Skip to main content

Optical Coherence Tomography for Cancer Detection

  • Chapter
  • First Online:

Abstract

Optical coherence tomography (OCT) is an emerging high-resolution medical and biological imaging technology that is currently making the transition from the research lab into clinical practice. OCT is analogous to ultrasound B-mode imaging except that reflections of light are detected rather than sound. This technique is attractive for medical imaging because it permits real-time in situ imaging of tissue microstructure with resolution approaching that of conventional histology, but without the need for excision and histological processing. Although OCT penetration depth is on the order of 1–2 mm (Schmitt 1999), its fiber-optic implementation enables the use of compact endoscopic probes that facilitate internal access within the body, including epithelial layers, where 85% of all cancers originate (Gurjar et al. 2001).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adie, S. G., T. R. Hillman, and D. D. Sampson. 2007. Detection of multiple scattering in optical coherence tomography using the spatial distribution of Stokes vectors. Optics Express 15 (26):18033–18049.

    Article  PubMed  Google Scholar 

  • Adler, D. C., Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto. 2007. Three-dimensional endomicroscopy using optical coherence tomography. Nature Photonics 1 (12): 709–716.

    Article  CAS  Google Scholar 

  • Agrawal, A., S. Huang, A. W. H. Lin, M. H. Lee, J. K. Barton, R. A. Drezek, and T. J. Pfefer. 2006. Quantitative evaluation of optical coherence tomography signal enhancement with gold nanoshells. Journal of Biomedical Optics 11 (4):041121.

    Article  PubMed  Google Scholar 

  • Aguirre, A. D., N. Nishizawa, J. G. Fujimoto, W. Seitz, M. Lederer, and D. Kopf. 2006. Continuum generation in a novel photonic crystal fiber for ultrahigh resolution optical coherence tomography at 800 nm and 1300 nm. Optics Express 14 (3):1145–1160.

    Article  PubMed  Google Scholar 

  • Anker, J. N., and R. Kopelman. 2003. Magnetically modulated optical nanoprobes. Applied Physics Letters 82 (7):1102–1104.

    Article  CAS  Google Scholar 

  • Applegate, B. E., and J. A. Izatt. 2006. Molecular imaging of endogenous and exogenous chromophores using ground state recovery pump-probe optical coherence tomography. Optics Express 14 (20):9142–9155.

    Article  CAS  PubMed  Google Scholar 

  • Armstrong, J. J., M. S. Leigh, D. D. Sampson, J. H. Walsh, D. R. Hillman, and P. R. Eastwood. 2006. Quantitative upper airway imaging with anatomic optical coherence tomography. American Journal of Respiratory and Critical Care Medicine 173 (2):226–233.

    Article  PubMed  Google Scholar 

  • Barton, J. K., J. B. Hoying, and C. J. Sullivan. 2002. Use of microbubbles as an optical coherence tomography contrast agent. Academic Radiology 9:S52–S55.

    Article  PubMed  Google Scholar 

  • Barton, J. K., J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, and A. J. Welch. 1999. Three-dimensional reconstruction of blood vessels from in vivo color Doppler optical coherence tomography images. Dermatology 198 (4):355–361.

    Article  Google Scholar 

  • Berg, W. A., L. Gutierrez, M. S. NessAiver, W. B. Carter, M. Bhargavan, R. S. Lewis, and O. B. Ioffe. 2004. Diagnostic accuracy of mammography, clinical examination, US, and MR imaging in preoperative assessment of breast cancer. Radiology 233 (3):830–849.

    Article  PubMed  Google Scholar 

  • Bohringer, H. J., D. Boller, J. Leppert, U. Knopp, E. Lankenau, E. Reusche, G. Huttmann, and A. Giese. 2006. Time-domain and spectral-domain optical coherence tomography in the analysis of brain tumor tissue. Lasers in Surgery and Medicine 38 (6):588–597.

    Article  CAS  PubMed  Google Scholar 

  • Boppart, S. A., B. E. Bouma, C. Pitris, J. F. Southern, M. E. Brezinski, and J. G. Fujimoto. 1998. In vivo cellular optical coherence tomography imaging. Nature Medicine 4 (7):861–865.

    Article  CAS  PubMed  Google Scholar 

  • Boppart, S. A., B. E. Bouma, C. Pitris, G. J. Tearney, J. G. Fujimoto, and M. E. Brezinski. 1997. Forward-imaging instruments for optical coherence tomography. Optics Letters 22 (21): 1618–1620.

