Skip to main content

Instationary Heat-Constrained Trajectory Optimization of a Hypersonic Space Vehicle by ODE–PDE-Constrained Optimal Control

  • Conference paper
  • First Online:
Variational Analysis and Aerospace Engineering

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 33))

Abstract

During ascent and reentry of a hypersonic space vehicle into the atmosphere of any heavenly body, the space vehicle is subjected, among others, to extreme aerothermic loads. Therefore, an efficient, sophisticated and lightweight thermal protection system is determinative for the success of the entire mission. For a deeper understanding of the conductive, convective and radiative heating effects through a thermal protection system, a mathematical model is investigated which is given by an optimal control problem subject to not only the usual dynamic equations of motion and suitable control and state variable inequality constraints but also an instationary quasi-linear heat equation with nonlinear boundary conditions. By this model, the temperature of the heat shield can be limited in certain critical regions. The resulting ODE–PDE-constrained optimal control problem is solved by a second-order semi-discretization in space of the quasi-linear parabolic partial differential equation yielding a large-scale nonlinear ODE-constrained optimal control problem with additional state constraints for the heat load. Numerical results obtained by a direct collocation method are presented, which also include those for active cooling of the engine by the liquid hydrogen fuel. The aerothermic load and the fuel loss due to engine cooling can be considerably reduced by optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Barth, M. Ohlberger: Finite volume methods: foundation and analysis. In: E. Stein, R. de Borst, T. J. R. Hughes (Eds.): Encyclopedia of Computational Mechanics, Volume 1, Fundamentals. John Wiley and Sons, Weinheim, Germany, 439–474, 2004.

    Google Scholar 

  2. R. Bayer, G. Sachs: Optimal return-to-base cruise of hypersonic carrier vehicles, Z. Flugwiss. Weltraumforsch. 19 (1995) 47–54.

    Google Scholar 

  3. M. Bouchez, S. Beyer, G. Cahuzac: PTAH-SOCR fuel cooled composite material structure for dual mode ramjet and liquid rocket engines, Proc. of the 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Fort Lauderdale, USA, 2004. AIAA 2004-3653.

    Google Scholar 

  4. W. Buhl, K. Ebert, H. Herbst: Optimal ascent trajectories for advanced launch vehicles, AIAA Fourth International Aerospace Planes Conf., Orlando, Florida, 1992. AIAA-92-5008.

    Google Scholar 

  5. R. Bulirsch, K. Chudej: Combined optimization of trajectory and stage separation of a hypersonic two-stage space vehicle, Z. Flugwiss. Weltraumforsch. 19 (1995) 55–60.

    Google Scholar 

  6. K. Chudej, M. Wächter, F. Le Bras: Verringerung der thermischen Belastung eines Hyperschall-Flugsystems durch Trajektorienoptimierung, Proc. Appl. Math. Mech. 5 (2005) 803–804.

    Article  Google Scholar 

  7. J. Drexler: Untersuchung optimaler Aufstiegsbahnen raketengetriebener Raumtransporter-Oberstufen, PhD Thesis, Technische Universität München, Faculty of Mechanical Engineering, Munich, Germany, 1995.

    Google Scholar 

  8. M. Dinkelmann: Reduzierung der thermischen Belastung eines Hyperschallflugzeugs durch optimale Bahnsteuerung. PhD thesis, Technische Universität München, Faculty for Mechanical Engineering, Munich, Germany, 1997.

    Google Scholar 

  9. M. Dinkelmann, M. Wächter, G. Sachs: Modelling and simulation of unsteady heat transfer effects on trajectory optimization of aerospace vehicles, Math. Comput. in Simulat. 53 (2002) 389–394.

    Article  Google Scholar 

  10. M. Dinkelmann, M. Wächter, G. Sachs: Modelling of heat transfer and vehicle dynamics for thermal load reduction by hypersonic flight optimization, Math. and Comp. Model. Dyn. Systems 8 (2002) 237–255.

