Skip to main content

Mercury chemical transformations in the gas, aqueous and heterogeneous phases: state-of-the-art science and uncertainties

  • Chapter
  • First Online:
Mercury Fate and Transport in the Global Atmosphere

Summary

Mercury is a persistent, toxic and bio-accumulative pollutant of global interest. This element is assumed to exist predominantly in the atmosphere, as elemental mercury, undergoing chemical reactions in the presence of atmospheric oxidants. The oxidized mercury can further deposit on the Earth's surface and may potentially be bioaccumulative in the aquatic food chain, through complex, but not yet well understood, mechanisms. Since the atmosphere plays a significant role as a medium for chemical and physical transformation, it is imperative to understand the fundamentals of the kinetics and thermodynamics of the elementary and complex reactions of Hg0(g) and oxidized mercury not only in the atmosphere as gas phase, but also the reactions in the aqueous and heterogeneous phases at atmospheric interfaces such as aerosols, fogs, clouds, and snow-water-air interfaces. In this chapter, we compile a comprehensive set of theoretical, laboratory and field observations involving mercury species in the course of homogeneous and heterogeneous reactions. We herein describe the state-of-the-knowledge in this domain and put forward the open questions and future direction of research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

15.7 References

  • Abu-Daabes, M.A. and N.G. Pinto, Synthesis and characterization of a nano-structured sorbent for the direct removal of mercury vapor from flue gases by chelation. Chemical Engineering Science, 2005. 60(7): p. 1901–1910.

    Article  CAS  Google Scholar 

  • Agarwal, H., C.E. Romero, and H.G. Stenger, Comparing and interpreting laboratory results of Hg oxidation by a chlorine species. Fuel Processing Technology, 2007. 88(7): p. 723–730.

    Article  CAS  Google Scholar 

  • Allard, B. and I. Arsenie, Abiotic Reduction of Mercury by Humic Substances in Aquatic System - an Important Process for the Mercury Cycle. Water Air and Soil Pollution, 1991. 56: p. 457–464.

    Article  Google Scholar 

  • Amyot, M., et al., Sunlight-Induced Formation of Dissolved Gaseous Mercury in Lake Waters. Environmental Science & Technology, 1994. 28(13): p. 2366–2371.

    Article  CAS  Google Scholar 

  • Amyot, M., G.A. Gill, and F.M.M. Morel, Production and loss of dissolved gaseous mercury in coastal seawater. Environmental Science & Technology, 1997. 31(12): p. 3606–3611.

    Article  CAS  Google Scholar 

  • Amyot, M., D. Lean, and G. Mierle, Photochemical formation of volatile mercury in high Arctic lakes. Environmental Toxicology and Chemistry, 1997. 16(10): p. 2054–2063.

    Article  CAS  Google Scholar 

  • Amyot, M., et al., Formation and evasion of dissolved gaseous mercury in large enclosures amended with (HgCl2)-Hg-200. Atmospheric Environment, 2004. 38(26): p. 4279–4289.

    Article  CAS  Google Scholar 

  • Ariya, P. A.; Jobson, B. T.; Sander, R.; Niki, H.; Harris, G. W.; Hopper, J. F.; Anlauf, K. G., Measurements of C-2-C-7 hydrocarbons during the Polar Sunrise Experiment 1994: Further evidence for halogen chemistry in the troposphere. Journal of Geophysical Research-Atmospheres, 1998. 103(D11): p. 13169–13180.

    Article  CAS  Google Scholar 

  • Ariya, P.A., J.F. Hopper, and G.W. Harris, C-2-C-7 hydrocarbon concentrations in arctic snowpack interstitial air: Potential presence of active Br within the snowpack. Journal of Atmospheric Chemistry, 1999. 34(1): p. 55–64.

    Article  CAS  Google Scholar 

  • Ariya, P.A., R. Sander, and P.J. Crutzen, Significance of HOx and peroxides production due to alkene ozonolysis during fall and winter: A modeling study. Journal of Geophysical Research-Atmospheres, 2000. 105(D14): p. 17721–17738.

    Article  CAS  Google Scholar 

  • Ariya, P.A., A. Khalizov, and A. Gidas, Reactions of gaseous mercury with atomic and molecular halogens: Kinetics, product studies, and atmospheric implications. Journal of Physical Chemistry A, 2002. 106(32): p. 7310–7320.

    Article  CAS  Google Scholar 

  • Ariya, P.A., A.P. Dastoor, M. Amyot, W.H. Schroeder, L. Barrie, K. Anlanf, F. Raofic, A. Ryzhkov, D. Davignon, J. Lalongde and A. Steffen, The Arctic: a sink for mercury. Tellus Series B-Chemical and Physical Meteorology, 2004. 56(5): p. 397–403.

    Article  Google Scholar 

  • Ariya, P. and K. Peterson, Chemical Transformation of Gaseous Elemental Hg in the Atmosphere, in Dynamics of Mercury Pollution on Regional and Global Scales:. 2005. p. 261–294.

    Google Scholar 

  • Ariya, Parisa A. Henrik Skov and Michael Evan Goodsite, Review of Applications of Theoretical Methods and Experimental Studies to Evaluate the Oxidation of Gaseous Elemental Mercury in the Atmosphere, Accepted under minor revisions, Advances in Quantum Chemistry, 55, ACADEMIC PRESS, 2008, ISBN-13: 978-0-12-374335-0

    Google Scholar 

  • Aspmo, K., et al., Mercury in the atmosphere, snow and melt water ponds in the North Atlantic Ocean during Arctic summer. Environmental Science & Technology, 2006. 40(13): p. 4083–4089.

    Article  CAS  Google Scholar 

  • Atkins, P. and J. de Paula, Atkins' Physical Chemistry. 7th Edition ed. 2002, New York: Oxford University Press.

    Google Scholar 

  • Balabanov, N.B. and K.A. Peterson, Mercury and Reactive Halogens: The Thermochemistry of Hg + {Cl2, Br2, BrCl, ClO, and BrO}. J. Phys. Chem. A, 2003. 107(38): p. 7465–7470.

    Article  CAS  Google Scholar 

  • Barkay, T., S.M. Miller, and A.O. Summers, Bacterial mercury resistance from atoms to ecosystems. FEMS Microbiology Reviews, 2003. 27(2-3): p. 355–384.

