Skip to main content

Global Mercury Emissions to the Atmosphere from Natural and Anthropogenic Sources

  • Chapter
  • First Online:
Book cover Mercury Fate and Transport in the Global Atmosphere

Summary

This chapter provides an up-to-date overview of global mercury emissions from natural and anthropogenic sources at country and regional/continental scale. The information reported in Chapters 2–8 is the basis of the assessment reported in this chapter, however, emissions data related to sources and regions not reported in chapters 2–8 have been derived, to the extent possible, from the most recent peer-reviewed literature and from official technical reports. Natural sources, which include the contribution from oceans and other surface waters, rocks, top soils and vegetation, volcanoes and other geothermal activities and biomass burning are estimated to release annually about 5207 Mg of mercury, part of which represent previously deposited anthropogenic and natural mercury from the atmosphere to ecosystem-receptors due to historic releases and part is a new contribution from natural reservoirs. Current anthropogenic sources, which include a large number of industrial point sources are estimated to release about 2917 Mg of mercury on an annual basis, the major contribution is from fossil fuel-fired power plants (1422 Mg yr-1), artisanal small scale gold mining (400 Mg yr-1), waste disposal (187 Mg yr-1), non-ferrous metals manufacturing (310 Mg yr-1) and cement production (236 Mg yr-1). Our current estimate of global emissions suggest that summing up the contribution from natural and anthropogenic sources nearly 8124 Mg of mercury is released annually to the global atmosphere. The evaluation of global emissions presented in this report differs from previous published assessments because in the past, emissions from several sources, i.e., forest fires and coal-bed fires have not been accounted for, and also because of improved knowledge of some anthropogenic and natural sources (i.e., emissions from oceans, vegetation) as suggested by the most up-to-date literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

1.6 References

  • ACAP, 2005. Arctic Mercury Releases Inventory. Reduction of Atmospheric Mercury Releases from Arctic States. Arctic Council Action Plan to Eliminate Pollution of the Arctic (ACAP), Danish Ministry of the Environment, Danish Environmental Protection Agency, Copenhagen, Denmark,: 116 pp.

    Google Scholar 

  • ACAP, 2005. Assessment of Mercury Releases from the Russian Federation. Arctic Council Action Plan to Eliminate Pollution of the Arctic (ACAP). Danish Ministry of the Environment, Danish Environmental Protection Agency, Copenhagen, Denmark: 332 pp.

    Google Scholar 

  • Andersson M.E., Gårdfeldt K., Wängberg I., Sprovieri F., Pirrone N., Lindqvist O., 2007. Seasonal and daily variation of mercury evasion at coastal and off shore sites from the Mediterranean Sea. Marine Chemistry, Vol.104, 214-226. Reprint on the Special Issue, Vol. 107, pp.104–116.

    Article  CAS  Google Scholar 

  • Belkin H.E., Finkelman R.B., Wang Q., Wang B., Zheng B., 2004. Mercury in China coals: abstracts of the 21st Annual Meeting of the Society for Organic Petrology, v. 21, p. 28.

    Google Scholar 

  • Bishop K.H., Lee Y.H., Munthe J., Dambrine E., 1998. Xylem sap as a pathway for total mercury and methyl mercury transport from soil to tree canopy in a boreal forest. Biogeochemistry, 40, 101-113.

    Article  Google Scholar 

  • Bjønstad S.L., Linde M.R., 1994. Materialstrømanalyse av kvikksølv. Vurdering av alternativer, Utkast til SFT-rapport, Oslo, Norway.

    Google Scholar 

  • Bloom N.S., 2000. Analysis and Stability of Mercury Speciation in Petroleum Hydrocarbons. Fresenius' J. Anal. Chem., 366, 438–443.

    Article  CAS  Google Scholar 

  • Brunke E.G., Labuschagne C., Slemr F., 2001. Gaseous Hg emissions from a fire in the Cape Peninsula, South Africa, during January 2000. Geophysical Research Letters, 28 (8): 1483-1486.

    Article  CAS  Google Scholar 

  • Carballeira A., Fernandez J.A., 2002. Bioconcentration of metals in the moss Scleropodium purum in the area surrounding a power plant. Chemosphere, 47: 1041-1048.

    Article  CAS  Google Scholar 

  • Carvalho J.A., Higuchi N., Araujo T., Santos J.C., 1998. Combustion completeness in a rain forest clearing experiment in Manaus, Brazil. Journal of Geophysical Research, 103 (D11): 13195-13200.

    Article  CAS  Google Scholar 

  • Cavallini A., Natali L., Durante M., Maserti B.E., 1999. Mercury uptake, distribution and DNA affinity in durum wheat (Triticum durum Desf.) plants, Sci. Tot. Env., 243/244, 119.

    Article  Google Scholar 

  • CEC, 2001. Preliminary Atmospheric Emissions Inventory of Mercury in Mexico. Final Report. Acosta y Asociados Project CEC-01 prepared for Commission for Environmental Cooperation No. 3.2.1.04.

    Google Scholar 

  • Cinnirella S., Pirrone N., 2006. Spatial and temporal distribution of mercury emission from forest fires in Mediterranean region and Russian federation. Atmospheric Environment 40:7346-7361.

