cardiomyopathy. J Vet Intern Med. 2006;20:627–634.PubMedGoogle Scholar
  31. 31.
    Kaneshige T, Machida N, Itoh H, Yamane Y. The anatomical basis of complete atrioventricular block in cats with hypertrophic cardiomyopathy. J Comp Pathol. 2006;135:25–31.PubMedGoogle Scholar
  32. 32.
    Harvey AM, Battersby IA, Faena M, Fews D, Darke PG, Ferasin L. Arrhythmogenic right ventricular cardiomyopathy in two cats. J Small Anim Pract. 2005;46:151–156.PubMedGoogle Scholar
  33. 33.
    MacLean HN, Abbott JA, Ward DL, Huckle WR, Sisson DD, Pyle RL. N-terminal atrial natriuretic peptide immunoreactivity in plasma of cats with hypertrophic cardiomyopathy. J Vet Intern Med. 2006;20:284–289.PubMedGoogle Scholar
  34. 34.
    Biondo AW, Ehrhart EJ, Sisson DD, Bulmer BJ, De Morais HS, Solter PF. Immunohistochemistry of atrial and brain natriuretic peptides in control cats and cats with hypertrophic cardiomyopathy. Vet Pathol. 2003;40:501–506.PubMedGoogle Scholar
  35. 35.
    Bedard C, Lanevschi-Pietersma A, Dunn M. Evaluation of coagulation markers in the plasma of healthy cats and cats with asymptomatic hypertrophic cardiomyopathy. Vet Clin Pathol. 2007;36:167–172.PubMedGoogle Scholar
  36. 36.
    Stokol T, Brooks M, Rush JE, Rishniw M, Erb H, Rozanski E, Kraus MS, Gelzer AL. Hypercoagulability in cats with cardiomyopathy. J Vet Intern Med. 2008;22:546–552.PubMedGoogle Scholar
  37. 37.
    Brazzell JL, Borjesson DL. Evaluation of plasma antithrombin activity and D-dimer concentration in populations of healthy cats, clinically ill cats, and cats with cardiomyopathy. Vet Clin Pathol. 2007;36:79–84.PubMedGoogle Scholar
  38. 38.
    Chetboul V, Gouni V, Sampedrano CC, Tissier R, Serres F, Pouchelon JL. Assessment of regional systolic and diastolic myocardial function using tissue Doppler and strain imaging in dogs with dilated cardiomyopathy. J Vet Intern Med. 2007;21:719–730.PubMedGoogle Scholar
  39. 39.
    Freeman LM, Rush JE. Nutrition and cardiomyopathy: Lessons from spontaneous animal models. Curr Heart Fail Rep. 2007;4:84–90.PubMedGoogle Scholar
  40. 40.
    Philipp U, Broschk C, Vollmar A, Distl O. Evaluation of tafazzin as candidate for dilated cardiomyopathy in Irish wolfhounds. J Hered. 2007;98:506–509.PubMedGoogle Scholar
  41. 41.
    Distl O, Vollmar AC, Broschk C, Hamann H, Fox PR. Complex segregation analysis of dilated cardiomyopathy (DCM) in Irish wolfhounds. Heredity. 2007;99:460–465.PubMedGoogle Scholar
  42. 42.
    Meurs KM, Fox PR, Norgard M, Spier AW, Lamb A, Koplitz SL, Baumwart RD. A prospective genetic evaluation of familial dilated cardiomyopathy in the Doberman pinscher. J Vet Intern Med. 2007;21:1016–1020.PubMedGoogle Scholar
  43. 43.
    O’Sullivan ML, O’Grady MR, Minors SL. Assessment of diastolic function by Doppler echocardiography in normal Doberman pinschers and Doberman pinschers with dilated cardiomyopathy. J Vet Intern Med. 2007;21:81–91.PubMedGoogle Scholar
  44. 44.
    O’Sullivan ML, O’Grady MR, Minors SL. Plasma big endothelin-1, atrial natriuretic peptide, aldosterone, and norepinephrine concentrations in normal Doberman pinschers and Doberman pinschers with dilated cardiomyopathy. J Vet Intern Med. 2007;21:92–99.PubMedGoogle Scholar
  45. 45.
    Hamlin RL. Animal models of ventricular arrhythmias. Pharmacol Ther. 2007;113:276–295.PubMedGoogle Scholar
  46. 46.
    Moneva-Jordan A, Luis Fuentes V, Corcoran BM, French A, Dukes-McEwan J. Pulsus alternans in English cocker spaniels with dilated cardiomyopathy. J Small Anim Pract. 2007;48:258–263.PubMedGoogle Scholar
  47. 47.
    Chetboul V, Escriou C, Tessier D, Richard V, Pouchelon JL, Thibault H, Lallemand F, Thuillez C, Blot S, Derumeaux G. Tissue Doppler imaging detects early asymptomatic myocardial abnormalities in a dog model of Duchenne’s cardiomyopathy. Eur Heart J. 2004;25:1934–1939.PubMedGoogle Scholar
  48. 48.
    Smith CE, Freeman LM, Rush JE, Cunningham SM, Biourge V. Omega-3 fatty acids in boxer dogs with arrhythmogenic right ventricular cardiomyopathy. J Vet Intern Med. 2007;21:265–273.PubMedGoogle Scholar
  49. 49.
    Oxford EM, Everitt M, Coombs W, Fox PR, Kraus M, Gelzer AR, Saffitz J, Taffet SM, Moise NS, Delmar M. Molecular composition of the intercalated disc in a spontaneous canine animal model of arrhythmogenic right ventricular dysplasia/cardiomyopathy. Heart Rhythm. 2007;4:1196–1205.PubMedGoogle Scholar
  50. 50.
    Baumwart RD, Orvalho J, Meurs KM. Evaluation of serum cardiac troponin I concentration in boxers with arrhythmogenic right ventricular cardiomyopathy. Am J Vet Res. 2007;68:524–528.PubMedGoogle Scholar
  51. 51.
    Hetyey CS, Manczur F, Dudas-Gyorki Z, Reiczigel J, Ribiczey P, Vajdovich P, Voros K. Plasma antioxidant capacity in dogs with naturally occurring heart diseases. J Vet Med A Physiol Pathol Clin Med. 2007;54:36–39.PubMedGoogle Scholar
  52. 52.
    Protonotarios N, Tsatsopoulou A. Naxos disease and Caravajal syndrome: Cardiocutaneous disorders that highlight the pathogenesis and broaden the spectrum of arrhythmogenic right ventricular cardiomyopathy. Cardiovasc Pathol. 2004;13:185–194.PubMedGoogle Scholar
  53. 53.
    Morrow CJ, McOrist S. Cardiomyopathy associated with a curly hair coat in poll Hereford calves in Australia. Vet Rec. 1985;117:312–313.PubMedGoogle Scholar
  54. 54.
    Watanabe S, Akita T, Itakura C, Goto M. Evidence for a new lethal gene causing cardiomyopathy in Japanese black calves. J Hered. 1979;70:255–258.PubMedGoogle Scholar
  55. 55.
    Whittington RJ, Cook RW. Cardiomyopathy and woolly haircoat syndrome of poll Hereford cattle: Electrocardiographic findings in affected and unaffected calves. Aust Vet J. 1988;65:341–344.PubMedGoogle Scholar
  56. 56.
    Gozalo AS, Cheng LI, St Claire ME, Ward JM, Elkins WR. Pathology of captive moustached tamarins (Saguinus mystax). Comp Med. 2008;58:188–195.PubMedGoogle Scholar
  57. 57.