    Article  CAS  Google Scholar 

  • Barrie, L. A.; Bottenheim, J. W.; Schnell, R. C.; Crutzen, P. J.; Rasmussen, R. A. et al., Ozone Destruction and Photochemical-Reactions at Polar Sunrise in the Lower Arctic Atmosphere. Nature, 1988. 334(6178): p. 138–141.

    Article  CAS  Google Scholar 

  • Barrosse-Antle, L.E., et al., The expansion/contraction of gold microparticles during voltammetrically induced amalgamation leads to mechanical instability. New Journal of Chemistry, 2007. 31(12): p. 2071–2075.

    Article  CAS  Google Scholar 

  • Bauer, D., et al., Gas phase elemental mercury: a comparison of LIF detection techniques and study of the kinetics of reaction with the hydroxyl radical. Journal of Photochemistry and Photobiology a-Chemistry, 2003. 157(2-3): p. 247–256.

    Article  CAS  Google Scholar 

  • Blythe, G.M., Field Testing of a Wet FGD Additive for Enhanced Mercury Control – Pilot-scale Test Results. 2006, URS Corporation: Austin, Texas.

    Google Scholar 

  • Brooks, S.B., et al., The mass balance of mercury in the springtime arctic environment. Geophysical Research Letters, 2006. 33(13): -.

    Article  Google Scholar 

  • Buxton, G.V., et al., Critical-Review of Rate Constants for Reactions of Hydrated Electrons, Hydrogen-Atoms and Hydroxyl Radicals (.Oh/.O-) in Aqueous-Solution. Journal of Physical and Chemical Reference Data, 1988. 17(2): p. 513–886.

    CAS  Google Scholar 

  • Calvert, J.G. and S.E. Lindberg, A modeling study of the mechanism of the halogen-ozone-mercury homogeneous reactions in the troposphere during the polar spring. Atmospheric Environment, 2003. 37(32): p. 4467–4481.

    Article  CAS  Google Scholar 

  • Calvert, J.G. and S.E. Lindberg, Mechanisms of mercury removal by O-3 and OH in the atmosphere. Atmospheric Environment, 2005. 39(18): p. 3355–3367.

    Article  CAS  Google Scholar 

  • Change, R. and G.R. Offen, Mercury emission control technologies: An EPRI synopsis. Journal: Power Engineering (Barrington); Journal Volume: 99; Journal Issue: 11; Other Information: PBD: Nov 1995, 1995: Size: pp. 51–56; Other: PL:.

    Google Scholar 

  • Chen, X., Impacts of Fly Ash Composition and Flue Gas Components on Mercury Speciation in Civil and Environmental Engineering. 2007, University of Pittsburgh: Pittsburgh. p. 87.

    Google Scholar 

  • Cressiot, C., et al., Stability of the HgS molecule and spectroscopy of its low lying electronic states. Molecular Physics, 2007. 105(9): p. 1207–1216.

    Article  CAS  Google Scholar 

  • Daisey, J.M., R.J. Mccaffrey, and R.A. Gallagher, Polycyclic Aromatic-Hydrocarbons and Total Extractable Particulate Organic-Matter in the Arctic Aerosol. Atmospheric Environment, 1981. 15(8): p. 1353–1363.

    Article  CAS  Google Scholar 

  • Dommergue, A., E. Bahlmann, R. Ebinghaus, C. Ferrari and C. Boutron, Laboratory simulation of Hg-0 emissions from a snowpack. Analytical and Bioanalytical Chemistry, 2007. 388(2): p. 319–327.

    Article  CAS  Google Scholar 

  • Donohoue, D.L., D. Bauer, and A.J. Hynes, Temperature and pressure dependent rate coefficients for the reaction of Hg with Cl and the reaction of Cl with Cl: A pulsed laser photolysis-pulsed laser induced fluorescence study. Journal of Physical Chemistry A, 2005. 109(34): p. 7732–7741.

    Article  CAS  Google Scholar 

  • Donohoue, D.L., et al., Temperature and pressure dependent rate coefficients for the reaction of Hg with Br and the reaction of Br with Br: A pulsed laser photolysis-pulsed laser induced fluorescence study. Journal of Physical Chemistry A, 2006. 110(21): p. 6623–6632.

    Article  CAS  Google Scholar 

  • Douglas, T.A., et al., Influence of Snow and Ice Crystal Formation and Accumulation on Mercury Deposition to the Arctic. Environ. Sci. Technol., 2008.

    Google Scholar 

  • Dunham, G.E., R.A. DeWall, and C.L. Senior, Fixed-bed studies of the interactions between mercury and coal combustion fly ash. Fuel Processing Technology, 2003. 82(2-3): p. 197–213.

    Article  CAS  Google Scholar 

  • Ebinghaus, R., H.H. Kock, C. Temme, J.W. Einax, A.G. Löwe, A. Richter, J.P. Burrows and W.H. Schroeder Antarctic Springtime Depletion of Atmospheric Mercury. Environ. Sci. Technol., 2002. 36(6): p. 1238–1244.

    CAS  Google Scholar 

  • Edwards, J.R., R.K. Srivastava, and J.D. Kilgroe, A study of gas-phase mercury speciation using detailed chemical kinetics. Journal of the Air and Waste Management Association ; ISSUE: 51 ; PBD: Jun 2001, 2001: 869–877.

    Google Scholar 

  • Evaluate the Oxidation of Gaseous Elemental Mercury in the Atmosphere Advances in Quantum Chemistry, 2008. in press.

    Google Scholar 

  • F Fain, X., et al., Fast depletion of gaseous elemental mercury in the Kongsvegen Glacier snowpack in Svalbard. Geophysical Research Letters, 2006. 33(6)

    Google Scholar 

  • ain, X., et al., Diurnal production of gaseous mercury in the alpine snowpack before snowmelt. Journal of Geophysical Research-Atmospheres, 2007. 112(D21): p. 311.

    Google Scholar 

  • Ferrari, C.P., et al., Mercury speciation in the French seasonal snow cover. Science of the Total Environment, 2002. 287(1-2): p. 61–69.

    Article  CAS  Google Scholar 

  • Ferrari, C.P., A. Dommergue, and C.F. Boutron, Gaseous mercury distribution in interstitial air of snow pack in Station Nord, Greenland. Evidence of permanent mercury depletion event in the air of snow during polar sunrise. Journal De Physique Iv, 2003. 107: p. 459–462.

    Google Scholar 

  • Ferrari, C.P., et al., Profiles of Mercury in the snow pack at Station Nord, Greenland shortly after polar sunrise. Geophysical Research Letters, 2004. 31(3): -.