    Article  CAS  Google Scholar 

  • Cinnirella S., Pirrone N., Allegrini A., Guglietta D., 2008. Modeling mercury emissions from forest fires in the Mediterranean region Environmental Fluid Mechanics, 8: 129–145.

    Google Scholar 

  • Coates D.A., Heffern E.L., 2000. Origin and geomorphology of clinker in the Powder River Basin, Wyoming and Montana. In: Coal bed methane and Tertiary geology of the Powder River Basin (Miller R., Ed.), Wyoming Geological Association 50th annual Field Conference Guidebook, Casper, WY, 211-229.

    Google Scholar 

  • Conaway C.H., Mason R.P., Steding D.J., Flegal A.R., 2005. Estimate of mercury emission from gasoline and diesel fuel consumption, San Francisco Bay are, California. Atmospheric Environment, 39: 101-105.

    Article  CAS  Google Scholar 

  • Concorde East-West, 2006. Status Report: Mercury-cell Chlor-alkali Plants in Europe. Prepared for the European Environmental Bureau. October.

    Google Scholar 

  • Cossa D., Coquery M., Gobeil C., Martin J.M., 1996. Mercury fluxes at the ocean margins. In Global and regional mercury cycles: sources, fluxes and mass balances, pp. 229–247. Ed. by W. Baeyens et al. Kluwer Academic Publishers.

    Google Scholar 

  • Culver A., 2007. How to Specify Low-mercury and Lead-free Lighting Equipment. Available at: www.abag.ca.gov/abagenergywatch/pdfs/EnviroSpec-Mercury.pdf

  • Discover, 1999. China's on fire. R&D News, 20 (10): 20 pp.

    Google Scholar 

  • DME, 2003. Integrated Energy Plan for the Republic of South Africa. Department of Minerals and Energy, South Africa, Pretoria, South Africa.

    Google Scholar 

  • EC, 2001a. Integrated Pollution Prevention and Control (IPPC) Reference Document on Best Available Techniques in the Chlor-Alkali Manufacturing industry. Available at: eippcb.jrc.es

    Google Scholar 

  • EC, 2001b. Pollutants in urban waste water and sewage sludge. European Commission, Luxemburg: 244 pp. Available at www.ec.europa.eu/environment/ waste /sludge /sludge_ pollutants.htm.

  • EC, 2002. Final report from the commission of the council concerning mercury from the Chlor-Alkali Industry. European Commission, Brussels.

    Google Scholar 

  • EC, 2004. Mercury flows in Europe and the World: the impact of decommissioned chlor-alkali plants. Available at: ec.europa.eu/environment/chemicals/mercury/pdf/report.pdf

    Google Scholar 

  • EIA, 2008. International Energy Outlook 2007. Available at: www.eia.doe.gov/oia f/ ieo /pdf/coal.pdf

  • Eisenreich S.J., Bernasconi C., Campostrini P., De Roo A., George G., Heiskanen A.S., Hjorth J., Hoepffner N., Jones K.C., Noges P., Pirrone N., Runnalls N., Somma F., Stilanakis N., Umlauf G., van de Bund W., Viaroli P., Vogt J., Zaldivar J.M., 2005. Climate Change and the European Water Dimension. A Report to the European Water Directors 2005. EU Report No. 21553, European Commission-Joint Research Centre, Ispra, Italy, pp.253.

    Google Scholar 

  • Engle M.A., Gustin M.S., Zhang H., 2001. Quantifying naturalsource mercury emissions from the Ivanhoe Mining District, north-central Nevada, USA. Atmospheric Environment, 35: 3987-3997.

    Article  CAS  Google Scholar 

  • Environment Canada, 2008. Mercury and the environment. Available at: www.ec.gc.ca /MERCURY/EN/ndex.cfm

  • EPA, 1992. Characterization of Products Containing Mercury in Municipal Solid Waste in the United States, 1970 to 2000. Environmental Protection Agency, Municipal Solid Waste Program, Office of Solid Waste, OSW-EPA-530-R-92-013.

    Google Scholar 

  • EPA, 2008. Mercury in Medical Waste. Mercury Fact Sheet # 1. Environmental Protection Agency, Region 5 Air and Radiation Division. Available at: www.epa.gov/ARD-R5/glakes/fact1.htm

  • Ericksen J.A., Gustin M.S., Schorran D.E., Johnson D.W., Lindberg S.E., Coleman J.S., 2003. Accumulation of atmospheric mercury in forest foliage. Atmospheric Environment, 37 (12): 1613-1622.

    Article  CAS  Google Scholar 

  • Ericksen J.A., Gustin M.S., 2004. Foliar exchange of mercury as a function of soil and air mercury concentrations. Science of the Total Environment, 324: 271-279.

    Article  CAS  Google Scholar 

  • Eurochlor, 2008. Chlorine plants, January 2005. Chlorine online information resource. Available at: http://www.eurochlor.org/plants

  • Feng X., Streets D.G., Hao J., Wu Y., Li G., 2008. Mercury emissions from industrial sources in China. In: Mercury Fate and Transport in the Global Atmosphere: Measurements, models and policy implications (Pirrone N. and Mason R. Eds.), UNEP, 2008.