    Gozalo A, Dagle GE, Montoya E, Weller RE. Spontaneous cardiomyopathy resembling acute rheumatic heart disease in an owl monkey. J Med Primatol. 1992;21:381–383.PubMedGoogle Scholar
  58. 58.
    Bossart GD, Odell DK, Altman NH. Cardiomyopathy in stranded pygmy and dwarf sperm whales. J Am Vet Med Assoc. 1985;187:1137–1140.PubMedGoogle Scholar
  59. 59.
    Recchia FA, Lionetti V. Animal models of dilated cardiomyopathy for translational research. Vet Res Commun. 2007;31 Suppl 1:35–41.PubMedGoogle Scholar
  60. 60.
    Bounhoure JP, Boveda S, Albenque JP. Arrhythmia-induced dilated cardiomyopathies. Bull Acad Natl Med. 2006;190:1225–35; discussion 1235-6.PubMedGoogle Scholar
  61. 61.
    Potter DD, Araoz PA, Ng LL, Kruger DG, Thompson JL, III, Hamner CE, Rysavy JA, Mandrekar JN, Sundt TM, III. Cardiotropin-1 and myocardial strain change heterogeneously in cardiomyopathy. J Surg Res. 2007;141:277–283.PubMedGoogle Scholar
  62. 62.
    Nishijima Y, Sridhar A, Viatchenko-Karpinski S, Shaw C, Bonagura JD, Abraham WT, Joshi MS, Bauer JA, Hamlin RL, Gyorke S, Feldman DS, Carnes CA. Chronic cardiac resynchronization therapy and reverse ventricular remodeling in a model of nonischemic cardiomyopathy. Life Sci. 2007;81:1152–1159.PubMedGoogle Scholar
  63. 63.
    Fuller GA, Bicer S, Hamlin RL, Yamaguchi M, Reiser PJ. Increased myosin heavy chain-beta with atrial expression of ventricular light chain-2 in canine cardiomyopathy. J Card Fail. 2007;13:680–686.PubMedGoogle Scholar
  64. 64.
    Liu X, Gu X, Li Z, Li X, Li H, Chang J, Chen P, Jin J, Xi B, Chen D, Lai D, Graham RM, Zhou M. Neuregulin-1/erbB-activation improves cardiac function and survival in models of ischemic, dilated, and viral cardiomyopathy. J Am Coll Cardiol. 2006;48:1438–1447.PubMedGoogle Scholar
  65. 65.
    Power JM, Raman J, Dornom A, Farish SJ, Burrell LM, Tonkin AM, Buxton B, Alferness CA. Passive ventricular constraint amends the course of heart failure: A study in an ovine model of dilated cardiomyopathy. Cardiovasc Res. 1999;44:549–555.PubMedGoogle Scholar
  66. 66.
    Raman JS, Byrne MJ, Power JM, Alferness CA. Ventricular constraint in severe heart failure halts decline in cardiovascular function associated with experimental dilated cardiomyopathy. Ann Thorac Surg. 2003;76:141–147.PubMedGoogle Scholar
  67. 67.
    Tibayan FA, Lai DT, Timek TA, Dagum P, Liang D, Zasio MK, Daughters GT, Miller DC, Ingels NB, Jr. Alterations in left ventricular curvature and principal strains in dilated cardiomyopathy with functional mitral regurgitation. J Heart Valve Dis. 2003;12:292–299.PubMedGoogle Scholar
  68. 68.
    Tibayan FA, Lai DT, Timek TA, Dagum P, Liang D, Daughters GT, Ingels NB, Miller DC. Alterations in left ventricular torsion in tachycardia-induced dilated cardiomyopathy. J Thorac Cardiovasc Surg. 2002;124:43–49.PubMedGoogle Scholar
  69. 69.
    Timek TA, Dagum P, Lai DT, Liang D, Daughters GT, Tibayan F, Ingels NB, Jr, Miller DC. Tachycardia-induced cardiomyopathy in the ovine heart: Mitral annular dynamic three-dimensional geometry. J Thorac Cardiovasc Surg. 2003;125:315–324.PubMedGoogle Scholar
  70. 70.
    Timek TA, Lai DT, Dagum P, Liang D, Daughters GT, Ingels NB, Jr, Miller DC. Mitral leaflet remodeling in dilated cardiomyopathy. Circulation. 2006;114:I518–I523.PubMedGoogle Scholar
  71. 71.
    Byrne MJ, Kaye DM, Mathis M, Reuter DG, Alferness CA, Power JM. Percutaneous mitral annular reduction provides continued benefit in an ovine model of dilated cardiomyopathy. Circulation. 2004;110:3088–3092.PubMedGoogle Scholar
  72. 72.
    Balaji S, Hewett KW, Krombach RS, Clair MJ, Ye X, Spinale FG. Inducible lethal ventricular arrhythmias in swine with pacing-induced heart failure. Basic Res Cardiol. 1999;94:496–503.PubMedGoogle Scholar
  73. 73.
    Spinale FG, Coker ML, Krombach SR, Mukherjee R, Hallak H, Houck WV, Clair MJ, Kribbs SB, Johnson LL, Peterson JT, Zile MR. Matrix metalloproteinase inhibition during the development of congestive heart failure: Effects on left ventricular dimensions and function. Circ Res. 1999;85:364–376.PubMedGoogle Scholar
  74. 74.
    Kostelec M, Covell J, Buckberg GD, Sadeghi A, Hoffman JI, Kassab GS. Myocardial protection in the failing heart: I. Effect of cardioplegia and the beating state under simulated left ventricular restoration. J Thorac Cardiovasc Surg. 2006;132:875–883.PubMedGoogle Scholar
  75. 75.
    Wei SK, Ruknudin AM, Shou M, McCurley JM, Hanlon SU, Elgin E, Schulze DH, Haigney MC. Muscarinic modulation of the sodium-calcium exchanger in heart failure. Circulation. 2007;115:1225–1233.PubMedGoogle Scholar
  76. 76.
    Perrino C, Naga Prasad SV, Mao L, Noma T, Yan Z, Kim HS, Smithies O, Rockman HA. Intermittent pressure overload triggers hypertrophy-independent cardiac dysfunction and vascular rarefaction. J Clin Invest. 2006;116:1547–1560.PubMedGoogle Scholar
  77. 77.
    Takahashi R, Asai T, Murakami H, Murakami R, Tsuzuki M, Numaguchi Y, Matsui H, Murohara T, Okumura K. Pressure overload-induced cardiomyopathy in heterozygous carrier mice of carnitine transporter gene mutation. Hypertension. 2007;50:497–502.PubMedGoogle Scholar
  78. 78.
    Zhang C, Yasuno S, Kuwahara K, Zankov DP, Kobori A, Makiyama T, Horie M. Blockade of angiotensin II type 1 receptor improves the arrhythmia morbidity in mice with left ventricular hypertrophy. Circ J. 2006;70:335–341.PubMedGoogle Scholar
  79. 79.
    Nishikawa N, Yamamoto K, Sakata Y, Mano T, Yoshida J, Miwa T, Takeda H, Hori M, Masuyama T. Differential activation of matrix metalloproteinases in heart failure with and without ventricular dilatation. Cardiovasc Res. 2003;57:766–774.PubMedGoogle Scholar
  80. 80.
    Zhang JN, Geng Q, Chen XJ, Fang WW, Wu XH, Yang D. Alteration of endothelin system and calcium handling protein in left ventricles following drug treatment in dilated cardiomyopathy rats. Acta Pharmacol Sin. 2003;24:1099–1102.PubMedGoogle Scholar
  81. 81.