    Article  CAS  Google Scholar 

  • Figgen, D., et al., Energy-consistent pseudopotentials for group 11 and 12 atoms: adjustment to multi-configuration Dirac-Hartree-Fock data. Chemical Physics, 2005. 311(1-2): p. 227–244.

    Article  CAS  Google Scholar 

  • Finlayson-Pitts, B.J. and J.N. Pitts, Chemistry of the Upper and Lower Atmosphere: Theory, Experiments, and Applications. 1999: Elselvier. 969.

    Google Scholar 

  • Fitzgerald, W.F., C.H. Lamborg, and C.R. Hammerschmidt, Marine biogeochemical cycling of mercury. Chemical Reviews, 2007. 107(2): p. 641–662.

    Article  CAS  Google Scholar 

  • Flora, J.R.V., et al., Modeling powdered activated carbon injection for the uptake of elemental mercury vapors. Journal of the Air & Waste Management Association, 1998. 48(11): p. 1051–1059.

    CAS  Google Scholar 

  • Gabriel, M.C. and D.G. Williamson, Principal Biogeochemical Factors Affecting the Speciation And Transport of Mercury through the terrestrial environment. Environmental Geochemistry and Health, 2004. 26(4): p. 421–434.

    Article  CAS  Google Scholar 

  • Garcia, E., M. Amyot, and P.A. Ariya, Relationship between DOC photochemistry and mercury redox transformations in temperate lakes and wetlands. Geochimica Et Cosmochimica Acta, 2005. 69(8): p. 1917–1924.

    Article  CAS  Google Scholar 

  • GÃ¥rdfeldt K., J. Sommar, D. Strömberg and X. Feng,, Oxidation of atomic mercury by hydroxyl radicals and photoinduced decomposition of methylmercury in the aqueous phase. Atmospheric Environment, 2001. 35(17): p. 3039–3047.

    Article  Google Scholar 

  • Gardfeldt, K. and M. Jonsson, Is bimolecular reduction of Hg(II) complexes possible in aqueous systems of environmental importance. Journal of Physical Chemistry A, 2003. 107(22): p. 4478–4482.

    Article  CAS  Google Scholar 

  • Gauchard, P.-A., et al., Study of the origin of atmospheric mercury depletion events recorded in Ny-Alesund, Svalbard, spring 2003. Atmospheric Environment, 2005. 39(39): p. 7620–7632.

    Article  CAS  Google Scholar 

  • Goodsite, M.E., J.M.C. Plane, and H. Skov, A theoretical study of the oxidation of Hg-0 to HgBr2 in the troposphere. Environmental Science & Technology, 2004. 38(6): p. 1772–1776.

    Article  CAS  Google Scholar 

  • Granite, E.J., H.W. Pennline, and R.A. Hargis, Novel sorbents for mercury removal from flue gas. Industrial & Engineering Chemistry Research, 2000. 39(4): p. 1020–1029.

    Article  CAS  Google Scholar 

  • Greig, G., H.E. Gunning, and O.P. Strausz, Reactions of Metal Atoms. II. The Combination of Mercury and Bromine Atoms and the Dimerization of HgBr. The Journal of Chemical Physics, 1970. 52(7): p. 3684–3690.

    CAS  Google Scholar 

  • Grigal, D.F., Inputs and outputs of mercury from terrestrial watersheds: a review. Environmental Reviews, 2002. 10(1): p. 1.

    Article  CAS  Google Scholar 

  • Gustin, M. and S. Lindberg, Terrestial Hg Fluxes: Is the Next Exchange Up, Down, or Neither?, in Dynamics of Mercury Pollution on Regional and Global Scales:, N. Pirrone and K.R. Mahaffey, Editors. 2005. p. 241–259.

    Google Scholar 

  • Gustin, M.S., et al., New insights into mercury exchange between air and substrate. Geochimica Et Cosmochimica Acta, 2005. 69(10): p. A700–A700.

    Google Scholar 

  • Gustin, M.S., S.E. Lindberg, and M.A. Allan, Special Section: Constraining mercury emissions from naturally enriched surfaces: Assessment of methods and controlling parameters (Mercury Flux) - Preface. Journal of Geophysical Research-Atmospheres, 1999. 104(D17): p. 21829–21830.

    Article  Google Scholar 

  • Habibi, M.H., G. Habibian, and M.A. Haghighipor, Photocatalytic reduction and recovery of inorganic mercury compounds as environmental pollutants in aquatic system using TiO2 suspension. Fresenius Environmental Bulletin, 2003. 12(7): p. 808–812.

    CAS  Google Scholar 

  • Hall, B., P. Schager, and E. Ljungström, An experimental study on the rate of reaction between mercury vapour and gaseous nitrogen dioxide. Water, Air, & Soil Pollution, 1995. 81(1): p. 121–134.

    Article  CAS  Google Scholar 

  • Hall, B., P. Schager, and J. Weesmaa, The homogeneous gas phase reaction of mercury with oxygen, and the corresponding heterogeneous reactions in the presence of activated carbon and fly ash. Chemosphere, 1995. 30(4): p. 611–627.

    Article  CAS  Google Scholar 

  • Hall, B., P. Schager, and O. Lindqvist, Chemical-Reactions of Mercury in Combustion Flue-Gases. Water Air and Soil Pollution, 1991. 56: p. 3–14.

    Article  Google Scholar 

  • Hall, B., The gas phase oxidation of elemental mercury by ozone. Water, Air, & Soil Pollution, 1995. 80(1): p. 301–315.

    Article  CAS  Google Scholar 

  • Hanson, P.J., et al., Foliar exchange of mercury vapor: Evidence for a compensation point. Water, Air, & Soil Pollution, 1995. 80(1): p. 373–382.

    Article  CAS  Google Scholar 

  • Hines, N.A. and P.L. Brezonik, Mercury dynamics in a small Northern Minnesota lake: water to air exchange and photoreactions of mercury. Marine Chemistry, 2004. 90(1-4): p. 137–149.

    Article  CAS  Google Scholar 

  • Horne, D.G., R. Gosavi, and O.P. Strausz, Reactions of Metal Atoms .I. Combination of Mercury and Chlorine Atoms and Dimerization of Hgcl. Journal of Chemical Physics, 1968. 48(10): p. 4758.

    Article  CAS  Google Scholar 

  • Horvath, O., E. Bodnar, and J. Hegyi, Photoassisted oxidative degradation of surfactants and simultaneous reduction of metals in titanium dioxide dispersions. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2005. 265(1-3): p. 135–140.