    Google Scholar 

  • Ferrara R., Maserti B.E., De Liso A., Cioni R., Raco B., Taddeucci G., Edner H., Ragnarson P., Sverberg S., Wallinder E., 1994. Atmospheric mercury emission at Solfatara Volcano, Pozzuoli, Phlegraean Fields-Italy. Chemosphere, 29: 1421–1428.

    Article  CAS  Google Scholar 

  • Ferrara R., Maserti B.E., Andersson M., Edner H., Ragnarson P., Svanberg S., 1997. Mercury degassing rate from mineralized areas in the Mediterranean basin. Water, Air and Soil Pollution, 93: 59-66.

    CAS  Google Scholar 

  • Ferrara R., Mazzolai B., Edner H., Svanberg S., Wallinder E., 1998. Atmospheric mercury sources in the Mt. Amiata area, Italy. The Science of the Total Environment, 213 (1–3): 13-23.

    Article  CAS  Google Scholar 

  • Ferrara R., Mazzolai B., Lanzillotta E., Nucaro E., Pirrone N., 2000a. Volcanoes as Emission Sources of Atmospheric Mercury in the Mediterranean Basin. The Science of Total Environment, 259, 115-121.

    Article  CAS  Google Scholar 

  • Ferrara R., Mazzolai B., Lanzillotta E., Nucaro E., Pirrone N., 2000b. Temporal trends in gaseous mercury evasion from the Mediterranean Seawaters. The Science of Total Environment, 259, 183-190.

    Article  CAS  Google Scholar 

  • Finkelman R.B., 1993. Trace and minor elements in coal. In: Organic Geochemistry (M.H. Engel and S.A. Macko, Eds.), Plenum Press, New York. p. 593-607.

    Google Scholar 

  • Finnish Environment Institute, 1999. Atmospheric emissions of heavy metals in Finland in the 1990's. The Finnish Environment No. 329, Finnish Environment Institute, Helsinki (in Finnish).

    Google Scholar 

  • Friedli H.R., Radke L.F., Lu J.Y., 2001. Mercury in Smoke from Biomass Fires. Geophysical Research Letters, 28 (17): 3223- 3226.

    Article  CAS  Google Scholar 

  • Friedli H.R., Radke L.F., Lu J.Y., Banic C.M., Leaitch W.R., MacPherson J.I., 2003. Mercury emissions from burning of biomass from temperate North American forests: laboratory and airborne measurements. Atmospheric Environment, 37 (2): 253-267.

    Article  CAS  Google Scholar 

  • Friedli H.R., Arellano A.F. Jr., Cinnirella S., Pirrone N., 2008. Mercury emissions from global biomass burning: spatial and temporal distribution. In: Mercury Fate and Transport in the Global Atmosphere: Measurements, models and policy implications (Pirrone N. and Mason R. Eds.), UNEP, 2008.

    Google Scholar 

  • Genest W., 1997. Recycling of fluorescent tubes in Germany. Federal Environmental Agency, Berlin, Germany, p. 1–6.

    Google Scholar 

  • Genie Urbain-Genie Rural, 1999. Les déchets mercuriels en France. Mercury waste in France, Parts 1 and 2, Nos. 7-8:20-48 and 17-53, France.

    Google Scholar 

  • GMP, 2006. Manual for Training Artisanal and Small-Scale Gold Miners, UNIDO, Vienna, Austria.

    Google Scholar 

  • Gustin M.S., Harald B., Christopher S., 2002. Investigation of the light-enhanced emission of mercury from naturally enriched substrates. Atmospheric Environment, 36 (20): 3241-3254.

    Article  CAS  Google Scholar 

  • Hedgecock I.M., Pirrone N., 2004. Chasing Quicksilver: Modeling the Atmospheric Lifetime of Hg0 (g) in the Marine Boundary Layer at Various Latitudes. Environmental Science and Technology, Vol.38, 69-76.

    Article  CAS  Google Scholar 

  • Hedgecock I.M. and Pirrone N., 2005. Modelling chemical and physical processes of Hg compounds in the marine boundary layer. In: Dynamics of Mercury Pollution on Regional and Global Scales, N. Pirrone and K. Mahaffey (Editors), Springer Verlag Publishers, Norwell, MA, USA. Chapter 13, pp. 295-317.

    Chapter  Google Scholar 

  • Hedgecock I.M., Pirrone N.,Trunfio G.A., Sprovieri F., 2006. Integrated mercury cycling, transport and air-water exchange (MECAWEx) model. Journal of Geophysical Research, 111 (D20302).

    Google Scholar 

  • Herring J.R., 1989. Fires as cause, effect and feedback on the crustal cycles of carbon, phosphorus and nitrogen: Abstract of papers, 198th American Chemical Society National Meeting, American Chemical Society, Washington DC, GEOC 7.