    Article  CAS  PubMed  Google Scholar 

  • Boppart, S. A., W. Luo, D. L. Marks, and K. W. Singletary. 2004. Optical coherence tomography: feasibility for basic research and image-guided surgery of breast cancer. Breast Cancer Research and Treatment 84 (2):85–97.

    Article  PubMed  Google Scholar 

  • Boppart, S. A., A. L. Oldenburg, C. Y. Xu, and D. L. Marks. 2005. Optical probes and techniques for molecular contrast enhancement in coherence imaging. Journal of Biomedical Optics 10 (4):041208.

    Article  Google Scholar 

  • Bouma, B. E., and G. J. Tearney. 2002. Handbook of Optical Coherence Tomography. New York: Marcel Dekker.

    Google Scholar 

  • Bouma, B. E., G. J. Tearney, H. Yabushita, M. Shishkov, C. R. Kauffman, D. D. Gauthier, B. D. MacNeill, S. L. Houser, H. T. Aretz, E. F. Halpern, and I. K. Jang. 2003. Evaluation of intracoronary stenting by intravascular optical coherence tomography. Heart 89 (3):317–320.

    Article  CAS  PubMed  Google Scholar 

  • Brezinski, M. E., and J. G. Fujimoto. 1999. Optical coherence tomography: High-resolution imaging in nontransparent tissue. IEEE Journal of Selected Topics in Quantum Electronics 5 (4): 1185–1192.

    Article  CAS  Google Scholar 

  • Cang, H., T. Sun, Z. Y. Li, J. Y. Chen, B. J. Wiley, Y. N. Xia, and X. D. Li. 2005. Gold nanocages as contrast agents for spectroscopic optical coherence tomography. Optics Letters 30 (22): 3048–3050.

    Article  CAS  PubMed  Google Scholar 

  • Cellini, C., S. T. Hollenbeck, P. Christos, D. Martins, J. Carson, S. Kemper, E. LaVigne, E. Chan, and R. Simmons. 2004. Factors associated with residual breast cancer after re-excision for close or positive margins. Annals of Surgical Oncology 11 (10):915–920.

    Article  CAS  PubMed  Google Scholar 

  • Cense, B., H. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer. 2004. In vivo birefringence and thickness measurements of the human retinal nerve fiber layer using polarization-sensitive optical coherence tomography. Journal of Biomedical Optics 9 (1):121–125.

    Article  PubMed  Google Scholar 

  • Chan, R. C., A. H. Chau, W. C. Karl, S. Nadkarni, A. S. Khalil, N. Iftimia, M. Shishkov, G. J. Tearney, M. R. Kaazempur-Mofrad, and B. E. Bouma. 2004. OCT-based arterial elastography: robust estimation exploiting tissue biomechanics. Optics Express 12 (19):4558–4572.

    Article  CAS  PubMed  Google Scholar 

  • Chang, S. C., G. Buonaccorsi, A. J. MacRobert, and S. G. Bown. 1997. 5-Aminolevulinic acid (ALA)-induced protoporphyrin IX fluorescence and photodynamic effects in the rat bladder: An in vivo study comparing oral and intravesical ALA administration. Lasers in Surgery and Medicine 20 (3):254–264.

    Article  CAS  PubMed  Google Scholar 

  • Chen, Y., A. D. Aguirre, P. L. Hsiung, S. Desai, P. R. Herz, M. Pedrosa, Q. Huang, M. Figueiredo, S. W. Huang, A. Koski, J. M. Schmitt, J. G. Fujimoto, and H. Mashimo. 2007. Ultrahigh resolution optical coherence tomography of Barrett’s esophagus: preliminary descriptive clinical study correlating images with histology. Endoscopy 39 (7):599–605.

    Article  CAS  PubMed  Google Scholar 

  • Chen, Y., A. D. Aguirre, P. L. Hsiung, S. W. Huang, H. Mashimo, J. M. Schmitt, and J. G. Fujimoto. 2008. Effects of axial resolution improvement on optical coherence tomography (OCT) imaging of gastrointestinal tissues. Optics Express 16 (4):2469–2485.

    Article  PubMed  Google Scholar 

  • Choma, M. A., M. V. Sarunic, C. H. Yang, and J. A. Izatt. 2003. Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Optics Express 11 (18):2183–2189.