    Article  CAS  Google Scholar 

  • Hower, J.C., et al., Mercury Capture by Distinct Fly Ash Carbon Forms. Energy Fuels, 2000. 14(1): p. 224–226.

    Article  CAS  Google Scholar 

  • Hwang, J.Y., X. Sun, and Z. Li, Unburned Carbon from Fly Ash for Mercury Adsorption: Separation and Characterization of Unburned Carbon. The Journal of Minerals and Materials Characterization and Engineering, 2002. 1(1): p. 39–60.

    Google Scholar 

  • Iverfeldt, A. and O. Lindqvist, Atmospheric Oxidation of Elemental Mercury by Ozone in the Aqueous Phase. Atmospheric Environment, 1986. 20(8): p. 1567–1573.

    Article  CAS  Google Scholar 

  • Jain, A. and M.A. Beg, Kinetics and mechanism of solid state reactions of silver tungstate with mercuric bromide and mercuric chloride. Polyhedron, 1995. 14(15-16): p. 2293–2299.

    Article  CAS  Google Scholar 

  • Joensuu, O.I., Fossil Fuels as a Source of Mercury Pollution. Science, 1971. 172(3987): p. 1027–1028.

    Article  CAS  Google Scholar 

  • Kaleschke, L., et al., Frost flowers on sea ice as a source of sea salt and their influence on tropospheric halogen chemistry. Geophysical Research Letters, 2004. 31(16): -.

    Article  CAS  Google Scholar 

  • Khalizov, A.F., et al., A theoretical study on the reactions of Hg with halogens: Atmospheric implications. Journal of Physical Chemistry A, 2003. 107(33): p. 6360–6365.

    Article  CAS  Google Scholar 

  • Lahoutifard, N., L. Poissant, and S.L. Scott, Scavenging of gaseous mercury by acidic snow at Kuujjuarapik, Northern Quebec. Science of The Total Environment, 2006. 355(1-3): p. 118–126.

    Article  CAS  Google Scholar 

  • Lalonde, J.D., A.J. Poulain, and M. Amyot, The role of mercury redox reactions in snow on snow-to-air mercury transfer. Environmental Science & Technology, 2002. 36(2): p. 174–178.

    Article  CAS  Google Scholar 

  • Lalonde, J.D., et al., Photo-induced Hg(II) reduction in snow from the remote and temperate Experimental Lakes Area (Ontario, Canada). Journal of Geophysical Research-Atmospheres, 2003. 108(D6): -.

    CAS  Google Scholar 

  • Lalonde, J.D., et al., Photooxidation of Hg0 in artificial and natural waters. Environmental Science & Technology, 2001. 35(7): p. 1367–1372.

    Article  CAS  Google Scholar 

  • Lalonde, J.D., et al., Photoinduced oxidation of Hg-0 (aq) in the waters from the St. Lawrence estuary. Environmental Science & Technology, 2004. 38(2): p. 508–514.

    Article  CAS  Google Scholar 

  • Lee, X., G. Benoit, and X.Z. Hu, Total gaseous mercury concentration and flux over a coastal saltmarsh vegetation in Connecticut, USA. Atmospheric Environment, 2000. 34(24): p. 4205–4213.

    Article  CAS  Google Scholar 

  • Lee, T.G., P. Biswas, and E. Hedrick, Overall Kinetics of Heterogeneous Elemental Mercury Reactions on TiO2 Sorbent Particles with UV Irradiation. Ind. Eng. Chem. Res., 2004. 43(6): p. 1411–1417.

    Article  CAS  Google Scholar 

  • Lin, C.J. and S.O. Pehkonen, Aqueous free radical chemistry of mercury in the presence of iron oxides and ambient aerosol. Atmospheric Environment, 1997. 31(24): p. 4125–4137.

    Article  CAS  Google Scholar 

  • Lin, C.J. and S.O. Pehkonen, Oxidation of elemental mercury by aqueous chlorine (HOCl/OCl-): Implications for tropospheric mercury chemistry. Journal of Geophysical Research-Atmospheres, 1998. 103(D21): p. 28093–28102.

    Article  CAS  Google Scholar 

  • Lin, C.-J. and S.O. Pehkonen, The chemistry of atmospheric mercury: a review. Atmospheric Environment, 1999. 33(13): p. 2067–2079.

    Article  CAS  Google Scholar 

  • Li, X., et al., Functionalized titania nanoparticles for mercury scavenging. Journal of Materials Chemistry, 2007. 17(19): p. 2028–2032.

    Article  CAS  Google Scholar 

  • Li, Y. and C.-Y. Wu, Kinetic Study for Photocatalytic Oxidation of Elemental Mercury on a SiO2–TiO2 Nanocomposite. Environmental Engineering Science, 2007. 24(1): p. 3–12.

    Article  Google Scholar 

  • Li, Y., P. Murphy, and C.-Y. Wu, Removal of elemental mercury from simulated coal-combustion flue gas using a SiO2-TiO2 nanocomposite. Fuel Processing Technology. In Press, Corrected Proof.

    Google Scholar 

  • Lindberg, S.E., et al., Atmosphere-Surface Exchange of Mercury in a Forest - Results of Modeling and Gradient Approaches. Journal of Geophysical Research-Atmospheres, 1992. 97(D2): p. 2519–2528.

    CAS  Google Scholar 

  • Lindberg, S.E., S. Brooks, C-J Lin, K. J. Scott, M. S. Landis, R.K. Stevens, M.E. Goodsite and A. Richter, Dynamic Oxidation of Gaseous Mercury in the Arctic Troposphere at Polar Sunrise. Environ. Sci. Technol., 2002. 36(6): p. 1245–1256.

    Article  CAS  Google Scholar 

  • Lindberg, S., R. Bullock, R. Ebinghaus, D. Engstrom, X. Feng, W. Fitzgerald, N. Pirrone, E. Prestbo, and C. Seigneur, A Synthesis of Progress and Uncertainties in Attributing the Sources of Mercury in Deposition. AMBIO: A Journal of the Human Environment, 2007. 36(1): p. 19–33.

    Article  CAS  Google Scholar 

  • Lindqvist, O. and H. Rodhe, Atmospheric Mercury - a Review. Tellus Series B-Chemical and Physical Meteorology, 1985. 37(3): p. 136–159.