    Jung AS, Kubo H, Wilson R, Houser SR, Margulies KB. Modulation of contractility by myocyte-derived arginase in normal and hypertrophied feline myocardium. Am J Physiol Heart Circ Physiol. 2006;290:H1756–H1762.PubMedGoogle Scholar
  82. 82.
    Ishikawa Y, Uechi M, Hori Y, Takashi E, Yamano S, Enomoto Y, Jun U. Effects of enalapril in cats with pressure overload-induced left ventricular hypertrophy. J Feline Med Surg. 2007;9:29–35.PubMedGoogle Scholar
  83. 83.
    Eghtesady P, Michelfelder E, Altaye M, Ballard E, Hirsh R, Beekman RH, III. Revisiting animal models of aortic stenosis in the early gestation fetus. Ann Thorac Surg. 2007;83:631–639.PubMedGoogle Scholar
  84. 84.
    Hughes WM, Jr, Rodriguez WE, Rosenberger D, Chen J, Sen U, Tyagi N, Moshal KS, Vacek T, Kang YJ, Tyagi SC. Role of copper and homocysteine in pressure overload heart failure. Cardiovasc Toxicol. 2008;8:137–144.PubMedGoogle Scholar
  85. 85.
    Hataishi R, Rodrigues AC, Morgan JG, Ichinose F, Derumeaux G, Bloch KD, Picard MH, Scherrer-Crosbie M. Nitric oxide synthase 2 and pressure-overload-induced left ventricular remodeling in mice. Exp Physiol. 2006;91:633–639.PubMedGoogle Scholar
  86. 86.
    van Empel VP, Bertrand AT, van Oort RJ, van der Nagel R, Engelen M, van Rijen HV, Doevendans PA, Crijns HJ, Ackerman SL, Sluiter W, De Windt LJ. EUK-8, a superoxide dismutase and catalase mimetic, reduces cardiac oxidative stress and ameliorates pressure overload-induced heart failure in the harlequin mouse mutant. J Am Coll Cardiol. 2006;48:824–832.PubMedGoogle Scholar
  87. 87.
    Kast RE, Foley KF, Focosi D. Doxorubicin cardiomyopathy via TLR-2 stimulation: Potential for prevention using current anti-retroviral inhibitors such as ritonavir and nelfinavir. Hematol Oncol. 2007;25:96–97.PubMedGoogle Scholar
  88. 88.
    Robert J. Long-term and short-term models for studying anthracycline cardiotoxicity and protectors. Cardiovasc Toxicol. 2007;7:135–139.PubMedGoogle Scholar
  89. 89.
    Robert J. Preclinical assessment of anthracycline cardiotoxicity in laboratory animals: Predictiveness and pitfalls. Cell Biol Toxicol. 2007;23:27–37.PubMedGoogle Scholar
  90. 90.
    Aupperle H, Garbade J, Schubert A, Barten M, Dhein S, Schoon HA, Mohr FW. Effects of autologous stem cells on immunohistochemical patterns and gene expression of metalloproteinases and their tissue inhibitors in doxorubicin cardiomyopathy in a rabbit model. Vet Pathol. 2007;44:494–503.PubMedGoogle Scholar
  91. 91.
    Ma GT, Xie XM, Wu XH, Chen XB, Fang YQ, He J. Short- and long-term therapeutic effects of combination therapy with perindopril and irbesartan in a rat model of dilated cardiomyopathy. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2007;32:594–598.PubMedGoogle Scholar
  92. 92.
    Berthiaume JM, Wallace KB. Persistent alterations to the gene expression profile of the heart subsequent to chronic doxorubicin treatment. Cardiovasc Toxicol. 2007;7:178–191.PubMedGoogle Scholar
  93. 93.
    Migrino RQ, Aggarwal D, Konorev E, Brahmbhatt T, Bright M, Kalyanaraman B. Early detection of doxorubicin cardiomyopathy using two-dimensional strain echocardiography. Ultrasound Med Biol. 2008;34:208–214.PubMedGoogle Scholar
  94. 94.
    Borenstein N, Chetboul V, Bruneval P, Hekmati M, Tissier R, Behr L, Derumeaux G, Montarras D. Non-cultured cell transplantation in an ovine model of non-ischemic heart failure. Eur J Cardiothorac Surg. 2007;31:444–451.PubMedGoogle Scholar
  95. 95.
    Kim KH, Oudit GY, Backx PH. Erythropoietin protects against doxorubicin-induced cardiomyopathy via a phosphatidylinositol 3-kinase-dependent pathway. J Pharmacol Exp Ther. 2008;324:160–169.PubMedGoogle Scholar
  96. 96.
    Westermann D, Rutschow S, Van Linthout S, Linderer A, Bucker-Gartner C, Sobirey M, Riad A, Pauschinger M, Schultheiss HP, Tschope C. Inhibition of p38 mitogen-activated protein kinase attenuates left ventricular dysfunction by mediating pro-inflammatory cardiac cytokine levels in a mouse model of diabetes mellitus. Diabetologia. 2006;49:2507–2513.PubMedGoogle Scholar
  97. 97.
    Westermann D, Van Linthout S, Dhayat S, Dhayat N, Schmidt A, Noutsias M, Song XY, Spillmann F, Riad A, Schultheiss HP, Tschope C. Tumor necrosis factor-alpha antagonism protects from myocardial inflammation and fibrosis in experimental diabetic cardiomyopathy. Basic Res Cardiol. 2007;102:500–507.PubMedGoogle Scholar
  98. 98.
    Van den Bergh A, Flameng W, Herijgers P. Type II diabetic mice exhibit contractile dysfunction but maintain cardiac output by favourable loading conditions. Eur J Heart Fail. 2006;8:777–783.PubMedGoogle Scholar
  99. 99.
    Belmadani S, Bernal J, Wei CC, Pallero MA, Dell’italia L, Murphy-Ullrich JE, Berecek KH. A thrombospondin-1 antagonist of transforming growth factor-beta activation blocks cardiomyopathy in rats with diabetes and elevated angiotensin II. Am J Pathol. 2007;171:777–789.PubMedGoogle Scholar
  100. 100.
    Toblli JE, Cao G, Rivas C, DeRosa G, Domecq P. Angiotensin-converting enzyme inhibition reduces lipid deposits in myocardium and improves left ventricular function of obese Zucker rats. Obesity (Silver Spring). 2006;14:1586–1595.Google Scholar
  101. 101.
    Shen X, Bornfeldt KE. Mouse models for studies of cardiovascular complications of type 1 diabetes. Ann N Y Acad Sci. 2007;1103:202–217.PubMedGoogle Scholar
  102. 102.
    Thakker GD, Frangogiannis NG, Bujak M, Zymek P, Gaubatz JW, Reddy AK, Taffet G, Michael LH, Entman ML, Ballantyne CM. Effects of diet-induced obesity on inflammation and remodeling after myocardial infarction. Am J Physiol Heart Circ Physiol. 2006;291:H2504–H2514.PubMedGoogle Scholar
  103. 103.
    Schmitto JD, Ortomann P, Vorkamp T, Heidrich F, Kolat P, Popov AF, Doerge H, Grossmann M, Seipelt R, Ramadori G, Schondube A. Histological changes in a model of chronic heart failure induced by multiple sequential coronary microembolization in sheep. J Cardiovasc Surg (Torino). 2008;49:533–537.Google Scholar
  104. 104.