    Article  PubMed  Google Scholar 

  • Das, B. B., F. Liu, and R. R. Alfano. 1997. Time-resolved fluorescence and photon migration studies in biomedical and model random media. Reports on Progress in Physics 60 (2): 227–292.

    Article  Google Scholar 

  • de Boer, J. F., B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma. 2003. Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. Optics Letters 28 (21):2067–2069.

    Article  PubMed  Google Scholar 

  • de Boer, J. F., and T. E. Milner. 2002. Review of polarization sensitive optical coherence tomography and Stokes vector determination. Journal of Biomedical Optics 7 (3):359–371.

    Article  PubMed  Google Scholar 

  • de Giorgi, V., M. Stante, D. Massi, L. Mavilia, P. Cappugi, and P. Carli. 2005. Possible histopathologic correlates of dermoscopic features in pigmented melanocytic lesions identified by means of optical coherence tomography. Experimental Dermatology 14 (1):56–59.

    Article  PubMed  Google Scholar 

  • Drexler, W. 2004. Ultrahigh-resolution optical coherence tomography. Journal of Biomedical Optics 9 (1):47–74.

    Article  PubMed  Google Scholar 

  • Drezek, R., M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum. 2003. Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture. Journal of Biomedical Optics 8 (1):7–16.

    Article  PubMed  Google Scholar 

  • Escobar, P. F., L. Rojas-Espaillat, S. Tisci, C. Enerson, J. Brainard, J. Smith, N. J. Tresser, F. I. Feldchtein, L. B. Rojas, and J. L. Belinson. 2006. Optical coherence tomography as a diagnostic aid to visual inspection and colposcopy for preinvasive and invasive cancer of the uterine cervix. International Journal of Gynecological Cancer 16 (5):1815–1822.

    Article  CAS  PubMed  Google Scholar 

  • Faber, D. J., E. G. Mik, M. C. G. Aalders, and T. G. van Leeuwen. 2005. Toward assessment of blood oxygen saturation by spectroscopic optical coherence tomography. Optics Letters 30 (9):1015–1017.

    Article  CAS  PubMed  Google Scholar 

  • Fercher, A. F., W. Drexler, C. K. Hitzenberger, and T. Lasser. 2003. Optical coherence tomography – principles and applications. Reports on Progress in Physics 66 (2):239–303.

    Article  Google Scholar 

  • Fisher, B., S. Anderson, J. Bryant, R. G. Margolese, M. Deutsch, E. R. Fisher, J-H. Jeong, and N. Wolmark. 2002. Twenty-year follow-up of a randomized trial comparing total mastectomy, lumpectomy, and lumpectomy plus irradiation for the treatment of invasive breast cancer. The New England Journal of Medicine 347 (16):1233–1241.

    Article  PubMed  Google Scholar 

  • Frable, W. J. 1983. Fine-needle aspiration biopsy – a review. Human Pathology 14 (1):9–28.

    Article  CAS  PubMed  Google Scholar 

  • Fujimoto, J. G. 2003. Optical coherence tomography for ultrahigh resolution in vivo imaging. Nature Biotechnology 21 (11):1361–1367.

    Article  CAS  PubMed  Google Scholar 

  • Gambichler, T., A. Orlikov, R. Vasa, G. Moussa, K. Hoffmann, M. Stucker, P. Altmeyer, and F. G. Bechara. 2007a. In vivo optical coherence tomography of basal cell carcinoma. Journal of Dermatological Science 45 (3):167–173.

    Article  PubMed  Google Scholar 

  • Gambichler, T., P. Regeniter, F. G. Bechara, A. Orlikov, R. Vasa, G. Moussa, M. Stucker, P. Altmeyer, and K. Hoffmann. 2007b. Characterization of benign and malignant melanocytic skin lesions using optical coherence tomography in vivo. Journal of the American Academy of Dermatology 57 (4):629–637.

    Article  PubMed  Google Scholar 

  • Gao, L., K. J. Parker, R. M. Lerner, and S. F. Levinson. 1996. Imaging of the elastic properties of tissue – a review. Ultrasound in Medicine and Biology 22 (8):959–977.

    Article  CAS  PubMed  Google Scholar 

  • Gibbs, P., and L. W. Turnbull. 2003. Textural analysis of contrast-enhanced MR images of the breast. Magnetic Resonance in Medicine 50 (1):92–98.

    Article  PubMed  Google Scholar 

  • Goldberg, B. D., N. V. Iftimia, J. E. Bressner, M. B. Pitman, E. Halpern, B. E. Bouma, and G. J. Tearney. 2008. Automated algorithm for differentiation of human breast tissue using low coherence interferometry for fine needle aspiration biopsy guidance. Journal of Biomedical Optics 13 (1):014014.