    Article  Google Scholar 

  • Macdonald, R.W., T. Harner, and J. Fyfe, Recent climate change in the Arctic and its impact on contaminant pathways and interpretation of temporal trend data. Science of The Total Environment, 2005. 342(1-3): p. 5–86.

    Article  CAS  Google Scholar 

  • Mason, R.P., F.M.M. Morel, and W.F. Fitzgerald, The biogeochemical cycling of elemental mercury: Anthropogenic influences. Geochimica et Cosmochimica Acta ; Vol/Issue: 58:15, 1994: Pages: 3191–3198.

    Article  CAS  Google Scholar 

  • Mason, R.P., F.M.M. Morel, and H.F. Hemond, The Role of Microorganisms in Elemental Mercury Formation in Natural-Waters. Water Air and Soil Pollution, 1995. 80(1-4): p. 775–787.

    Article  CAS  Google Scholar 

  • Mason, R.P. and G.R. Sheu, Role of the ocean in the global mercury cycle. Global Biogeochemical Cycles, 2002. 16(4).

    Article  CAS  Google Scholar 

  • Mason, R.P., N.M. Lawson, and G.R. Sheu, Mercury in the Atlantic Ocean: factors controlling air-sea exchange of mercury and its distribution in the upper waters. Deep-Sea Research Part Ii-Topical Studies in Oceanography, 2001. 48(13): p. 2829–2853.

    Article  CAS  Google Scholar 

  • Medhekar, A.K., et al., Surface catalyzed reaction of Hg + Cl2. Chemical Physics Letters, 1979. 65(3): p. 600–604.

    Article  CAS  Google Scholar 

  • Menke, R. and G. Wallis, Detection of mercury in air in the presence of chlorine and water vapor. American Industrial Hygiene Association Journal, 1980. 41(2): p. 120 – 124.

    CAS  Google Scholar 

  • Mohan, D., et al., Kinetics of mercury adsorption from wastewater using activated carbon derived from fertilizer waste. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2000. 177(2-3): p. 169–181.

    Article  Google Scholar 

  • Morel, F.M.M., A.M.L. Kraepiel, and M. Amyot, The chemical cycle and bioaccumulation of mercury. Annual Review of Ecology and Systematics, 1998. 29: p. 543–566.

    Article  Google Scholar 

  • Muller, M.D., et al., Neural network scheme for the retrieval of total ozone from Global Ozone Monitoring Experiment data. Applied Optics, 2002. 41(24): p. 5051–5058.

    Article  Google Scholar 

  • Munthe, J., Z.F. Xiao, and O. Lindqvist, The Aqueous Reduction of Divalent Mercury by Sulfite. Water Air and Soil Pollution, 1991. 56: p. 621–630.

    Article  Google Scholar 

  • Munthe, J. and W.J. Mcelroy, Some Aqueous Reactions of Potential Importance in the Atmospheric Chemistry of Mercury. Atmospheric Environment Part a-General Topics, 1992. 26(4): p. 553–557.

    Article  Google Scholar 

  • Munthe, J., The Aqueous Oxidation of Elemental Mercury by Ozone. Atmospheric Environment Part a-General Topics, 1992. 26(8): p. 1461–1468.

    Article  Google Scholar 

  • Namasivayam, C. and K. Kadirvelu, Uptake of mercury (II) from wastewater by activated carbon from an unwanted agricultural solid by-product: coirpith. Carbon, 1999. 37(1): p. 79–84.

    Article  CAS  Google Scholar 

  • Niki, H., et al., A Long-Path Fourier-Transform Infrared Study of the Kinetics and Mechanism for the Ho-Radical Initiated Oxidation of Dimethylmercury. Journal of Physical Chemistry, 1983. 87(24): p. 4978–4981.

    Article  CAS  Google Scholar 

  • Norton, G.A., et al., Heterogeneous oxidation of mercury in simulated post combustion conditions. Fuel, 2003. 82(2): p. 107–116.

    Article  CAS  Google Scholar 

  • Nriagu, J.O., Mercury Pollution from the Past Mining of Gold and Silver in the America. Science of the Total Environment, 1994. 149(3): p. 167–181.

    Article  CAS  Google Scholar 

  • O'Driscoll, N.J., et al., Gross photoreduction kinetics of mercury in temperate freshwater lakes and rivers: Application to a general model of DGM dynamics. Environmental Science & Technology, 2006. 40(3): p. 837–843.

    Article  CAS  Google Scholar 

  • Oltmans, S.J., et al., Seasonal Surface Ozone and Filterable Bromine Relationship in the High Arctic. Atmospheric Environment, 1989. 23(11): p. 2431–2441.

    Article  CAS  Google Scholar 

  • P'yankov, V.A., Kinetics of the Reaction of Mercury Vapors with Ozone. Journal of General Chemistry of USSR. , 1949. 19: p. 187–192.

    Google Scholar 

  • Pal, B. and P.A. Ariya, Gas-phase HO center dot-Initiated reactions of elemental mercury: Kinetics, product studies, and atmospheric implications. Environmental Science and Technology, 2004. 38(21): p. 5555–5566.

    Article  CAS  Google Scholar 

  • Pal, B. and P.A. Ariya, Studies of ozone initiated reactions of gaseous mercury: kinetics, product studies, and atmospheric implications. Physical Chemistry Chemical Physics, 2004. 6(3): p. 572–579.

    Article  CAS  Google Scholar 

  • Pavlish, J.H., et al., Status review of mercury control options for coal-fired power plants. Fuel Processing Technology, 2003. 82(2-3): p. 89–165.

    Article  CAS  Google Scholar 

  • Pehkonen, S.O. and C.J. Lin, Aqueous photochemistry of mercury with organic acids. Journal of the Air & Waste Management Association, 1998. 48(2): p. 144–150.

    CAS  Google Scholar 

  • Peretyazhko, T., et al., Formation of dissolved gaseous mercury in a tropical lake (Petit-Saut reservoir, French Guiana). Science of The Total Environment, 2006. 364(1-3): p. 260–271.

    Article  CAS  Google Scholar 

  • Peterson, K.A., B.C. Shepler, and J.M. Singleton, The group 12 metal chalcogenides: an accurate multireference configuration interaction and coupled cluster study. Molecular Physics, 2007. 105(9): p. 1139–1155.

    Article  CAS  Google Scholar 

  • Peterson, K.A., Systematically convergent basis sets with relativistic pseudopotentials. I. Correlation consistent basis sets for the post-d group 13-15 elements. Journal of Chemical Physics, 2003. 119(21): p. 11099–11112.