    Google Scholar 

  • Herring J.R., Ciener J.S., Been J.M., Szari S.L., Reime M.G., Rice D.D., Boyce B.C., 1994. Methane, carbon dioxide, oxygen and nitrogen in soil gas overlying coal beds of the Upper Cretaceous Fruitland Formation in the San Juan Basin, La Plata County, southwestern Colorado: Open-file report, U.S. Geological Survey, Reston, Virginia, 12 pp.

    Google Scholar 

  • Hoyer M., Baldauf1 R.V., Scarbro C., Barres J., Keeler G.J., 2004. Mercury Emissions from Motor Vehicles. 13th International Emission Inventory Conference. "Working for Clean Air in Clearwater". Clearwater, FL, June 8 – 10. Available at: www.epa.gov/ttn/chief/conference /ei13/

  • Huber K., 1997a. Mercury Use: Wastewater Treatment Plants, Great Lakes Binational Toxics Strategy - The Wisconsin Mercury Source Book. (Available at: www. epa.gov/glnpo/ nsdocs/ hgsbook/)

  • Huber K., 1997b. Wisconsin Mercury Sourcebook, U.S. EPA. Available at: www. p2pays.org/ ef/04/03851.htm

  • Huse A, Lindmark GM, Sørensen PL, Weholt Ø, Mroueh U-M, Wahlström M., 1999. Investigation of categories and quantities of mercury waste and treatment capacity in the Nordic countries. Tema Nord No. 546. Nordic Council of Ministers, Copenhagen, 90 p.

    Google Scholar 

  • Hylander L.D., Meili M., 2003. 500 years of m Nacht ercury production: global annual inventory by region until 2000 and associated emissions. Sci Total Environ, 304 (1–3): 137-144.

    Article  CAS  Google Scholar 

  • IAWG, 1997. Municipal Solid Waste Incinerator Residues. International Ash Working Group. Brussels.

    Google Scholar 

  • IEA, 2006. Energy Balances of OECD Countries (2006 edition)--Extended Balances and Energy Balances of Non-OECD Countries (2006 edition)--Extended Balances. International Energy Agency (IEA) Statistics Division, Paris. Available at data.iea.org/ieastore/default.asp.

    Google Scholar 

  • Iglesias T., Cala V., Gonzalez J., 1997. Mineralogical and chemical modifications in soils affected by a forest fire in the Mediterranean area. The Science of the Total Environment, 204(1): 89-96.

    Article  CAS  Google Scholar 

  • ITC, 2008. Overview about the coal fire problem. International Institute for Geoinformation Science and Earth Observation. Available at: www.itc.nl/∼coalfire/problem/hazards.html

  • Jasinski S.M., 1994. The materials flow of mercury in the United States. The United States Department of the Interior, Bureau of Mines, Circular 9412. (Available at minerals.usgs.gov/minerals/pubs/commodity/mercury/).

    Google Scholar 

  • Jones G., Miller G., 2005. Mercury and Modern Gold Mining in Nevada. Dept. of Natural Resources and Environmental Sciences. University of Nevada. Available at: www.unep.org

  • Kim K.-H., Kim M.-Y., 2002. Mercury emissions as landfill gas from a large-scale abandoned landfill site in Seoul. Atmospheric Environment Volume: 36, Issue: 31, October, 2002, pp. 4919-4928

    Article  Google Scholar 

  • Kuenzer C., 2008. (Lead Author), Galal H., Galal H., (Topic Editor), 2008. Coal fires. In: Encyclopedia of Earth. Eds. Cutler J. Cleveland (Eds.) Available at: www.eoearth.org/rticle/Coal_ fires

  • Lacerda L.D., 1995. Amazon mercury emissions. Nature, 374: 20-21.

    Article  Google Scholar 

  • Landis M.S., Lewis C.W., Stevens R.K., Keeler G.J., Dvonch J.T., Tremblay R.T., 2007. Ft. McHenry tunnel study: Source profiles and mercury emissions from diesel and gasoline powered vehicles. Atmospheric Environment, 41: 8711-8724.

    Article  CAS  Google Scholar 

  • Leaner J.J., Ashton P.J., Mason R.P., Kim E-H., Murray K., Dabrowski J.M., 2006. The Status of Mercury Research in South Africa. 8th International Conference on Mercury as a Global Pollutant, Madison, Wisconsin, August 2006.

    Google Scholar 

  • Leaner J., Dabrowski J., Mason R., Resane T., Richardson M., Ginster M., Euripides R., Masekoameng E., 2008. Mercury emissions from point sources in South Africa. In: Mercury Fate and Transport in the Global Atmosphere: Measurements, models and policy implications (Pirrone N. and Mason R. Eds.), UNEP, 2008.

    Google Scholar 

  • Liang L., Horvat M., Danilchik P., 1996. A Novel Analytical Method for Determination of Picogram Levels of Total Mercury in Gasoline and Other Petroleum Based Products. Sci Tot Environ., 187, 57-64.

    Article  CAS  Google Scholar 

  • Liang L., Lazoff S., Horvat M., Swain E., Gilkeson J., 2000. Determination of Mercury in Crude Oil by In Situ Thermal Decomposition Using a Simple Lab Built System. J. Anal. Chem., 367, 8-11.