    Article  PubMed  Google Scholar 

  • Gossage, K. W., T. S. Tkaczyk, J. J. Rodriguez, and J. K. Barton. 2003. Texture, analysis of optical coherence tomography images: feasibility for tissue classification. Journal of Biomedical Optics 8 (3):570–575.

    Article  PubMed  Google Scholar 

  • Graf, R. N., and A. Wax. 2007. Temporal coherence and time-frequency distributions in spectroscopic optical coherence tomography. Journal of the Optical Society of America A-Optics Image Science and Vision 24 (8):2186–2195.

    Article  Google Scholar 

  • Greenleaf, J. F., M. Fatemi, and M. Insana. 2003. Selected methods for imaging elastic properties of biological tissues. Annual Review of Biomedical Engineering 5:57–78.

    Article  CAS  PubMed  Google Scholar 

  • Grossman, H. B., L. Gomella, Y. Fradet, A. Morales, J. Presti, C. Ritenour, U. Nseyo, M. J. Droller, and Pc B30201 Study Grp. 2007. A phase III, multicenter comparison of hexaminolevulinate fluorescence cystoscopy and white light cystoscopy for the detection of superficial papillary lesions in patients with bladder cancer. Journal of Urology 178 (1):62–67.

    Article  PubMed  Google Scholar 

  • Gurjar, R. S., V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, and M. S. Feld. 2001. Imaging human epithelial properties with polarized light-scattering spectroscopy. Nature Medicine 7 (11):1245–1248.

    Article  CAS  PubMed  Google Scholar 

  • Hariri, L. P., A. R. Tomlinson, N. H. Wade, D. G. Besselsen, U. Utzinger, E. W. Gerner, and J. K. Barton. 2007. Ex vivo optical coherence tomography and laser-induced fluorescence spectroscopy imaging of murine gastrointestinal tract. Comparative Medicine 57 (2):175–185.

    CAS  PubMed  Google Scholar 

  • Hariri, L. P., A. R. Tumlinson, D. G. Besselsen, U. Utzinger, E. W. Gerner, and J. K. Barton. 2006. Endoscopic optical coherence tomography and laser-induced fluorescence spectroscopy in a murine colon cancer model. Lasers in Surgery and Medicine 38 (4):305–313.

    Article  PubMed  Google Scholar 

  • Hsiung, P. L., L. Pantanowitz, A. D. Aguirre, Y. Chen, D. Phatak, T. H. Ko, S. Bourquin, S. J. Schnitt, S. Raza, J. L. Connolly, H. Mashimo, and J. G. Fujimoto. 2005. Ultrahigh-resolution and 3-dimensional optical coherence tomography ex vivo imaging of the large and small intestines. Gastrointestinal Endoscopy 62 (4):561–574.

    Article  PubMed  Google Scholar 

  • Hsiung, P. L., D. R. Phatak, Y. Chen, A. D. Aguirre, J. G. Fujimoto, and J. L. Connolly. 2007. Benign and malignant lesion in the human breast depicted with ultrahigh resolution and dimensional optical coherence tomography. Radiology 244 (3):865–874.

    Article  PubMed  Google Scholar 

  • Huang, D., E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto. 1991. Optical Coherence Tomography. Science 254 (5035):1178–1181.

    Article  CAS  PubMed  Google Scholar 

  • Iftimia, N. V., B. E. Bouma, M. B. Pitman, B. Goldberg, J. Bressner, and G. J. Tearney. 2005. A portable, low coherence interferometry based instrument for fine needle aspiration biopsy guidance. Review of Scientific Instruments 76 (6):064301.

    Article  CAS  Google Scholar 

  • Isenberg, G., M. V. Sivak, A. Chak, R. C. K. Wong, J. E. Willis, B. Wolf, D. Y. Rowland, A. Das, and A. Rollins. 2005. Accuracy of endoscopic optical coherence tomography in the detection of dysplasia in Barrett’s esophagus: a prospective, double-blinded study. Gastrointestinal Endoscopy 62 (6):825–831.

    Article  PubMed  Google Scholar 

  • Izatt, J. A., M. D. Kulkami, S. Yazdanfar, J. K. Barton, and A. J. Welch. 1997. In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomograghy. Optics Letters 22 (18):1439–1441.