    CAS  Google Scholar 

  • Philippidis, G.P., et al., Effect of Gene Amplification on Mercuric Ion Reduction Activity of Escherichia-Coli. Applied and Environmental Microbiology, 1991. 57(12): p. 3558–3564.

    CAS  Google Scholar 

  • Poissant, L., et al., Atmospheric mercury speciation and deposition in the Bay St. Francois wetlands. Journal of Geophysical Research-Atmospheres, 2004. 109(D11): -.

    CAS  Google Scholar 

  • Poulain, A.J., et al., Biological and Chemical Redox Transformations of Mercury in Fresh and Salt Waters of the High Arctic during Spring and Summer. Environ. Sci. Technol., 2007. 41(6): p. 1883–1888.

    Article  CAS  Google Scholar 

  • Poulain, A.J., et al., Mercury distribution, partitioning and speciation in coastal vs. inland High Arctic snow. Geochimica Et Cosmochimica Acta, 2007c. 71(14): p. 3419–3431.

    Article  CAS  Google Scholar 

  • Poulain, A.J., et al., Potential for mercury reduction by microbes in the high arctic. Applied and Environmental Microbiology, 2007. 73(7): p. 2230–2238.

    Article  CAS  Google Scholar 

  • Poulain, A.J., V. Roy, and M. Amyot, Influence of temperate mixed and deciduous tree covers on Hg concentrations and photoredox transformations in snow. Geochimica Et Cosmochimica Acta, 2007b. 71(10): p. 2448–2462.

    Article  CAS  Google Scholar 

  • Prairie, M.R., et al., An Investigation of Tio2 Photocatalysis for the Treatment of Water Contaminated with Metals and Organic-Chemicals. Environmental Science & Technology, 1993. 27(9): p. 1776–1782.

    Article  CAS  Google Scholar 

  • Presto, A.A. and E.J. Granite, Survey of Catalysts for Oxidation of Mercury in Flue Gas. Environ. Sci. Technol., 2006. 40(18): p. 5601–5609.

    Article  CAS  Google Scholar 

  • Presto, A.A., et al., A kinetic approach to the catalytic oxidation of mercury in flue gas. Energy & Fuels, 2006. 20(5): p. 1941–1945.

    Article  CAS  Google Scholar 

  • Querol, X., et al., Synthesis of Na-zeolites from fly ash. Fuel, 1997. 76(8): p. 793–799.

    Article  CAS  Google Scholar 

  • Ranganathan, K., Adsorption of Hg(II) ions from aqueous chloride solutions using powdered activated carbons. Carbon, 2003. 41(5): p. 1087–1092.

    Article  CAS  Google Scholar 

  • Raofie, F. and P.A. Ariya, Kinetics and product study of the reaction of BrO radicals with gaseous mercury. Journal De Physique IV, 2003. 107: p. 1119–1121.

    Article  CAS  Google Scholar 

  • Raofie, F. and P.A. Ariya, Product study of the gas-phase BrO-initiated oxidation of Hg-0: evidence for stable Hg1+ compounds. Environmental Science and Technology, 2004. 38(16): p. 4319–4326.

    Article  CAS  Google Scholar 

  • Raofie, F., G. Snider, and P.A. Ariya, The Reaction of Gaseous Mercury with Molecular Iodine, Atomic Iodine and Iodine Oxide Radicals: Kinetics, Product Studies, and the Atmospheric Implication. Canadian Journal of Chemistry, 2008. (accepted).

    Google Scholar 

  • Richter, A., et al., GOME measurements of stratospheric and tropospheric BrO. Remote Sensing of Trace Constituents in the Lower Stratosphere, Troposphere and the Earth's Surface: Global Observations, Air Pollution and the Atmospheric Correction, 2002. 29(11): p. 1667–1672.

    CAS  Google Scholar 

  • Richter, A., et al., GOME observations of tropospheric BrO in northern hemispheric spring and summer 1997. Geophysical Research Letters, 1998. 25(14): p. 2683–2686.

    Article  CAS  Google Scholar 

  • Rodríguez, S., et al., A mechanistic model for mercury capture with in situ-generated titania particles: role of water vapor. J Air Waste Manag Assoc. , 2004. 54(2): p. 149–156.

    Google Scholar 

  • Rolfhus, K.R., et al., Distribution and Fluxes of Total and Methylmercury in Lake Superior. Environ. Sci. Technol., 2003. 37(5): p. 865–872.

    Article  CAS  Google Scholar 

  • Rolfhus, K.R. and W.F. Fitzgerald, Mechanisms and temporal variability of dissolved gaseous mercury production in coastal seawater. Marine Chemistry, 2004. 90(1-4): p. 125–136.

    Article  CAS  Google Scholar 

  • Roy, S. and G.T. Rochelle, Simultaneous absorption of mercury and chlorine in sulfite solutions. Chemical Engineering Science, 2004. 59(6): p. 1309–1323.

    Article  CAS  Google Scholar 

  • Saiz-Lopez, A., et al., Boundary layer halogens in coastal Antarctica. Science, 2007. 317(5836): p. 348–351.

    Article  CAS  Google Scholar 

  • Sander, R., Compilation of Henry's Law Constants for Inorganic and Organic Species of Potential Importance in Environmental Chemistry (Version 3). 1999.

    Google Scholar 

  • Schlüter, K., Review: evaporation of mercury from soils. An integration and synthesis of current knowledge. Environmental Geology, 2000. 39(3): p. 249–271.

    Google Scholar 

  • Schofield, K., Let them eat fish: hold the mercury. Chemical Physics Letters, 2004. 386(1-3): p. 65–69.

    Article  CAS  Google Scholar 

  • Schroeder, W., G. Yarwood, and H. Niki, Transformation processes involving mercury species in the atmosphere — results from a literature survey. Water, Air, & Soil Pollution, 1991. 56(1): p. 653–666.

    Article  CAS  Google Scholar 

  • Schroeder, W.H., G. Yarwood, and H. Niki, Transformation Processes Involving Mercury Species in the Atmosphere - Results from a Literature Survey. Water Air and Soil Pollution, 1991. 56: p. 653–666.

    Article  Google Scholar 

  • Schroeder, W.H. and J. Munthe, Atmospheric mercury-An overview. Atmospheric Environment, 1998. 32(5): p. 809–822.