    Article  CAS  Google Scholar 

  • Lindberg S.E., Price J.L., 1999a. Airborne emissions of mercury from municipal landfill operations: A short-term measurement study in Florida. J. Air & Waste Management Association, 49: 520-532.

    CAS  Google Scholar 

  • Lindberg S.E., Roy K., Owens J., 1999b. Pathways of mercury in solid waste disposal. ORNL sampling operations summary and preliminary data report for PaMSWaD-I, Brevard County Landfill, February 6.

    Google Scholar 

  • Lindberg S., Bullock R., Ebinghaus R., Engstrom D., Feng X., Fitzgerald W., Pirrone N., Prestbo E., Seigneur C., 2007. A Synthesis of Progress and Uncertainties in Attributing the Sources of Mercury in Deposition. Ambio, Vol. 36, No. 1, pp.19-32.

    Article  Google Scholar 

  • Lodenius M., 1998. Dry and wet deposition of mercury near a chlor-alkali plant. The Science of the Total Environment, 213 (1–3): 53-56.

    Article  CAS  Google Scholar 

  • Lodenius M., Tulisalo E., Soltanpour-Gargar A., 2003. Exchange of mercury between atmosphere and vegetation under contaminated conditions. The Science of the Total Environment 304 (1–3), 169–174.

    Article  CAS  Google Scholar 

  • Maine Department of Environmental Protection, 2003. A Strategy to Reduce the Mercury Content of Products: Report to the Joint Standing Committee on Natural Resources, January 2003, http://mainegov-images.informe.org/dep/mercury/productsweb.pdf

  • Mason R., 2008. Mercury Emissions from Natural Sources and their Importance in the Global Mercury Cycle. In: Mercury Fate and Transport in the Global Atmosphere: Measurements, models and policy implications (Pirrone N. and Mason R. Eds.), UNEP, 2008.

    Google Scholar 

  • Mather T.A., Pyle D.M., 2004. Comment on Volcanic emissions of mercury to the atmosphere: global and regional inventories Sci. Tot. Env., 327, 323-329.

    Article  CAS  Google Scholar 

  • Maxson P., Vonkeman G., 1996. Heavy metals in products. Ministry of Housing, Spatial Planning and Environment, Directorate-General for Environmental Protection, The Hauge', Publikatiereeks Produktenbeleid nr. 1996/17.

    Google Scholar 

  • Maxson P., 2003. Mercury flows in Europe and the world: The impact of decommissioned chlor-alkali plants. Draft final report 22 August 2003

    Google Scholar 

  • Meijer P.J., 2001. Short survey of dangerous waste containing mercury in The Netherlands. Laboratory for Waste and Emissions, National Institute of Public Health and the Environment, Unpublished data.

    Google Scholar 

  • Metallgesellschaft, (1939–1998). Metallstatistik 1929–1938; Metallstatistik 1957–1966; Metallstatistik 1981–1991; Metallstatistik 1985–1995; Metallstatistik 1987–1997. Annual volumes of metal statistics. Frankfurt-am-Main, 1939–1998 (in German).

    Google Scholar 

  • Mukherjee A.B., Zevenhoven R., Brodersen J., Hylander L.D., Bhattacharya P., 2004. Mercury in waste in the European Union: sources, disposal methods and risks. Resources, Conservation and Recycling, 42 (2): 155-182.

    Article  Google Scholar 

  • Mukherjee A.B., Zevenhoven R., Bhattacharya P., Sajwan K.S., Kikuchi R., 2008a. Mercury flow via coal and coal utilization by-products: A global perspective. Resources, Conservation and Recycling, 52: 571-591.

    Article  Google Scholar 

  • Mukherjee A.B., Bhattacharya P., Sarkar A., Zevenhoven R., 2008b. Mercury emissions from industrial sources in India. In: Mercury Fate and Transport in the Global Atmosphere: Measurements, models and policy implications (Pirrone N. and Mason R. Eds.), UNEP, 2008.

    Google Scholar 

  • Munthe J., Wangberg I., Pirrone N., Iverfeld A., Ferrara R., Ebinghaus R., Feng R., Gårdfeldt K., Keeler G.J., Lanzillotta E., Lindberg S.E., Lu J., Mamane Y., Prestbo E., Schmolke S., Schroder W.H., Sommar J., Sprovieri F., Stevens R.K., Stratton W., Tuncel G., Urba A., 2001. Intercomparison of Methods for Sampling and Analysis of Atmospheric Mercury Species. Atmospheric Environment.Vol. 35, 3007-3017.

    Article  CAS  Google Scholar 

  • Nacht D.M., Gustin M.S., 2004. Mercury emissions frombackground and altered geologic units throughout Nevada. Water, Air and Soil Pollution, 151: 179-193.

    Article  CAS  Google Scholar 

  • Nelson P.F., 2007. Atmospheric emissions of mercury from Australian point sources. Atmospheric Environment 41: 1717– 1724.

    Article  CAS  Google Scholar 

  • NEMA, 2001. Fluorescent Lamps and the Environment. National Electrical Manufacturers Association, NEMA01BR.

    Google Scholar 

  • Nriagu J.O., 1989. A global assessment of natural sources of atmospheric trace metals. Nature 338, 47–49.