    Monreal G, Gerhardt MA, Kambara A, Abrishamchian AR, Bauer JA, Goldstein AH. Selective microembolization of the circumflex coronary artery in an ovine model: Dilated, ischemic cardiomyopathy and left ventricular dysfunction. J Card Fail. 2004;10:174–183.PubMedGoogle Scholar
  105. 105.
    Moainie SL, Gorman JH, 3rd, Guy TS, Bowen FW, III, Jackson BM, Plappert T, Narula N, St John-Sutton MG, Narula J, Edmunds LH, Jr, Gorman RC. An ovine model of postinfarction dilated cardiomyopathy. Ann Thorac Surg. 2002;74:753–760.PubMedGoogle Scholar
  106. 106.
    Louail B, Sapoval M, Bonneau M, Wasseff M, Senechal Q, Gaux JC. A new porcine sponge material for temporary embolization: An experimental short-term pilot study in swine. Cardiovasc Intervent Radiol. 2006;29:826–831.PubMedGoogle Scholar
  107. 107.
    Kim WG, Cho SR, Sung SH, Park HJ. A chronic heart failure model by coronary artery ligation in the goat. Int J Artif Organs. 2003;26:929–934.PubMedGoogle Scholar
  108. 108.
    Bartfay WJ, Davis MT, Medves JM, Lugowski S. Milk whey protein decreases oxygen free radical production in a murine model of chronic iron-overload cardiomyopathy. Can J Cardiol. 2003;19:1163–1168.PubMedGoogle Scholar
  109. 109.
    Elsherif L, Ortines RV, Saari JT, Kang YJ. Congestive heart failure in copper-deficient mice. Exp Biol Med (Maywood). 2003;228:811–817.Google Scholar
  110. 110.
    Prozesky L, Bastianello SS, Fourie N, Schultz RA. A study of the pathology and pathogenesis of the myocardial lesions in gousiekte, a plant-induced cardiotoxicosis of ruminants. Onderstepoort J Vet Res. 2005;72:219–230.PubMedGoogle Scholar
  111. 111.
    Litwak KN, McMahan A, Lott KA, Lott LE, Koenig SC. Monensin toxicosis in the domestic bovine calf: A large animal model of cardiac dysfunction. Contemp Top Lab Anim Sci. 2005;44:45–49.PubMedGoogle Scholar
  112. 112.
    Shlosberg A, Perl S, Yakobson B, Klopfer U, Egyed MN, Nobel TA, Efron Y. The chronic course of a probable monensin toxicosis in cattle. Vet Hum Toxicol. 1986;28:230–233.PubMedGoogle Scholar
  113. 113.
    Cawley GD, Bradley R. Sudden death in calves associated with acute myocardial degeneration and selenium deficiency. Vet Rec. 1978;103:239–240.PubMedGoogle Scholar
  114. 114.
    Ferrans VJ, Van Vleet JF. Cardiac lesions of selenium-vitamin E deficiency in animals. Heart Vessels Suppl. 1985;1:294–297.PubMedGoogle Scholar
  115. 115.
    Wang ZH, Liao YH, Yuan J, Zhang L, Wang M, Zhang JH, Liu ZP, Dong JH. A therapeutic anti-CD4 monoclonal antibody inhibits T cell receptor signal transduction in mouse autoimmune cardiomyopathy. Chin Med J (Engl). 2007;120:1319–1325.Google Scholar
  116. 116.
    Buerke U, Carter JM, Schlitt A, Russ M, Schmidt H, Sibelius U, Grandel U, Grimminger F, Seeger1 W, Mueller-Werdan U, Werdan K, Buerke M. Apoptosis contributes to septic cardiomyopathy and is improved by simvastatin therapy. Shock. 2008;29:497–503.PubMedGoogle Scholar
  117. 117.
    Buvall L, Tang MS, Isic A, Andersson B, Fu M. Antibodies against the beta1-adrenergic receptor induce progressive development of cardiomyopathy. J Mol Cell Cardiol. 2007;42:1001–1007.PubMedGoogle Scholar
  118. 118.
    Mao W, Fukuoka S, Iwai C, Liu J, Sharma VK, Sheu SS, Fu M, Liang CS. Cardiomyocyte apoptosis in autoimmune cardiomyopathy: Mediated via endoplasmic reticulum stress and exaggerated by norepinephrine. Am J Physiol Heart Circ Physiol. 2007;293:H1636–H1645.PubMedGoogle Scholar
  119. 119.
    Baba A, Yoshikawa T, Iwata M, Anzai T, Nakamura I, Wainai Y, Ogawa S, Fu M. Antigen-specific effects of autoantibodies against sarcolemmal na-K-ATPase pump in immunized cardiomyopathic rabbits. Int J Cardiol. 2006;112:15–20.PubMedGoogle Scholar
  120. 120.
    Taneja V, Behrens M, Cooper LT, Yamada S, Kita H, Redfield MM, Terzic A, David C. Spontaneous myocarditis mimicking human disease occurs in the presence of an appropriate MHC and non-MHC background in transgenic mice. J Mol Cell Cardiol. 2007;42:1054–1064.PubMedGoogle Scholar
  121. 121.
    Taffet GE, Hartley CJ, Wen X, Pham T, Michael LH, Entman ML. Noninvasive indexes of cardiac systolic and diastolic function in hyperthyroid and senescent mouse. Am J Physiol. 1996;270:H2204–H2209.PubMedGoogle Scholar
  122. 122.
    Feng Y, Dai DZ, Na T, Cui B, Wang T, Zhang Y, Dai Y. Endothelin receptor antagonist CPU0213 suppresses ventricular fibrillation in L-thyroxin induced cardiomyopathy. Pharmacol Rep. 2007;59:306–314.PubMedGoogle Scholar
  123. 123.
    Medeiros A, Rolim NP, Oliveira RS, Rosa KT, Mattos KC, Casarini DE, Irigoyen MC, Krieger EM, Krieger JE, Negrao CE, Brum PC. Exercise training delays cardiac dysfunction and prevents calcium handling abnormalities in sympathetic hyperactivity-induced heart failure mice. J Appl Physiol. 2008;104:103–109.PubMedGoogle Scholar
  124. 124.
    Larsen KO, Sjaastad I, Svindland A, Krobert KA, Skjonsberg OH, Christensen G. Alveolar hypoxia induces left ventricular diastolic dysfunction and reduces phosphorylation of phospholamban in mice. Am J Physiol Heart Circ Physiol. 2006;291:H507–H516.PubMedGoogle Scholar
  125. 125.
    Liu H, Lee SS. Nuclear factor-kappaB inhibition improves myocardial contractility in rats with cirrhotic cardiomyopathy. Liver Int. 2008;28:640–648.PubMedGoogle Scholar
  126. 126.
    D’Souza M, Garza MA, Xie M, Weinstock J, Xiang Q, Robinson P. Substance P is associated with heart enlargement and apoptosis in murine dilated cardiomyopathy induced by Taenia crassiceps infection. J Parasitol. 2007;93:1121–1127.PubMedGoogle Scholar
  127. 127.
    Russell JC, Proctor SD. Small animal models of cardiovascular disease: Tools for the study of the roles of metabolic syndrome, dyslipidemia, and atherosclerosis. Cardiovasc Pathol. 2006;15:318–330.PubMedGoogle Scholar
  128. 128.