    Article  CAS  Google Scholar 

  • Schroeder, W. H., Anlauf, K. G., Barrie, L. A., Lu, J. Y., Steffen, A., Schneeberger, D. R., and Berg, T.:, Arctic springtime depletion of mercury. Nature, 1998. 394(6691): p. 331–332.

    Article  CAS  Google Scholar 

  • Seig, K., Adsorption of Hg(II) ions from aqueous chloride solutions using powdered activated carbons. Carbon, 2003. 41(5): p. 1087–1092.

    Article  CAS  Google Scholar 

  • Seigneur, C., W. Jacek, and C. Elpida, A Chemical Kinetic Mechanism for Atmospheric Inorganic Mercury. Environ. Sci. Technol, 1994. 28(9): p. 1589–1597.

    Article  CAS  Google Scholar 

  • Seiler, W., C. Eberling, and F. Slemr, Global Distribution of Gaseous Mercury in the Troposphere. Pure and Applied Geophysics, 1980. 118(4): p. 964–974.

    Article  CAS  Google Scholar 

  • Sen, A.K. and A.K. De, Adsorption of Hg(II) by coal fly ash. Water Research, 1987. 21(8): p. 885–888.

    Article  CAS  Google Scholar 

  • Senior, C.L., et al., Gas-phase transformations of mercury in coal-fired power plants. Fuel Processing Technology, 2000. 63(2-3): p. 197–213.

    Article  CAS  Google Scholar 

  • Shepler, B.C. and K.A. Peterson, Mercury Monoxide: A Systematic Investigation of Its Ground Electronic State. J. Phys. Chem. A, 2003. 107(11): p. 1783–1787.

    Article  CAS  Google Scholar 

  • Shepler, B.C., et al., Aqueous Microsolvation of Mercury Halide Species. J. Phys. Chem. A, 2007b. 111(44): p. 11342–11349.

    Article  CAS  Google Scholar 

  • Shepler, B.C., N.B. Balabanov, and K.A. Peterson, Ab Initio Thermochemistry Involving Heavy Atoms: An Investigation of the Reactions Hg + IX (X = I, Br, Cl, O). J. Phys. Chem. A, 2005. 109(45): p. 10363–10372.

    Article  CAS  Google Scholar 

  • Shepler, B.C., N.B. Balabanov, and K.A. Peterson, Hg plus Br à HgBr recombination and collision-induced dissociation dynamics. Journal of Chemical Physics, 2007. 127(16).

    Article  CAS  Google Scholar 

  • Sheu, G.-R. and R.P. Mason, An Examination of the Oxidation of Elemental Mercury in the Presence of Halide Surfaces. Journal of Atmospheric Chemistry, 2004. 48(2): p. 107–130.

    Article  CAS  Google Scholar 

  • Siciliano, S.D., N.J. O'Driscoll, and D.R.S. Lean, Microbial reduction and oxidation of mercury in freshwater lakes. Environmental Science & Technology, 2002. 36(14): p. 3064–3068.

    Article  CAS  Google Scholar 

  • Skare, I. and R. Johansson, Reactions between mercury vapor and chlorine gas at occupational exposure levels. Chemosphere, 1992. 24(11): p. 1633–1644.

    Article  CAS  Google Scholar 

  • Skodras, G., I. Diamantopoujou, and G.P. Sakellaropoujos, Role of activated carbon structural properties and surface chemistry in mercury adsorption. Desalination, 2007. 210(1-3): p. 281–286.

    Article  CAS  Google Scholar 

  • Skubal, L.R. and N.K. Meshkov, Reduction and removal of mercury from water using arginine-modified TiO2. Journal of Photochemistry and Photobiology a-Chemistry, 2002. 148(1-3): p. 211–214.

    Article  CAS  Google Scholar 

  • Slemr, F., G. Schuster, and W. Seiler, Distribution, speciation, and budget of atmospheric mercury. Journal of Atmospheric Chemistry, 1985. 3(4): p. 407–434.

    Article  CAS  Google Scholar 

  • Sliger, R.N., J.C. Kramlich, and N.M. Marinov, Towards the development of a chemical kinetic model for the homogeneous oxidation of mercury by chlorine species. Fuel Processing Technology, 2000. 65-66: p. 423–438.

    Article  Google Scholar 

  • Snider, G., F. Raofie, and P.A. Ariya, Effects of Relative Humidity and CO(g) on the O3-initiated Oxidation Reaction of Hg0(g): Kinetic & product studies. Physical Chemistry Chemical Physics, 2008. (accepted, with revisions).

    Google Scholar 

  • Sommar, J., et al., On the Gas Phase Reactions Between Volatile Biogenic Mercury Species and the Nitrate Radical. Journal of Atmospheric Chemistry, 1997. 27(3): p. 233–247.

    Article  CAS  Google Scholar 

  • Sommar, J., et al., A kinetic study of the gas-phase reaction between the hydroxyl radical and atomic mercury. Atmospheric Environment, 2001. 35(17): p. 3049–3054.

    Article  CAS  Google Scholar 

  • Southworth, G., et al., EVASION OF ADDED ISOTOPIC MERCURY FROM A NORTHERN TEMPERATE LAKE. Environmental Toxicology and Chemistry, 2007. 26(1): p. 53–60.

    Article  CAS  Google Scholar 

  • St.Louis, V.L., et al., Methylated Mercury Species in Canadian High Arctic Marine Surface Waters and Snowpacks. Environ. Sci. Technol., 2007. 41(18): p. 6433–6441.

    Article  CAS  Google Scholar 

  • Steffen, A., et al., Atmospheric mercury concentrations: measurements and profiles near snow and ice surfaces in the Canadian Arctic during Alert 2000. Atmospheric Environment, 2002. 36(15-16): p. 2653–2661.

    Article  CAS  Google Scholar 

  • Steffen, A., et al., A synthesis of atmospheric mercury depletion event chemistry linking atmosphere, snow and water. Atmos. Chem. Phys. Discuss., 2007. 7(4): p. 10837–10931.

    Article  Google Scholar 

  • Sumner, A., et al., Environmental Chamber Studies of Mercury Reactions in the Atmosphere, in Dynamics of Mercury Pollution on Regional and Global Scales:. 2005. p. 193–212.

    Google Scholar 

  • Tackett, P.J., et al., A study of the vertical scale of halogen chemistry in the Arctic troposphere during Polar Sunrise at Barrow, Alaska. Journal of Geophysical Research-Atmospheres, 2007. 112(D7): -.