    Article  CAS  Google Scholar 

  • Nriagu J., Becker C., 2003. Volcanic emissions of mercury to the atmosphere: global and regional inventories. Sci. Tot. Env., 304, 3–12.

    Article  CAS  Google Scholar 

  • Pacyna E.G., Pacyna J.M., Pirrone N., 2001. European emissions of atmospheric mercury from anthropogenic sources in 1995. Atmospheric Environment, 35 (17): 2987-2996.

    Article  CAS  Google Scholar 

  • Pacyna J.M., Pacyna E.G., Steenhuisen F., Wilson S., 2003. Mapping 1995 global anthropogenic emissions of mercury. Atmospheric Environment, 37 (S1): S109-S117.

    Article  CAS  Google Scholar 

  • Pacyna J.M., Munthe J., Larjava K., Pacyna E.G., 2005. Mercury emissions from anthropogenic sources: estimates and measurements for Europe. In: Dynamics of Mercury Pollution on Regional and Global Scales. Atmospheric Processes, Human Health and Policy, (Pirrone and Mahaffey Eds.), Springer Verlag Publishers, Norwell, MA, USA, Chapter 3: 14 pp.

    Google Scholar 

  • Pacyna E.G., Pacyna J.M., Fudala J., Strzelecka-Jastrzab E., Hlawiczka S., Panasiuk D., 2006a. Mercury emissions to the atmosphere from anthropogenic sources in Europe in 2000 and their scenarios until 2020. Science of the Total Environment, 370: 147-156.

    Article  CAS  Google Scholar 

  • Pacyna E.G., Pacyna J.M., Steenhuisen F., Wilson S., 2006b. Global anthropogenic mercury emission inventory for 2000. Atmospheric Environment, 40: 4048-4063.

    Article  CAS  Google Scholar 

  • Pai P., Niemi D., Powers B., 2000. A North American inventory of anthropogenic mercury emissions. Fuel Processing Technology, 65–66: 101-115.

    Article  Google Scholar 

  • Patra M., Sharma A., 2000. Mercury Toxicity In Plants. Botanical Review, 66: 379-422.

    Article  Google Scholar 

  • Pirrone N., Keeler G.J., Nriagu O., 1996. Regional differences in worldwide emissions of mercury to the atmosphere. Atmospheric Environment, 30 (17): 2981-2987.

    Article  CAS  Google Scholar 

  • Pirrone N., Allegrini I., Keeler G.J., Nriagu J.O., Rossmann R., Robbins J.A., 1998. Historical Atmospheric Mercury Emissions and Depositions in North America Compared to Mercury Accumulations in Sedimentary Records. Atmospheric Environment, 32, 929- 940.

    Article  CAS  Google Scholar 

  • Pirrone N., Hedgecock I., Forlano L., 2000. The Role of the Ambient Aerosol in the Atmospheric Processing of Semi-Volatile Contaminants: A Parameterised Numerical Model (GASPAR). Journal of Geophysical Research, 105, D8, 9773-9790.

    Article  CAS  Google Scholar 

  • Pirrone N., 2001. Mercury Research in Europe: Towards the preparation of the New EU Air Quality Directive. Atmospheric Environment, 35: 2979-2986.

    Article  CAS  Google Scholar 

  • Pirrone N., Pacyna J.M., Barth H., 2001a. Atmospheric Mercury Research in Europe. Atmospheric Environment, 35 (17): 2997-3006.

    Article  CAS  Google Scholar 

  • Pirrone N., Costa P., Pacyna J.M., Ferrara R., 2001b. Mercury Emissions to the Atmosphere from Natural and Anthropogenic Sources in the Mediterranean region. Atmospheric Environment. Vol. 35, 2997-3006.

    Article  CAS  Google Scholar 

  • Pirrone N., Munthe J., Barregård L., Ehrlich H.C., Petersen G., Fernandez R., Hansen J.C., Grandjean P., Horvat M., Steinnes E., Ahrens R., Pacyna J.M., Borowiak A., Boffetta P., Wichmann-Fiebig M., 2001c. Ambient Air Pollution by Mercury (Hg) - Position Paper. European Commision, Bruxelles. Available at: europa.eu.int/comm/environment/ ir/ackground.htm# mercury

    Google Scholar 

  • Pirrone N., Wichmann-Fiebig M., 2003. Some Recommendations on Mercury Measurements and Research Activities in the European Union. Atmospheric Environment.Vol. 37, S-1, 3-8.

    Article  Google Scholar 

  • Pirrone N., Ferrara R., Hedgecock I.M., Kallos G., Mamane Y., Munthe J., Pacyna J.M., Pytharoulis I., Sprovieri F., Voudouri A., Wangberg I., 2003. Dynamic Processes of Mercury Over the Mediterranean Region: results from the Mediterranean Atmospheric Mercury Cycle System (MAMCS) project. Atmospheric Environment.Vol. 37-S1, 21-39.