    Buchanan J, Mazumder PK, Hu P, Chakrabarti G, Roberts MW, Yun UJ, Cooksey RC, Litwin SE, Abel ED. Reduced cardiac efficiency and altered substrate metabolism precedes the onset of hyperglycemia and contractile dysfunction in two mouse models of insulin resistance and obesity. Endocrinology. 2005;146:5341–5349.PubMedGoogle Scholar
  129. 129.
    de Resende MM, Kriegel AJ, Greene AS. Combined effects of low-dose spironolactone and captopril therapy in a rat model of genetic hypertrophic cardiomyopathy. J Cardiovasc Pharmacol. 2006;48:265–273.PubMedGoogle Scholar
  130. 130.
    Prabhakar R, Boivin GP, Grupp IL, Hoit B, Arteaga G, Solaro JR, Wieczorek DF. A familial hypertrophic cardiomyopathy alpha-tropomyosin mutation causes severe cardiac hypertrophy and death in mice. J Mol Cell Cardiol. 2001;33:1815–1828.PubMedGoogle Scholar
  131. 131.
    Prabhakar R, Petrashevskaya N, Schwartz A, Aronow B, Boivin GP, Molkentin JD, Wieczorek DF. A mouse model of familial hypertrophic cardiomyopathy caused by a alpha-tropomyosin mutation. Mol Cell Biochem. 2003;251:33–42.PubMedGoogle Scholar
  132. 132.
    Jagatheesan G, Rajan S, Petrashevskaya N, Schwartz A, Boivin G, Arteaga GM, Solaro RJ, Liggett SB, Wieczorek DF. Rescue of tropomyosin-induced familial hypertrophic cardiomyopathy mice by transgenesis. Am J Physiol Heart Circ Physiol. 2007;293:H949–H958.PubMedGoogle Scholar
  133. 133.
    Wernicke D, Wessel N, Malberg H, Plehm R, Bauernschmitt R, Thierfelder L. Autonomic cardiac control in animal models of cardiovascular diseases II. Variability analysis in transgenic rats with alpha-tropomyosin mutations Asp175Asn and Glu180Gly. Biomed Tech (Berl). 2007;52:50–55.Google Scholar
  134. 134.
    Sweeney HL, Feng HS, Yang Z, Watkins H. Functional analyses of troponin T mutations that cause hypertrophic cardiomyopathy: Insights into disease pathogenesis and troponin function. Proc Natl Acad Sci U S A. 1998;95:14406–14410.PubMedGoogle Scholar
  135. 135.
    Tsoutsman T, Kelly M, Ng DC, Tan JE, Tu E, Lam L, Bogoyevitch MA, Seidman CE, Seidman JG, Semsarian C. Severe heart failure and early mortality in a double-mutation mouse model of familial hypertrophic cardiomyopathy. Circulation. 2008;117:1820–1831.PubMedGoogle Scholar
  136. 136.
    Fielitz J, Kim MS, Shelton JM, Latif S, Spencer JA, Glass DJ, Richardson JA, Bassel-Duby R, Olson EN. Myosin accumulation and striated muscle myopathy result from the loss of muscle RING finger 1 and 3. J Clin Invest. 2007;117:2486–2495.PubMedGoogle Scholar
  137. 137.
    Geisterfer-Lowrance AA, Christe M, Conner DA, Ingwall JS, Schoen FJ, Seidman CE, Seidman JG. A mouse model of familial hypertrophic cardiomyopathy. Science. 1996;272:731–734.PubMedGoogle Scholar
  138. 138.
    Kaneda T, Naruse C, Kawashima A, Fujino N, Oshima T, Namura M, Nunoda S, Mori S, Konno T, Ino H, Yamagishi M, Asano M. A novel beta-myosin heavy chain gene mutation, p.Met531Arg, identified in isolated left ventricular non-compaction in humans, results in left ventricular hypertrophy that progresses to dilation in a mouse model. Clin Sci (Lond). 2008;114:431–440.Google Scholar
  139. 139.
    Gustafson-Wagner EA, Sinn HW, Chen YL, Wang DZ, Reiter RS, Lin JL, Yang B, Williamson RA, Chen J, Lin CI, Lin JJ. Loss of mXinalpha, an intercalated disc protein, results in cardiac hypertrophy and cardiomyopathy with conduction defects. Am J Physiol Heart Circ Physiol. 2007;293:H2680–H2692.PubMedGoogle Scholar
  140. 140.
    Murata T, Lin MI, Huang Y, Yu J, Bauer PM, Giordano FJ, Sessa WC. Reexpression of caveolin-1 in endothelium rescues the vascular, cardiac, and pulmonary defects in global caveolin-1 knockout mice. J Exp Med. 2007;204:2373–2382.PubMedGoogle Scholar
  141. 141.
    Leatherbury L, Yu Q, Chatterjee B, Walker DL, Yu Z, Tian X, Lo CW. A novel mouse model of X-linked cardiac hypertrophy. Am J Physiol Heart Circ Physiol. 2008;294:H2701–H2711.PubMedGoogle Scholar
  142. 142.
    Langenickel TH, Buttgereit J, Pagel-Langenickel I, Lindner M, Monti J, Beuerlein K, Al-Saadi N, Plehm R, Popova E, Tank J, Dietz R, Willenbrock R, Bader M. Cardiac hypertrophy in transgenic rats expressing a dominant-negative mutant of the natriuretic peptide receptor B. Proc Natl Acad Sci U S A. 2006;103:4735–4740.PubMedGoogle Scholar
  143. 143.
    Rajan S, Ahmed RP, Jagatheesan G, Petrashevskaya N, Boivin GP, Urboniene D, Arteaga GM, Wolska BM, Solaro RJ, Liggett SB, Wieczorek DF. Dilated cardiomyopathy mutant tropomyosin mice develop cardiac dysfunction with significantly decreased fractional shortening and myofilament calcium sensitivity. Circ Res. 2007;101:205–214.PubMedGoogle Scholar
  144. 144.
    Mirza M, Robinson P, Kremneva E, Copeland O, Nikolaeva O, Watkins H, Levitsky D, Redwood C, El-Mezgueldi M, Marston S. The effect of mutations in alpha-tropomyosin (E40K and E54K) that cause familial dilated cardiomyopathy on the regulatory mechanism of cardiac muscle thin filaments. J Biol Chem. 2007;282:13487–13497.PubMedGoogle Scholar
  145. 145.
    Warren CM, Arteaga GM, Rajan S, Ahmed RP, Wieczorek DF, Solaro RJ. Use of 2-D DIGE analysis reveals altered phosphorylation in a tropomyosin mutant (Glu54Lys) linked to dilated cardiomyopathy. Proteomics. 2008;8:100–105.PubMedGoogle Scholar
  146. 146.
    Du J, Zhang C, Liu J, Sidky C, Huang XP. A point mutation (R192H) in the C-terminus of human cardiac troponin I causes diastolic dysfunction in transgenic mice. Arch Biochem Biophys. 2006;456:143–150.PubMedGoogle Scholar
  147. 147.
    Du CK, Morimoto S, Nishii K, Minakami R, Ohta M, Tadano N, Lu QW, Wang YY, Zhan DY, Mochizuki M, Kita S, Miwa Y, Takahashi-Yanaga F, Iwamoto T, Ohtsuki I, Sasaguri T. Knock-in mouse model of dilated cardiomyopathy caused by troponin mutation. Circ Res. 2007;101:185–194.PubMedGoogle Scholar
  148. 148.