    Article  CAS  PubMed  Google Scholar 

  • Jackle, S., N. Gladkova, F. Feldchtein, A. Terentieva, B. Brand, G. Gelikonov, V. Gelikonov, A. Sergeev, A. Fritscher-Ravens, J. Freund, U. Seitz, S. Schroder, and N. Soehendra. 2000. In vivo endoscopic optical coherence tomography of the human gastrointestinal tract – toward optical biopsy. Endoscopy 32 (10):743–749.

    Article  CAS  PubMed  Google Scholar 

  • Jung, W. G., J. Zhang, J. R. Chung, P. Wilder-Smith, M. Brenner, J. S. Nelson, and Z. P. Chen. 2005. Advances in oral cancer detection using optical coherence tomography. IEEE Journal of Selected Topics in Quantum Electronics 11 (4):811–817.

    Article  CAS  Google Scholar 

  • Kawakami-Wong, H., S. G. Gu, M. J. Hammer-Wilson, J. B. Epstein, Z. P. Chen, and P. Wilder-Smith. 2007. In vivo optical coherence tomography-based scoring of oral mucositis in human subjects: a pilot study. Journal of Biomedical Optics 12 (5):051702.

    Article  PubMed  Google Scholar 

  • Kirkpatrick, S. J., R. K. Wang, and D. D. Duncan. 2006. OCT-based elastography for large and small deformations. Optics Express 14 (24):11585–11597.

    Article  PubMed  Google Scholar 

  • Ko, H. J., W. Tan, R. Stack, and S. A. Boppart. 2006. Optical coherence elastography of engineered and developing tissue. Tissue Engineering 12 (1):63–73.

    Article  PubMed  Google Scholar 

  • Kuranov, R. V., V. V. Sapozhnikova, H. M. Shakhova, V. M. Gelikonov, E. V. Zagainova, and S. A. Petrova. 2002. Combined application of optical methods to increase the information content of optical coherent tomography in diagnostics of neoplastic processes. Quantum Electronics 32 (11):993–998.

    Article  CAS  Google Scholar 

  • Lee, T. M., A. L. Oldenburg, S. Sitafalwalla, D. L. Marks, W. Luo, F. J. J. Toublan, K. S. Suslick, and S. A. Boppart. 2003. Engineered microsphere contrast agents for optical coherence tomography. Optics Letters 28 (17):1546–1548.

    Article  CAS  PubMed  Google Scholar 

  • Lee, S. W., J. Y. Yoo, J. H. Kang, M. S. Kang, S. H. Jung, Y. Chong, D. S. Cha, K. H. Han, and B. M. Kim. 2008. Optical diagnosis of cervical intraepithelial neoplasm (CIN) using polarization-sensitive optical coherence tomography. Optics Express 16 (4):2709–2719.

    Article  PubMed  Google Scholar 

  • Leitgeb, R. A., L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki, and T. Bajraszewski. 2003. Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography. Optics Express 11 (23):3116–3121.

    Article  PubMed  Google Scholar 

  • Lexer, F., C. K. Hitzenberger, W. Drexler, S. Molebny, H. Sattmann, M. Sticker, and A. F. Fercher. 1999. Dynamic coherent focus OCT with depth-independent transversal resolution. Journal of Modern Optics 46 (3):541–553.

    Google Scholar 

  • Li, H., B. A. Standish, A. Mariampillai, N. R. Munce, Y. X. Mao, S. Chiu, N. E. Alarcon, B. C. Wilson, A. Vitkin, and V. X. D. Yang. 2006. Feasibility of interstitial Doppler optical coherence tomography for in vivo detection of microvascular changes during photodynamic therapy. Lasers in Surgery and Medicine 38 (8):754–761.

    Article  PubMed  Google Scholar 

  • Liang, X., A. L. Oldenburg, V. Crecea, E. J. Chaney, and S. A. Boppart. 2008. Optical micro-scale mapping of dynamic biomechanical tissue properties. Optics Express 16:11052–11065.

    Article  PubMed  Google Scholar 

  • Liberman, L., D. D. Dershaw, P. P. Rosen, A. F. Abramson, B. M. Deutch, and L. E. Hann. 1994. Stereotaxic 14-gauge breast biopsy – how many core biopsy specimens are needed. Radiology 192 (3):793–795.

    CAS  PubMed  Google Scholar 

  • Lingley-Papadopoulos, C. A., M. H. Loew, M. J. Manyak, and J. M. Zara. 2008. Computer recognition of cancer in the urinary bladder using optical coherence tomography and texture analysis. Journal of Biomedical Optics 13:024002.