    Article  MATH  Google Scholar 

  11. D. Glass, A. Dilley, H. Kelley: Numerical analysis of convection/transpiration cooling, Proc. 9th International Space Planes and Hypersonic Systems and Technologies Conference, Norfolk, USA, 1999. AIAA 99-4911.

    Google Scholar 

  12. W. W. Hager: Runge-Kutta methods in optimal control and the transformed adjoint system, Numerische Mathematik 87 (2000) 247–282.

    Article  MATH  MathSciNet  Google Scholar 

  13. C. Jänsch, A. Markl: Trajectory optimization and guidance for a Hermes-type reentry vehicle, in Proc. of the AIAA Guidance, Navigation, and Control Conference, New Orleans, USA, 1991. AIAA-91-2659.

    Google Scholar 

  14. C. Jänsch, K. Schnepper, K. H. Well: Trajectory optimization of a transatmospheric vehicle, Proc. American Control Conf., Boston, (1991), 2232–2237.

    Google Scholar 

  15. H. Kreim, B. Kugelmann, H. J. Pesch, M. Breitner: Minimizing the maximum heating of a reentering space shuttle: An optimal control problem with multiple control constraints, Optim. Contr. Appl. Met. 17 (1996) 45–69.

    Article  MATH  Google Scholar 

  16. C. Krishnaprakas: Efficient solution of spacecraft thermal models using preconditioned conjugate gradient methods, J. Spacecraft Rockets 35(1998) 760–764.

    Article  Google Scholar 

  17. H. Kuczera, H. Hauck, P. Sacher: The German hypersonics technology programme-status 1993 and perspectives, Proc. of the 5th AIAA/DGLR International Aerospace Planes and Hypersonics Technologies Conference, Munich, Germany, 1993. AIAA-93-5159.

    Google Scholar 

  18. F. Le Bras: Trajectoires optimales en vol hypersonique tenant compte de léchauffement instationaire de l’avion. Rapport de stage d’option scientifique, Ecole Polytechnique Paris, France, and Universität Bayreuth, Germany, 2004.

    Google Scholar 

  19. W. S. Martinson, P. I. Barton: A differentiation index for partial differential-algebraic equations, SIAM J. Sci. Comput. 21 (1999) 2295–2315.

    Article  MathSciNet  Google Scholar 

  20. E. Meese, H. Nørstrud: Simulation of convective heat flux and heat penetration for a spacecraft at re-entry, Aerosp. Sci. and Technol. 6 (2002) 185–194.

    Article  MATH  Google Scholar 

  21. A. Miele: Flight Mechanics I, Theory of Flight Paths. Addison-Wesley, Reading, 1962.

    Google Scholar 

  22. A. Miele, W. Y. Lee, G. D. Wu: Ascent Performance Feasibility of the National Aerospace Plane, Atti della Accademia delle Scienze di Torino 131 (1997) 91–108.

    Google Scholar 

  23. A. Miele, S. Mancus: Optimal Ascent Trajectories and Feasibility of Next-Generation Orbital Spacecraft, J. Optimi. Theory App. 95 (1997) 467–499.

    Article  MATH  Google Scholar 

  24. A. Miele, S Mancuso: Design Feasibility via Ascent Optimality for Next-Generation Spacecraft, Acta Astronaut. 45/11 (1999) 655–668.

    Article  Google Scholar 

  25. H. J. Pesch: Numerische Berechnung optimaler Steuerungen mit Hilfe der Mehrzielmethode dokumentiert am Problem der Rückführung eines Raumgleiters unter Berücksichtigung von Aufheizungsbegrenzungen, Diploma Thessis, Universität Köln, Department of Mathematics, Cologne, Germany, 1973.