    Ahmad F, Banerjee SK, Lage ML, Huang XN, Smith SH, Saba S, Rager J, Conner DA, Janczewski AM, Tobita K, Tinney JP, Moskowitz IP, Perez-Atayde AR, Keller BB, Mathier MA, Shroff SG, Seidman CE, Seidman JG. The role of cardiac troponin T quantity and function in cardiac development and dilated cardiomyopathy. PLoS ONE. 2008;3:e2642.PubMedGoogle Scholar
  149. 149.
    Juan F, Wei D, Xiongzhi Q, Ran D, Chunmei M, Lan H, Chuan Q, Lianfeng Z. The changes of the cardiac structure and function in cTnTR141W transgenic mice. Int J Cardiol. 2008;128:83–90.PubMedGoogle Scholar
  150. 150.
    Luckey SW, Mansoori J, Fair K, Antos CL, Olson EN, Leinwand LA. Blocking cardiac growth in hypertrophic cardiomyopathy induces cardiac dysfunction and decreased survival only in males. Am J Physiol Heart Circ Physiol. 2007;292:H838–H845.PubMedGoogle Scholar
  151. 151.
    Sze RW, Chan CB, Dardzinski BJ, Dunn S, Sanbe A, Schmithorst V, Robbins J, Holland SK, Strife JL. Three-dimensional MR microscopy of a transgenic mouse model of dilated cardiomyopathy. Pediatr Radiol. 2001;31:55–61.PubMedGoogle Scholar
  152. 152.
    Kuwahara K, Teg Pipes GC, McAnally J, Richardson JA, Hill JA, Bassel-Duby R, Olson EN. Modulation of adverse cardiac remodeling by STARS, a mediator of MEF2 signaling and SRF activity. J Clin Invest. 2007;117:1324–1334.PubMedGoogle Scholar
  153. 153.
    Yan X, Price RL, Nakayama M, Ito K, Schuldt AJ, Manning WJ, Sanbe A, Borg TK, Robbins J, Lorell BH. Ventricular-specific expression of angiotensin II type 2 receptors causes dilated cardiomyopathy and heart failure in transgenic mice. Am J Physiol Heart Circ Physiol. 2003;285:H2179–H2187.PubMedGoogle Scholar
  154. 154.
    Oudit GY, Kassiri Z, Patel MP, Chappell M, Butany J, Backx PH, Tsushima RG, Scholey JW, Khokha R, Penninger JM. Angiotensin II-mediated oxidative stress and inflammation mediate the age-dependent cardiomyopathy in ACE2 null mice. Cardiovasc Res. 2007;75:29–39.PubMedGoogle Scholar
  155. 155.
    Kontaridis MI, Yang W, Bence KK, Cullen D, Wang B, Bodyak N, Ke Q, Hinek A, Kang PM, Liao R, Neel BG. Deletion of Ptpn11 (Shp2) in cardiomyocytes causes dilated cardiomyopathy via effects on the extracellular signal-regulated kinase/mitogen-activated protein kinase and RhoA signaling pathways. Circulation. 2008;117:1423–1435.PubMedGoogle Scholar
  156. 156.
    Wolf CM, Wang L, Alcalai R, Pizard A, Burgon PG, Ahmad F, Sherwood M, Branco DM, Wakimoto H, Fishman GI, See V, Stewart CL, Conner DA, Berul CI, Seidman CE, Seidman JG. Lamin A/C haploinsufficiency causes dilated cardiomyopathy and apoptosis-triggered cardiac conduction system disease. J Mol Cell Cardiol. 2008;44:293–303.PubMedGoogle Scholar
  157. 157.
    Stewart CL, Kozlov S, Fong LG, Young SG. Mouse models of the laminopathies. Exp Cell Res. 2007;313:2144–2156.PubMedGoogle Scholar
  158. 158.
    Xiong S, Van Pelt CS, Elizondo-Fraire AC, Fernandez-Garcia B, Lozano G. Loss of Mdm4 results in p53-dependent dilated cardiomyopathy. Circulation. 2007;115:2925–2930.PubMedGoogle Scholar
  159. 159.
    Hesse M, Kondo CS, Clark RB, Su L, Allen FL, Geary-Joo CT, Kunnathu S, Severson DL, Nygren A, Giles WR, Cross JC. Dilated cardiomyopathy is associated with reduced expression of the cardiac sodium channel Scn5a. Cardiovasc Res. 2007;75:498–509.PubMedGoogle Scholar
  160. 160.
    Yan J, Zhu HB. Cyclic nucleotide phosphodiesterase IV expression, activity and targeting in cells of cardiovascular system. Yao Xue Xue Bao. 2007;42:571–575.PubMedGoogle Scholar
  161. 161.
    Hilfiker-Kleiner D, Kaminski K, Podewski E, Bonda T, Schaefer A, Sliwa K, Forster O, Quint A, Landmesser U, Doerries C, Luchtefeld M, Poli V, Schneider MD, Balligand JL, Desjardins F, Ansari A, Struman I, Nguyen NQ, Zschemisch NH, Klein G, Heusch G, Schulz R, Hilfiker A, Drexler H. A cathepsin D-cleaved 16 kDa form of prolactin mediates postpartum cardiomyopathy. Cell. 2007;128:589–600.PubMedGoogle Scholar
  162. 162.
    Spurney CF, Knoblach S, Pistilli EE, Nagaraju K, Martin GR, Hoffman EP. Dystrophin-deficient cardiomyopathy in mouse: Expression of Nox4 and lox are associated with fibrosis and altered functional parameters in the heart. Neuromuscul Disord. 2008;18:371–381.PubMedGoogle Scholar
  163. 163.
    Bostick B, Yue Y, Long C, Duan D. Prevention of dystrophin-deficient cardiomyopathy in twenty-one-month-old carrier mice by mosaic dystrophin expression or complementary Dystrophin/Utrophin expression. Circ Res. 2008;102:121–130.PubMedGoogle Scholar
  164. 164.
    Branco DM, Wolf CM, Sherwood M, Hammer PE, Kang PB, Berul CI. Cardiac electrophysiological characteristics of the mdx (5cv) mouse model of duchenne muscular dystrophy. J Interv Card Electrophysiol. 2007;20(1-2):1–7.PubMedGoogle Scholar
  165. 165.
    Bauer R, Macgowan GA, Blain A, Bushby K, Straub V. Steroid treatment causes deterioration of myocardial function in the {delta}-sarcoglycan-deficient mouse model for dilated cardiomyopathy. Cardiovasc Res. 2008;79:652–661.PubMedGoogle Scholar
  166. 166.
    Wenzel K, Geier C, Qadri F, Hubner N, Schulz H, Erdmann B, Gross V, Bauer D, Dechend R, Dietz R, Osterziel KJ, Spuler S, Ozcelik C. Dysfunction of dysferlin-deficient hearts. J Mol Med. 2007;85:1203–1214.PubMedGoogle Scholar
  167. 167.
    Chen JF, Murchison EP, Tang R, Callis TE, Tatsuguchi M, Deng Z, Rojas M, Hammond SM, Schneider MD, Selzman CH, Meissner G, Patterson C, Hannon GJ, Wang DZ. Targeted deletion of dicer in the heart leads to dilated cardiomyopathy and heart failure. Proc Natl Acad Sci U S A. 2008;105:2111–2116.PubMedGoogle Scholar
  168. 168.
    Spira D, Stypmann J, Tobin DJ, Petermann I, Mayer C, Hagemann S, Vasiljeva O, Gunther T, Schule R, Peters C, Reinheckel T. Cell type-specific functions of the lysosomal protease cathepsin L in the heart. J Biol Chem. 2007;282:37045–37052.PubMedGoogle Scholar
  169. 169.