    Article  Google Scholar 

  • Liu, B., and M. E. Brezinski. 2007. Theoretical and practical considerations on detection performance of time domain, Fourier domain, and swept source optical coherence tomography. Journal of Biomedical Optics 12 (4):044007.

    Article  PubMed  Google Scholar 

  • Liu, G. Y., J. S. Lu, K. W. Shen, J. Wu, C. M. Chen, Z. Hu, Z. Z. Shen, T. Q. Zhang, and Z. M. Shao. 2008. Fiberoptic ductoscopy combined with cytology testing in the patients of spontaneous nipple discharge. Breast Cancer Research and Treatment 108 (2):271–277.

    Article  PubMed  Google Scholar 

  • Lu, C. W., C. K. Lee, M. T. Tsai, Y. M. Wang, and C. C. Yang. 2008. Measurement of the hemoglobin oxygen saturation level with spectroscopic spectral-domain optical coherence tomography. Optics Letters 33 (5):416–418.

    Article  PubMed  Google Scholar 

  • Luo, W., F. T. Nguyen, A. M. Zysk, T. L. S. Ralston, J. Brockenbrough, D. L. Marks, A. L. Oldenburg, and S. A. Boppart. 2005. Optical biopsy of lymph node morphology using optical coherence tomography. Technology in Cancer Research & Treatment 4 (5):539–547.

    Google Scholar 

  • Manyak, M. J., N. D. Gladkova, J. H. Makari, A. M. Schwartz, E. V. Zagaynova, L. Zolfaghari, J. M. Zara, R. Iksanov, and F. I. Feldchtein. 2005. Evaluation of superficial bladder transitional-cell carcinoma by optical coherence tomography. Journal of Endourology 19 (5):570–574.

    Article  PubMed  Google Scholar 

  • McMasters, K. M., T. M. Tuttle, D. J. Carlson, C. M. Brown, R. D. Noyes, R. L. Glaser, D. J. Vennekotter, P. S. Turk, P. S. Tate, A. Sardi, P. B. Cerrito, and M. J. Edwards. 2000. Sentinel lymph node biopsy for breast cancer: a suitable alternative to routine axillary dissection in multi-institutional practice when optimal technique is used. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology 18 (13):2560–2566.

    CAS  Google Scholar 

  • Morgner, U., W. Drexler, F. X. Kartner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto. 2000. Spectroscopic optical coherence tomography. Optics Letters 25 (2):111–113.

    Article  CAS  PubMed  Google Scholar 

  • Mourant, J. R., M. Canpolat, C. Brocker, O. Esponda-Ramos, T. M. Johnson, A. Matanock, K. Stetter, and J. P. Freyer. 2000. Light scattering from cells: the contribution of the nucleus and the effects of proliferative status. Journal of Biomedical Optics 5 (2):131–137.

    Article  CAS  PubMed  Google Scholar 

  • Nguyen, F. T., A. M. Zysk, E. J. Chaney, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, K. M. Rowland, P. A. Johnson, and S. A. Boppart. 2008a. Intraoperative evaluation of breast tumor margins with optical coherence tomography. (unpublished).

    Google Scholar 

  • Nguyen, F. T., A. M. Zysk, E. J. Chaney, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, K. M. Rowland, P. A. Johnson, S.G. Adie, and S. A. Boppart. 2008b. Evaluation of optical coherence tomography for the intraoperative assessment of lymph nodes in breast cancer. (unpublished).

    Google Scholar 

  • Nguyen, F. T., A. M. Zysk, J. G. Kotynek, F. J. Bellafiore, K. M. Rowland, P. A. Johnson, E. J. Chaney, and S. A. Boppart. 2007. Portable real-time optical coherence tomography system for intraoperative imaging and staging of breast cancer, at San Jose, CA, United States, Proc. SPIE Vol. 6430:64300.

    Google Scholar 

  • Oldenburg, A. L., J. R. Gunther, and S. A. Boppart. 2005a. Imaging magnetically labeled cells with magnetomotive optical coherence tomography. Optics Letters 30 (7):747–749.

    Article  PubMed  Google Scholar 

  • Oldenburg, A. L., M. N. Hansen, D. A. Zweifel, A. Wei, and S. A. Boppart. 2006. Plasmon-resonant gold nanorods as low backscattering albedo contrast agents for optical coherence tomography. Optics Express 14 (15):6724–6738.