    Article  Google Scholar 

  • Pirrone N., Hedgecock I.M., 2005. Climate Change and the Mercury Biogeochemical Cycle. In: Climate Change and the European Water Dimension: A Report to the European Water Directors 2005. EU Report No. 21553, Eisenreich (Eds.), European Commission- Joint Research Centre, Ispra, Italy, Chapter VI-C, 190-196.

    Google Scholar 

  • Pirrone N., Mahaffey K., 2005. Where we Stand on Mercury Pollution and its health effects on Regional and Global Scales. In: Dynamics of Mercury Pollution on Regional and Global Scales (Pirrone N. and Mahaffey K. Eds.), Springer Verlag Publishers, Norwell, MA, USA. Chapter 1, pp.1- 21.

    Chapter  Google Scholar 

  • Pirrone N., Sprovieri S., Hedgecock I., Trunfio A., Cinnirella S., 2005. Dynamic Processes of Atmospheric Mercury and its Species in the Mediterranean Region. In: Dynamics of Mercury Pollution on Regional and Global Scales. Atmospheric Processes, Human Health and Policy, (Pirrone and Mahaffey Eds.), Springer Verlag Publishers, Norwell, MA, USA, Chapter 23: 41

    Chapter  Google Scholar 

  • Prakash A., 2007. Coal Fires in China. Available at: www. gi.alaska.edu/∼prakash/coalfires/ coalfires.html

  • Pyle D.M., Mather T.A., 2003. The importance of volcanic emissions for the global atmospheric mercury cycle. Atmos. Environ., 37: 5115-5124.

    Article  CAS  Google Scholar 

  • Rea A.W., Lindberg S.E., Scherbatskoy T., 2002. Mercury accumulation in foliage over time in two northern mixed-hardwood forests. Water, Air and Soil Pollution, 133 (1–4): 49-67.

    Article  CAS  Google Scholar 

  • Reese, 1981–2000. USA Geological Survey Minerals Yearbook: Mercury. All years 1981–2000.

    Google Scholar 

  • Rosema A., van Genderen J.L., Schalke H.J.W.G., 1993. Environmental monitoring of coal fires in north China: Project identification Mission Report, BCRS 93-29, ISBN 90 5411 1054.

    Google Scholar 

  • Roulet M., Lucotte M., Farella N., Serique G., Coelho H., Sousa Passos C.J., De Jesus da Silva E., Scavone de Andrade P., Mergler D., Guimarães J.R.D., Amorim M., 1999. Effects of recent human colonization on the presence of mercury in Amazonian ecosystems. Water, Air and soil pollution, 112: 297-313.

    Article  CAS  Google Scholar 

  • Schwesig D., Krebs O., 2003. The role of ground vegetation in the uptake of mercury and methylmercury in a forest ecosystem. Plant and Soil, 253: 445-455.

    Article  CAS  Google Scholar 

  • Sigler J.M., Lee X., Munger W., 2003. Emission and long-range transport of gaseous mercury from a large-scale Canadian boreal forest fire. Environmental Science and Technology, 37: 4343-4347.

    Article  CAS  Google Scholar 

  • Stracher G.B., Taylor T.P., 2004. Coal fires burning out of control around the world: thermodynamic recipe for environmental catastrophe. In: Coal Fires Burning around the World: a Global Catastrophe (Stracher G.B., Ed.), International Journal of Coal Geology, p. 7–17.

    Google Scholar 

  • Stracher G.B., 2007. Coal fires burning around the world: Opportunity for innovative and interdisciplinary research, GSA Today, Geological Society of America, 17 (11): 36-37.

    Google Scholar 

  • Stracher G.B., Lindsley-Griffin N., Griffin J.R., Renner S., Schroeder P., Viellenave J.H., Masalehdani M.N.-N., Kuenzer C., 2008. Revisiting the South Cañon Number 1 Coal Mine fire during a geologic excursion from Denver to Glenwood Springs, Colorado. In: [title] (Raynolds R.G., Ed.) Geological Society of America Field Guide 11, doi: 10.1130/2007.fld011(XX). (In press).

    Google Scholar 

  • Streets D.G., Hao J.M., Wu Y., Jiang J.K., Chan M., Tian H.Z., Feng X.B., 2005. Anthropogenic mercury emissions in China. Atmospheric Environment, 39: 7789-7806.

    Article  CAS  Google Scholar 

  • Streets D.G., Hao J., Wang S., Wu Y., 2008. Mercury emissions from coal combustion in China. In: Mercury Fate and Transport in the Global Atmosphere: Measurements, models and policy implications (Pirrone N. and Mason R. Eds.), UNEP, 2008.

    Google Scholar 

  • Swain E.B., Jakus P., Lupi F., Maxson P., Pacyna J., Penn A., Rice G., Spiegel S., Veiga M, 2007. Socioeconomic Consequences of Mercury Use and Pollution. Ambio: A Journal of the Human Environment, XXXVI (1).

    Google Scholar 

  • Sznopek J.L., Goonan T.G., 2000. The material flow of mercury in the economies of the United States and theWorld'. US Geological Survey Circular, 1197: 28 p. Available at: greenwood.cr.usgs.gov/circulars/c1197/.