    Gardiwal A, Klein G, Kraemer K, Durgac T, Koenig T, Niehaus M, Heineke J, Mohammadi B, Krampfl K, Schaefer A, Wollert KC, Korte T. Reduced delayed rectifier K+ current, altered electrophysiology, and increased ventricular vulnerability in MLP-deficient mice. J Card Fail. 2007;13:687–693.PubMedGoogle Scholar
  170. 170.
    Zemljic-Harpf AE, Miller JC, Henderson SA, Wright AT, Manso AM, Elsherif L, Dalton ND, Thor AK, Perkins GA, McCulloch AD, Ross RS. Cardiac-myocyte-specific excision of the vinculin gene disrupts cellular junctions, causing sudden death or dilated cardiomyopathy. Mol Cell Biol. 2007;27:7522–7537.PubMedGoogle Scholar
  171. 171.
    Kuba K, Zhang L, Imai Y, Arab S, Chen M, Maekawa Y, Leschnik M, Leibbrandt A, Markovic M, Schwaighofer J, Beetz N, Musialek R, Neely GG, Komnenovic V, Kolm U, Metzler B, Ricci R, Hara H, Meixner A, Nghiem M, Chen X, Dawood F, Wong KM, Sarao R, Cukerman E, Kimura A, Hein L, Thalhammer J, Liu PP, Penninger JM. Impaired heart contractility in apelin gene-deficient mice associated with aging and pressure overload. Circ Res. 2007;101:e32–e42.PubMedGoogle Scholar
  172. 172.
    Du XJ, Samuel CS, Gao XM, Zhao L, Parry LJ, Tregear GW. Increased myocardial collagen and ventricular diastolic dysfunction in relaxin deficient mice: A gender-specific phenotype. Cardiovasc Res. 2003;57:395–404.PubMedGoogle Scholar
  173. 173.
    Milner DJ, Kaufman SJ. Alpha7beta1 integrin does not alleviate disease in a mouse model of limb girdle muscular dystrophy type 2F. Am J Pathol. 2007;170:609–619.PubMedGoogle Scholar
  174. 174.
    Ding G, Fu M, Qin Q, Lewis W, Kim HW, Fukai T, Bacanamwo M, Chen YE, Schneider MD, Mangelsdorf DJ, Evans RM, Yang Q. Cardiac peroxisome proliferator-activated receptor gamma is essential in protecting cardiomyocytes from oxidative damage. Cardiovasc Res. 2007;76:269–279.PubMedGoogle Scholar
  175. 175.
    Kirk EP, Sunde M, Costa MW, Rankin SA, Wolstein O, Castro ML, Butler TL, Hyun C, Guo G, Otway R, Mackay JP, Waddell LB, Cole AD, Hayward C, Keogh A, Macdonald P, Griffiths L, Fatkin D, Sholler GF, Zorn AM, Feneley MP, Winlaw DS, Harvey RP. Mutations in cardiac T-box factor gene TBX20 are associated with diverse cardiac pathologies, including defects of septation and valvulogenesis and cardiomyopathy. Am J Hum Genet. 2007;81:280–291.PubMedGoogle Scholar
  176. 176.
    Rajagopalan V, Zucker IH, Jones JA, Carlson M, Ma YJ. Cardiac ErbB-1/ErbB-2 mutant expression in young adult mice leads to cardiac dysfunction. Am J Physiol Heart Circ Physiol. 2008.Google Scholar
  177. 177.
    Franco V, Chen YF, Feng JA, Li P, Wang D, Hasan E, Oparil S, Perry GJ. Eplerenone prevents adverse cardiac remodeling induced by pressure overload in atrial natriuretic peptide-null mice. Clin Exp Pharmacol Physiol. 2006;33:773–779.PubMedGoogle Scholar
  178. 178.
    Jespersen T, Grunnet M, Olesen SP. The KCNQ1 potassium channel: From gene to physiological function. Physiology (Bethesda). 2005;20:408–416.Google Scholar
  179. 179.
    McMullen JR, Amirahmadi F, Woodcock EA, Schinke-Braun M, Bouwman RD, Hewitt KA, Mollica JP, Zhang L, Zhang Y, Shioi T, Buerger A, Izumo S, Jay PY, Jennings GL. Protective effects of exercise and phosphoinositide 3-kinase(p110alpha) signaling in dilated and hypertrophic cardiomyopathy. Proc Natl Acad Sci U S A. 2007;104:612–617.PubMedGoogle Scholar
  180. 180.
    Rebolledo B, Lai NC, Gao MH, Takahashi T, Roth DM, Baird SM, Hammond HK. Adenylylcyclase gene transfer increases function of the failing heart. Hum Gene Ther. 2006;17:1043–1048.PubMedGoogle Scholar
  181. 181.
    Nishizawa T, Vatner SF, Hong C, Shen YT, Hardt SE, Robbins J, Ishikawa Y, Sadoshima J, Vatner DE. Overexpressed cardiac gsalpha in rabbits. J Mol Cell Cardiol. 2006;41:44–50.PubMedGoogle Scholar
  182. 182.
    McCloskey DT, Turcato S, Wang GY, Turnbull L, Zhu BQ, Bambino T, Nguyen AP, Lovett DH, Nissenson RA, Karliner JS, Baker AJ. Expression of a gi-coupled receptor in the heart causes impaired Ca2+ handling, myofilament injury, and dilated cardiomyopathy. Am J Physiol Heart Circ Physiol. 2008;294:H205–H212.PubMedGoogle Scholar
  183. 183.
    Matsusaka H, Ikeuchi M, Matsushima S, Ide T, Kubota T, Feldman AM, Takeshita A, Sunagawa K, Tsutsui H. Selective disruption of MMP-2 gene exacerbates myocardial inflammation and dysfunction in mice with cytokine-induced cardiomyopathy. Am J Physiol Heart Circ Physiol. 2005;289:H1858–H1864.PubMedGoogle Scholar
  184. 184.
    Kurrelmeyer KM, Michael LH, Baumgarten G, Taffet GE, Peschon JJ, Sivasubramanian N, Entman ML, Mann DL. Endogenous tumor necrosis factor protects the adult cardiac myocyte against ischemic-induced apoptosis in a murine model of acute myocardial infarction. Proc Natl Acad Sci U S A. 2000;97:5456–5461.PubMedGoogle Scholar
  185. 185.
    Xiao L, Zhao Q, Du Y, Yuan C, Solaro RJ, Buttrick PM. PKCepsilon increases phosphorylation of the cardiac myosin binding protein C at serine 302 both in vitro and in vivo. Biochemistry. 2007;46:7054–7061.PubMedGoogle Scholar
  186. 186.
    Hankiewicz JH, Goldspink PH, Buttrick PM, Lewandowski ED. Principal strain changes precede ventricular wall thinning during transition to heart failure in a mouse model of dilated cardiomyopathy. Am J Physiol Heart Circ Physiol. 2008;294:H330–H336.PubMedGoogle Scholar
  187. 187.
    Rajasekaran NS, Connell P, Christians ES, Yan LJ, Taylor RP, Orosz A, Zhang XQ, Stevenson TJ, Peshock RM, Leopold JA, Barry WH, Loscalzo J, Odelberg SJ, Benjamin IJ. Human alpha B-crystallin mutation causes oxido-reductive stress and protein aggregation cardiomyopathy in mice. Cell. 2007;130:427–439.PubMedGoogle Scholar
  188. 188.
