MOS Device and Interconnects Scaling Physics

  • Marc Van RossumEmail author


The metal-oxide-semiconductor field-effect transistor (MOSFET) is the most common active device in today’s integrated circuits. Its basic structure consists of a doped silicon well, with at the opposite ends two highly doped contact regions (the source and drain junctions) allowing the current to pass close to the well surface (Fig. 2.1). In an n-type MOSFET, the well region is p-type doped and the source and drain are n+ doped, whereas the reverse polarity scheme applies for p-type devices. CMOS circuits contain both n-MOS and p-MOS transistors combined to form various logic gates. The transistor body is electrically isolated from the surrounding circuitry by a thick “field” oxide. A third electrode (the gate), to which the input signal is applied, is sitting on top of the well. It consists of an electrical contact layer (usually heavily doped polysilicon with a metallic top layer) separated from the silicon substrate by a thin insulator film made of thermally grown silicon dioxide. The substrate is thus capacitively coupled to the gate electrode, making the MOSFET a nearly ideal switch element due to the high isolation between input and output.


Threshold Voltage Power Dissipation Gate Insulator Gate Length Gate Delay 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Taur, Y. and Ning, T. H.: Fundamentals of Modern VLSI Devices. Cambridge: Cambridge University Press (1998)Google Scholar
  2. 2.
    Baccarani, G. and Wordeman, M. R.: Transconductance degradation in thin-oxide MOSFET’s. IEEE Trans. El. Dev. ED-30, 1295 (1983)CrossRefGoogle Scholar
  3. 3.
    Sai-Halasz, G. A.; Wordeman, M. R.; Kern, D. P.; Rishton, S.; and Ganin, E.: High transconductance and velocity overshoot in NMOS devices at the 0.1 mm-gate-length level. IEEE Electron Device Lett. EDL-9, 464 (1988)CrossRefGoogle Scholar
  4. 4.
    Laux, S. E. and Fischetti, M. V.: Monte Carlo simulation of submicron Si n-MOSFETs at 77 and 300 K. IEEE Electron Device Lett. 9, 467 (1988)CrossRefGoogle Scholar
  5. 5.
    Meindl, J. D. et al.: Interconnect opportunities for gigascale integration. IBM J. Res. & Dev. 46, 245 (2002)CrossRefGoogle Scholar
  6. 6.
    Moore, G. E.: Cramming more components onto integrated circuits. Electronics 38(4) (1965)Google Scholar
  7. 7.
    Tuomi, I.: The life and death of Moore’s law, published on-line in First Monday, 7 (2002)Google Scholar
  8. 8.
    Dennard, R. H.; Gaensslen, F. H.; Yu, H. N.; Rideout, V. L.; Bassous, E.; and LeBlanc, A. R.: Design of ion-implanted MOSFETs with very small physical dimensions. IEEE J. Solid-State Circuits, SC-9, 256 (1974)CrossRefGoogle Scholar
  9. 9.
    Davari, B.; Dennard, R. H.; and Shahidi, G. G.: CMOS scaling for high performance and low power-the next ten years. Proc. IEEE 83, 595 (1995)CrossRefGoogle Scholar
  10. 10.
    Baccarani, G.; Wordeman, M. R.; and Dennard, R. H.: Generalized scaling theory and its application to a 1/4 micrometer MOSFET design. IEEE Trans. Electron Devices ED-31, 452 (1984)CrossRefGoogle Scholar
  11. 11.
    Frank, D. J.; Dennard, R. H.; Nowak, E.; Solomon, P. M.; Taur, Y.; and Wong, H.-S. Ph.: Device scaling limits of Si MOSFETs and their application dependencies. Proc. IEEE 89, 259 (2001)CrossRefGoogle Scholar
  12. 12.
    Taur, Y. and Ning, T. H.: Fundamentals of modern VLSI devices. Cambridge: Cambridge University Press, 271 (1998)Google Scholar
  13. 13.
    Gonzalez, R.; Gordon, B. M.; and Horowitz, M. A.: Supply and threshold voltage scaling for low power CMOS. IEEE J. Solid-State Circuits 32, 1210 (1997)CrossRefGoogle Scholar
  14. 14.
    Likharev, K. K.: Electronics below 10 nm. In: Nano and Giga, Challenges in Microelectronics. Amsterdam: Elsevier, 27 (2003)CrossRefGoogle Scholar
  15. 15.
    Nowak, E. J.; Aller, I.; Ludwig, T.; Kim, K.; Joshi, R. V.; Ching-Te, C.; Bernstein, K.; and Puri, R.: Turning silicon on its edge [double gate CMOS/FinFET technology]. IEEE Circuits and Devices Magazine 20, 20 (2004)CrossRefGoogle Scholar
  16. 16.
    IMEC results (2005).Google Scholar
  17. 17.
    Nowak E. J.; Maintaining the benefits of CMOS scaling when scaling bogs down. IBM J. Res. & Dev. 46, 169 (2002)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.IMECLeuvenBelgium

Personalised recommendations