    Google Scholar 

  26. H. J. Pesch, A. Rund, W. von Wahl, S. Wendl: On a Prototype Class of ODE-PDE State-Constrained Optimal Control Problems. Part 1: Analysis of the State-unconstrained Problems. Part 2: The State-constrained Problems, submitted. AQ4

    Google Scholar 

  27. V. Rausch, C.McClinton: NASA’s Hyper-X program, Proc. of the 51th International Astronautical Congress, IAF-00-V.4.01, Rio de Janeiro, Brasil, 2000.

    Google Scholar 

  28. J. Ring: Flight trajectory control for thermal abatement of hypersonic vehicles, Proc. of the 2nd AIAA International Aerospace Planes Conference, Orlando, USA, 1990.

    Google Scholar 

  29. G. Sachs, M. Dinkelmann: Reduction of coolant fuel losses in hypersonic flight by optimal trajectory control, J. Guid. Control Dynam. 19 (1996) 1278–1284.

    Article  MATH  Google Scholar 

  30. G. Sachs, W. Schoder: Optimal separation of lifting vehicles in hypersonic flight, AIAA Guidance, Navigation, and Control Conference, New Orleans, LA, Aug. 12–14, 1991, Technical Papers, Vol. 1 (A91-49578 21-08). Washington, DC, American Institute of Aeronautics and Astronautics, 1991, p. 529–536.

    Google Scholar 

  31. O. v. Stryk: Numerische Lösung optimaler Steuerungsprobleme: Diskretisierung, Parameteroptimierung und Berechnung der adjungierten Variablen. Fortschritt-Berichte VDI, Reihe 8: Meß-, Steuerungs- und Regeltechnik, No. 441, VDI Verlag, Düsseldorf, Germany, 1995.

    MATH  Google Scholar 

  32. O. v. Stryk: User’s Guide for DIRCOL. A direct Collocation method for the numerical solution of optimal control problems. Version 1.2. Lehrstuhl für Höhere Mathematik und Numerische Mathematik, Technische Universität München, Munich, Germany, 1995.

    Google Scholar 

  33. F. Tröltzsch: Optimalsteuerung bei partiellen Differentialgleichungen. Vieweg, Wiesbaden, Germany, 2005.

    Google Scholar 

  34. M. Wächter: Optimalflugbahnen im Hyperschall unter Berücksichtigung der instationären Aufheizung. PhD Thesis, Technische Universität München, Faculty of Mechanical Engineering, Munich, Germany, 2004.

    Google Scholar 

  35. M. Wächter, G. Sachs: Unsteady heat load reduction for a hypersonic vehicle with a multipoint approach. In: Optimal Control.Workshop at the University of Greifswald, 1.–3.10.2002, Report of the Collaborative Research Center 255 of the Deutsche Forschungsgemeinschaft (German Research Foundation), Technische Universität München, Munich, Germany, 2002, pp. 15–26.

    Google Scholar 

  36. R. Windhorst, M. D. Ardema, J. V. Bowles: Minimum heating reentry trajectories for advanced hypersonic launch vehicles, Proc. of the AIAA Guidance, Navigation, and Control Conference, New Orleans, USA, 1997. AIAA-97-3535.

    Google Scholar 

  37. N. X. Vinh, A. Busemann, R. D. Culp: Hypersonic and Planetary Entry Flight Mechanics. The University of Michigan Press, Ann Arbor, 1980.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kurt Chudej .

Additional information

This contribution is dedicated to Professor Angelo Miele on the occasion of his 85th birthday.

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag New York

About this paper

Cite this paper

Chudej, K., Pesch, H.J., Wächter, M., Sachs, G., Le Bras, F. (2009). Instationary Heat-Constrained Trajectory Optimization of a Hypersonic Space Vehicle by ODE–PDE-Constrained Optimal Control. In: Variational Analysis and Aerospace Engineering. Springer Optimization and Its Applications, vol 33. Springer, New York, NY. https://doi.org/10.1007/978-0-387-95857-6_8

Download citation

Publish with us

Policies and ethics