    Le Corvoisier P, Park HY, Carlson KM, Marchuk DA, Rockman HA. Multiple quantitative trait loci modify the heart failure phenotype in murine cardiomyopathy. Hum Mol Genet. 2003;12:3097–3107.PubMedGoogle Scholar
  189. 189.
    Yang A, Sonin D, Jones L, Barry WH, Liang BT. A beneficial role of cardiac P2X4 receptors in heart failure: Rescue of the calsequestrin overexpression model of cardiomyopathy. Am J Physiol Heart Circ Physiol. 2004;287:H1096–H1103.PubMedGoogle Scholar
  190. 190.
    Shen JB, Cronin C, Sonin D, Joshi BV, Gongora Nieto M, Harrison D, Jacobson KA, Liang BT. P2X purinergic receptor-mediated ionic current in cardiac myocytes of calsequestrin model of cardiomyopathy: Implications for the treatment of heart failure. Am J Physiol Heart Circ Physiol. 2007;292:H1077–H1084.PubMedGoogle Scholar
  191. 191.
    Deten A, Shibata J, Scholz D, Briest W, Wagner KF, Wenger RH, Zimmer HG. Norepinephrine-induced acute heart failure in transgenic mice overexpressing erythropoietin. Cardiovasc Res. 2004;61:105–114.PubMedGoogle Scholar
  192. 192.
    Gaffin RD, Gokulan K, Sacchettini JC, Hewett T, Klevitsky R, Robbins J, Muthuchamy M. Charged residue changes in the carboxy-terminus of alpha-tropomyosin alter mouse cardiac muscle contractility. J Physiol. 2004;556:531–543.PubMedGoogle Scholar
  193. 193.
    Wallis J, Lygate CA, Fischer A, ten Hove M, Schneider JE, Sebag-Montefiore L, Dawson D, Hulbert K, Zhang W, Zhang MH, Watkins H, Clarke K, Neubauer S. Supranormal myocardial creatine and phosphocreatine concentrations lead to cardiac hypertrophy and heart failure: Insights from creatine transporter-overexpressing transgenic mice. Circulation. 2005;112:3131–3139.PubMedGoogle Scholar
  194. 194.
    Nguyen L, Chung J, Lam L, Tsoutsman T, Semsarian C. Abnormal cardiac response to exercise in a murine model of familial hypertrophic cardiomyopathy. Int J Cardiol. 2007;119:245–248.PubMedGoogle Scholar
  195. 195.
    Kuwahara K, Wang Y, McAnally J, Richardson JA, Bassel-Duby R, Hill JA, Olson EN. TRPC6 fulfills a calcineurin signaling circuit during pathologic cardiac remodeling. J Clin Invest. 2006;116:3114–3126.PubMedGoogle Scholar
  196. 196.
    Bathgate RA, Lekgabe ED, McGuane JT, Su Y, Pham T, Ferraro T, Layfield S, Hannan RD, Thomas WG, Samuel CS, Du XJ. Adenovirus-mediated delivery of relaxin reverses cardiac fibrosis. Mol Cell Endocrinol. 2008;280(1-2):30–38.PubMedGoogle Scholar
  197. 197.
    Chaulet H, Lin F, Guo J, Owens WA, Michalicek J, Kesteven SH, Guan Z, Prall OW, Mearns BM, Feneley MP, Steinberg SF, Graham RM. Sustained augmentation of cardiac alpha1A-adrenergic drive results in pathological remodeling with contractile dysfunction, progressive fibrosis and reactivation of matricellular protein genes. J Mol Cell Cardiol. 2006;40:540–552.PubMedGoogle Scholar
  198. 198.
    Park TS, Hu Y, Noh HL, Drosatos K, Okajima K, Buchanan J, Tuinei J, Homma S, Jiang XC, Abel ED, Goldberg IJ. Ceramide is a cardiotoxin in lipotoxic cardiomyopathy. J Lipid Res. 2008;49:2101–2112.PubMedGoogle Scholar
  199. 199.
    Lee Y, Naseem RH, Duplomb L, Park BH, Garry DJ, Richardson JA, Schaffer JE, Unger RH. Hyperleptinemia prevents lipotoxic cardiomyopathy in acyl CoA synthase transgenic mice. Proc Natl Acad Sci U S A. 2004;101:13624–13629.PubMedGoogle Scholar
  200. 200.
    Marionneau C, Aimond F, Brunet S, Niwa N, Finck B, Kelly DP, Nerbonne JM. PPARalpha-mediated remodeling of repolarizing voltage-gated K+ (kv) channels in a mouse model of metabolic cardiomyopathy. J Mol Cell Cardiol. 2008;44:1002–1015.PubMedGoogle Scholar
  201. 201.
    Son NH, Park TS, Yamashita H, Yokoyama M, Huggins LA, Okajima K, Homma S, Szabolcs MJ, Huang LS, Goldberg IJ. Cardiomyocyte expression of PPARgamma leads to cardiac dysfunction in mice. J Clin Invest. 2007;117:2791–2801.PubMedGoogle Scholar
  202. 202.
    Condorelli G, Drusco A, Stassi G, Bellacosa A, Roncarati R, Iaccarino G, Russo MA, Gu Y, Dalton N, Chung C, Latronico MV, Napoli C, Sadoshima J, Croce CM, Ross J, Jr. Akt induces enhanced myocardial contractility and cell size in vivo in transgenic mice. Proc Natl Acad Sci U S A. 2002;99:12333–12338.PubMedGoogle Scholar
  203. 203.
    Maloyan A, Gulick J, Glabe CG, Kayed R, Robbins J. Exercise reverses preamyloid oligomer and prolongs survival in alphaB-crystallin-based desmin-related cardiomyopathy. Proc Natl Acad Sci U S A. 2007;104:5995–6000.PubMedGoogle Scholar
  204. 204.
    Lee RT. Matrix metalloproteinase inhibition and the prevention of heart failure. Trends Cardiovasc Med. 2001;11:202–205.PubMedGoogle Scholar
  205. 205.
    Nakayama H, Chen X, Baines CP, Klevitsky R, Zhang X, Zhang H, Jaleel N, Chua BH, Hewett TE, Robbins J, Houser SR, Molkentin JD. Ca2+- and mitochondrial-dependent cardiomyocyte necrosis as a primary mediator of heart failure. J Clin Invest. 2007;117:2431–2444.PubMedGoogle Scholar
  206. 206.
    Matsushima S, Kinugawa S, Ide T, Matsusaka H, Inoue N, Ohta Y, Yokota T, Sunagawa K, Tsutsui H. Overexpression of glutathione peroxidase attenuates myocardial remodeling and preserves diastolic function in diabetic heart. Am J Physiol Heart Circ Physiol. 2006;291:H2237–H2245.PubMedGoogle Scholar
  207. 207.
    Azhar G, Zhang X, Wang S, Zhong Y, Quick CM, Wei JY. Maintaining serum response factor activity in the older heart equal to that of the young adult is associated with better cardiac response to isoproterenol stress. Basic Res Cardiol. 2007;102:233–244.PubMedGoogle Scholar
  208. 208.
    Yang LL, Gros R, Kabir MG, Sadi A, Gotlieb AI, Husain M, Stewart DJ. Conditional cardiac overexpression of endothelin-1 induces inflammation and dilated cardiomyopathy in mice. Circulation. 2004;109:255–261.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • David R. Gross
    • 1
  1. 1.Department of Veterinary BiosciencesUniversity of Illinois, Urbana Champaign College of Veterinary MedicineUrbanaUSA

Personalised recommendations