    Article  CAS  PubMed  Google Scholar 

  • Oldenburg, A. L., F. J. J. Toublan, K. S. Suslick, A. Wei, and S. A. Boppart. 2005b. Magnetomotive contrast for in vivo optical coherence tomography. Optics Express 13 (17):6597–6614.

    Article  PubMed  Google Scholar 

  • Oldenburg, A. L., C. Y. Xu, and S. A. Boppart. 2007. Spectroscopic optical coherence tomography and microscopy. IEEE Journal of Selected Topics in Quantum Electronics 13 (6):1629–1640.

    Article  CAS  Google Scholar 

  • Olmedo, J. M., K. E. Warschaw, J. M. Schmitt, and D. L. Swanson. 2006. Optical coherence tomography for the characterization of basal cell carcinoma in vivo: a pilot study. Journal of the American Academy of Dermatology 55 (3):408–412.

    Article  PubMed  Google Scholar 

  • Olmedo, J. M., K. E. Warschaw, J. M. Schmitt, and D. L. Swanson. 2007. Correlation of thickness of basal cell carcinoma by optical coherence tomography in vivo and routine histologic findings: a pilot study. Dermatologic Surgery 33 (4):421–426.

    Article  CAS  PubMed  Google Scholar 

  • Pan, Y. T., R. Birngruber, and R. Engelhardt. 1997. Contrast limits of coherence-gated imaging in scattering media. Applied Optics 36 (13):2979–2983.

    Article  CAS  PubMed  Google Scholar 

  • Pan, Y. T., J. P. Lavelle, S. I. Bastacky, S. Meyers, G. Pirtskhalaishvili, M. L. Zeidel, and D. L. Farkas. 2001. Detection of tumorigenesis in rat bladders with optical coherence tomography. Medical Physics 28 (12):2432–2440.

    Article  CAS  PubMed  Google Scholar 

  • Pan, Y. T., T. Q. Xie, C. W. Du, S. Bastacky, S. Meyers, and M. L. Zeidel. 2003. Enhancing early bladder cancer detection with fluorescence-guided endoscopic optical coherence tomography. Optics Letters 28 (24):2485–2487.

    Article  CAS  PubMed  Google Scholar 

  • Park, B. H., C. Saxer, S. M. Srinivas, J. S. Nelson, and J. F. de Boer. 2001. In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography. Journal of Biomedical Optics 6 (4):474–479.

    Article  CAS  PubMed  Google Scholar 

  • Pfau, P. R., M. V. Sivak, A. Chak, M. Kinnard, R. C. K. Wong, G. A. Isenberg, J. A. Izatt, A. Rollins, and V. Westphal. 2003. Criteria for the diagnosis of dysplasia by endoscopic optical coherence tomography. Gastrointestinal Endoscopy 58 (2):196–202.

    Article  PubMed  Google Scholar 

  • Pijnappel, R. M., M. van den Donk, R. Holland, W. P. Th M. Mali, J. L. Peterse, J. H. C. L. Hendriks, and P. H. M. Peeters. 2004. Diagnostic accuracy for different strategies of image-guided breast intervention in cases of nonpalpable breast lesions. British Journal of Cancer 90 (3):595–600.

    Article  CAS  PubMed  Google Scholar 

  • Pitris, C., C. Jesser, S. A. Boppart, D. Stamper, M. E. Brezinski, and J. G. Fujimoto. 2000. Feasibility of optical coherence tomography for high-resolution imaging of human gastrointestinal tract malignancies. Journal of Gastroenterology 35 (2):87–92.

    Article  CAS  PubMed  Google Scholar 

  • Povazay, B., K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. S. J. Russell, M. Vetterlein, and E. Scherzer. 2002. Submicrometer axial resolution optical coherence tomography. Optics Letters 27 (20): 1800–1802.

    Article  CAS  PubMed  Google Scholar 

  • Qi, X., M. V. Sivak, G. Isenberg, J. E. Willis, and A. M. Rollins. 2006. Computer-aided diagnosis of dysplasia in Barrett’s esophagus using endoscopic optical coherence tomography. Journal of Biomedical Optics 11 (4):044010.

    Article  PubMed  Google Scholar 

  • Ralston, T. S., D. L. Marks, P. S. Carney, and S. A. Boppart. 2007. Interferometric synthetic aperture microscopy. Nature Physics 3 (2):129–134.