    Google Scholar 

  • Telmer K., Vega M., 2008. Knowledge Gaps in Mercury Pollution from Gold Mining. In: Mercury Fate and Transport in the Global Atmosphere: Measurements, models and policy implications (Pirrone N. and Mason R. Eds.), UNEP, 2008.

    Google Scholar 

  • Tewalt S.J., Bragg L.J., Finkelman R.B., 2001. Mercury in U.S. Coal; abundance, distribution and modes of occurrence: U.S. Geological Survey Fact Sheet FS-095-091. Available at: pubs.usgs.gov/factsheet/fs095-01.

    Google Scholar 

  • UNEP, 2002. Global Mercury Assessment, UNEP, Geneva, Switzerland

    Google Scholar 

  • UNEP, 2005. Toolkit for Identification and Quantification of Mercury Releases, UNEP, Geneva, Switzerland

    Google Scholar 

  • UNEP, 2006a. Guide for Reducing Major Uses and Releases of Mercury. Available at: www.chem.unep.ch/ mercury/Sector%20Guide%202006.pdf.

  • UNEP, 2006b. Summary of Supply, Trade and Demand Information on Mercury, UNEP Chemicals, Geneva, Swizerland. Available at: www.chem.unep.ch/mercury/Trade-information.htm

  • UNEP, 2007. Draft technical guidelines on the environmentally sound management of mercury wastes. UNEP/CHW/OEWG/6/INF/16. Updated after OEWG6 (3rd Draft). Available at: www.basel.int/techmatters/mercury/guidelines/301007.doc

  • USEPA, 1993. Locating and estimating air emissions from sources of mercury and mercury compounds. September 1993. As cited by Scoullos et al, 2000.

    Google Scholar 

  • USEPA, 1997. Mercury Study Report to Congress. Office of Air Quality Planning and Standards and Office of Research and Development. U.S. Environmental Protection Agency

    Google Scholar 

  • USEPA, 2001. Mercury in Petroleum and Natural Gas: Estimation of Emissions from Production, Processing and Combustion; Technical Report Prepared by National Risk Management Research Laboratory, EPA-600/R-01/066.

    Google Scholar 

  • USEPA, 2002. National Emission Inventory (NEI). Available at: www.epa.gov

  • USEPA, 2006. Mercury Roadmap. Available at: www.epa.gov/mercury.

  • USGS, 2004. Minerals Yearbook. U.S. Geological Survey. Available at: minerals.usgs.gov/ minerals/pubs/myb.html.

    Google Scholar 

  • Veiga M.M., Meech J.A., Onante N., 1994. Mercury pollution from deforestation. Nature, 368: 816-817.

    Article  CAS  Google Scholar 

  • Walker S., 1999. Uncontrolled fires in coal and coal wastes. International Energy Agency, London. Report CCC/16, 72 p.

    Google Scholar 

  • Weidinmyer C., Friedli H., 2007. Mercury emission estimates from fires: An initial inventory for the United States, Environ. Sci. Technol., 41, 8092-8098.

    Article  Google Scholar 

  • Wilhelm S.M., 2001. Estimate of Mercury Emissions to the Atmosphere from Petroleum. Environmental Science & Technology, 35 (24): 4704-4710

    Article  CAS  Google Scholar 

  • Wilhelm S.M., Bigham G.N., 2001. Concentration of Total Mercury in Crude Oil Refined in the United States. Paper Presented at the 6th International Conference on Mercury as a Global Pollutant, Minamata, Japan, Oct 15–19, 2001.

    Google Scholar 

  • Wilhelm S.M., Bloom N., 2000. Mercury in petroleum. Fuel Processing Technology, 63–1: 1-27.

    Article  Google Scholar 

  • Won J.H., Park J.Y., Lee T.G., 2007. Mercury emissions from automobiles using gasoline, diesel and LPG. Atmospheric Environment, 41: 7547-7552.

    Article  CAS  Google Scholar 

  • Woodruff L.G., Harden J.W., Cannon W.F., Gough L.P., 2001. Mercury loss from the forest floor during wildland fire. Eos Transactions AGU, 82(47), Fall Meeting Suppl., Abstract B32B-0117.

    Google Scholar 

  • World Coal Institute, 2007, http://www.worldcoa1.org/pages/content/index.asp?PageID=104

  • Zaccaria M., 2005. L'oro dell'Eritrea, 1897–1914. Africa, LX, 1, pp. 65–110 (in italian).

    Google Scholar 

  • Zehner R.E., Gustin M.S., 2002. Estimation of Mercury Vapor Flux from Natural Substrate in Nevada. Environmental Science & Technology, 36: 4039-4045.

    Article  CAS  Google Scholar 

  • ZMWG, 2007. Comments on the planned content of the atmospheric emissions report. Zero Mercury Working Group (ZMWG). Available at: www.chem.unep.ch/mercury

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag New York

About this chapter

Cite this chapter

Pirrone, N. et al. (2009). Global Mercury Emissions to the Atmosphere from Natural and Anthropogenic Sources . In: Mason, R., Pirrone, N. (eds) Mercury Fate and Transport in the Global Atmosphere. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-93958-2_1

Download citation

Publish with us

Policies and ethics