    Google Scholar 

  • Tokos, J.J.S., et al., Homogeneous gas-phase reaction of Hg[degree sign] with H2O2, 03, CH3I, AND (CH3)2S: Implications for atmospheric Hg cycling. Atmospheric Environment, 1998. 32(5): p. 823–827.

    Article  CAS  Google Scholar 

  • Tossell, J.A., Calculation of the Energetics for Oxidation of Gas-Phase Elemental Hg by Br and BrO. J. Phys. Chem. A, 2003. 107(39): p. 7804–7808.

    Article  CAS  Google Scholar 

  • Turchi, C.S., Novel Process for Removal and Recovery of Vapor-Phase Mercury, in Other Information: PBD: 29 Sep 2000. 2000, ADA Technologies, Inc. : Littleton, CO. p. Size: 57 pages.

    Google Scholar 

  • Van Roozendael, M., et al., Intercomparison of BrO measurements from ERS-2 GOME, ground-based and balloon platforms. Remote Sensing of Trace Constituents in the Lower Stratosphere, Troposphere and the Earth's Surface: Global Observations, Air Pollution and the Atmospheric Correction, 2002. 29(11): p. 1661–1666.

    CAS  Google Scholar 

  • Vidic, R.D., M.T. Chang, and R.C. Thurnau, Kinetics of vapor-phase mercury uptake by virgin and sulfur-impregnated activated carbons. Journal of the Air & Waste Management Association, 1998. 48(3): p. 247–255.

    CAS  Google Scholar 

  • Wang, R.G., M.A. Dillon, and D. Spence, A phenomenological study of heterogeneous chemical reactions of mercuric chloride on heated stainless steel surfaces[sup a)]. The Journal of Chemical Physics, 1983. 79(2): p. 1100–1101.

    Article  CAS  Google Scholar 

  • Wang, Z. and S.O. Pehkonen, Oxidation of elemental mercury by aqueous bromine: atmospheric implications. Atmospheric Environment, 2004. 38(22): p. 3675–3688.

    Article  CAS  Google Scholar 

  • Whalin, L.M. and R.P. Mason, A new method for the investigation of mercury redox chemistry in natural waters utilizing deflatable Teflon(R) bags and additions of isotopically labeled mercury. Analytica Chimica Acta, 2006. 558(1-2): p. 211–221.

    Article  CAS  Google Scholar 

  • Widmer, N.C., et al., Practical Limitation of Mercury Speciation in Simulated Municipal Waste Incinerator Flue Gas. Combustion Science and Technology, 1998. 134(1): p. 315 – 326.

    Article  CAS  Google Scholar 

  • Wilcox, J., et al., Theoretically Predicted Rate Constants for Mercury Oxidation by Hydrogen Chloride in Coal Combustion Flue Gases. Environ. Sci. Technol., 2003. 37(18): p. 4199–4204.

    Article  CAS  Google Scholar 

  • Wu, S., M. Azhar Uddin, and E. Sasaoka, Characteristics of the removal of mercury vapor in coal derived fuel gas over iron oxide sorbents. Fuel, 2006. 85(2): p. 213–218.

    Article  CAS  Google Scholar 

  • Wu, S., et al., Development of iron-based sorbents for Hg0 removal from coal derived fuel gas: Effect of hydrogen chloride. Fuel, 2008. 87(4-5): p. 467–474.

    Article  CAS  Google Scholar 

  • Xiao, Z.F., D. Stromberg, and O. Lindqvist, Influence of Humic Substances on Photolysis of Divalent Mercury in Aqueous-Solution. Water Air and Soil Pollution, 1995. 80(1-4): p. 789–798.

    Article  CAS  Google Scholar 

  • Xin, M. and M.S. Gustin, Gaseous elemental mercury exchange with low mercury containing soils: Investigation of controlling factors. Applied Geochemistry, 2007. 22(7): p. 1451–1466.

    Article  CAS  Google Scholar 

  • Xu, M., et al., Kinetic calculation and modeling of trace element reactions during combustion. Powder Technology, 2008. 180(1-2): p. 157–163.

    Article  CAS  Google Scholar 

  • Yamamoto, M., Stimulation of elemental mercury oxidation in the presence of chloride ion in aquatic environments. Chemosphere, 1996. 32(6): p. 1217–1224.

    Article  CAS  Google Scholar 

  • Yardim, M.F., et al., Removal of mercury (II) from aqueous solution by activated carbon obtained from furfural. Chemosphere, 2003. 52(5): p. 835–841.

    Article  CAS  Google Scholar 

  • Zepp, R.G., J. Hoigne, and H. Bader, Nitrate-Induced Photooxidation of Trace Organic-Chemicals in Water. Environmental Science & Technology, 1987. 21(5): p. 443–450.

    Article  CAS  Google Scholar 

  • Zhang, H. and S.E. Lindberg, Sunlight and iron(III)-induced photochemical production of dissolved gaseous mercury in freshwater. Environmental Science & Technology, 2001. 35(5): p. 928–935.

    Article  CAS  Google Scholar 

  • Zhang, H., Photochemical Redox Reactions of Mercury, in Recent Developments in Mercury Science. 2006. p. 37–79.

    Google Scholar 

  • Zhang, L. and M.H. Wong, Environmental mercury contamination in China: Sources and impacts. Environment International, 2007. 33(1): p. 108–121.

    Article  CAS  Google Scholar 

  • Zhao, L.L. and G.T. Rochelle, Mercury absorption in aqueous hypochlorite. Chemical Engineering Science, 1999. 54(5): p. 655–662.

    Article  CAS  Google Scholar 

  • Zhao, Y., et al., Application of Gold Catalyst for Mercury Oxidation by Chlorine. Environ. Sci. Technol., 2006. 40(5): p. 1603–1608.

    Article  CAS  Google Scholar 

  • Zheng, C., et al., Kinetic mechanism studies on reactions of mercury and oxidizing species in coal combustion. Fuel, 2005. 84(10): p. 1215–1220.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge Natural Science Foundation of Canada (NSERC) and Canadian Foundation for innovation (CFI), McGill University and Italian Ministry of Environment for financial support

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag New York

About this chapter

Cite this chapter

Ariya, P.A., Peterson, K., Snider, G., Amyot, M. (2009). Mercury chemical transformations in the gas, aqueous and heterogeneous phases: state-of-the-art science and uncertainties. In: Mason, R., Pirrone, N. (eds) Mercury Fate and Transport in the Global Atmosphere. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-93958-2_15

Download citation

Publish with us

Policies and ethics