    Article  CAS  Google Scholar 

  • Ralston, T. S., D. L. Marks, P. S. Carney, and S. A. Boppart. 2008. Real-time interferometric synthetic aperture microscopy. Optics Express 16 (4):2555–2569.

    Article  PubMed  Google Scholar 

  • Ramachandran, J., T. M. Powers, S. Carpenter, A. Garcia-Lopez, J. P. Freyer, and J. R. Mourant. 2007. Light scattering and microarchitectural differences between tumorigenic and non-tumorigenic cell models of tissue. Optics Express 15 (7):4039–4053.

    Article  PubMed  Google Scholar 

  • Rao, K. D., M. A. Choma, S. Yazdanfar, A. M. Rollins, and J. A. Izatt. 2003. Molecular contrast in optical coherence tomography by use of a pump-probe technique. Optics Letters 28 (5): 340–342.

    Article  PubMed  Google Scholar 

  • Reed, W. A., M. F. Yan, and M. J. Schnitzer. 2002. Gradient-index fiber-optic microprobes for minimally invasive in vivo low-coherence interferometry. Optics Letters 27 (20):1794–1796.

    Article  PubMed  Google Scholar 

  • Reynolds, H. E. 2000. Core needle biopsy of challenging benign breast conditions: a comprehensive literature review. American Journal of Roentgenology 174 (5):1245–1250.

    CAS  PubMed  Google Scholar 

  • Ridgway, J. M., W. B. Armstrong, S. Guo, U. Mahmood, J. P. Su, R. P. Jackson, T. Shibuya, R. L. Crumley, M. Gu, Z. P. Chen, and B. J. F. Wong. 2006. In vivo optical coherence tomography of the human oral cavity and oropharynx. Archives of Otolaryngology-Head & Neck Surgery 132 (10):1074–1081.

    Article  Google Scholar 

  • Rogowska, J., N. A. Patel, J. G. Fujimoto, and M. E. Brezinski. 2004. Optical coherence tomographic elastography technique for measuring deformation and strain of atherosclerotic tissues. Heart 90 (5):556–562.

    Article  CAS  PubMed  Google Scholar 

  • Rogowska, J., N. Patel, S. Plummer, and M. E. Brezinski. 2006. Quantitative optical coherence tomographic elastography: method for assessing arterial mechanical properties. British Journal of Radiology 79 (945):707–711.

    Article  CAS  PubMed  Google Scholar 

  • Saleh, B. E. A., and M. C. Teich. 1991. Fundamentals of Photonics, Wiley Series in Pure and Applied Optics. New York: Wiley.

    Google Scholar 

  • Sapozhnikova, V. V., N. M. Shakhova, V. A. Kamensky, S. A. Petrova, L. B. Snopova, and R. V. Kuranov. 2005. Capabilities of fluorescence spectroscopy using 5-ALA and optical coherence tomography for diagnosis of neoplastic processes in the uterine cervix and vulva. Laser Physics 15 (12):1664–1673.

    Google Scholar 

  • Sarvazyan, A. P., O. V. Rudenko, S. D. Swanson, J. B. Fowlkes, and S. Y. Emelianov. 1998. Shear wave elasticity imaging: A new ultrasonic technology of medical diagnostics. Ultrasound in Medicine and Biology 24 (9):1419–1435.

    Article  CAS  PubMed  Google Scholar 

  • Schmitt, J. M. 1998. OCT elastography: imaging microscopic deformation and strain of tissue. Optics Express 3 (6):199–211.

    Article  CAS  PubMed  Google Scholar 

  • Schmitt, J. M. 1999. Optical coherence tomography (OCT): a review. IEEE Journal of Selected Topics in Quantum Electronics 5 (4):1205–1215.

    Article  CAS  Google Scholar 

  • Schuman, J. S., C. A. Puliafito, and J. G. Fujimoto. 2004. Optical Coherence Tomography of Ocular Diseases: SLACK Inc., Thorofare, NJ.

    Google Scholar 

  • Shankar, P. M., V. A. Dumane, C. W. Piccoli, J. M. Reid, F. Forsberg, and B. B. Goldberg. 2003. Computer-aided classification of breast masses in ultrasonic B-scans using a multiparameter approach. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control 50 (8):1002–1009.

    Article  Google Scholar 

  • Shen, K. W., J. Wu, J. S. Lu, Q. X. Han, Z. Z. Shen, M. Nguyen, Z. M. Shao, and S. H. Barsky. 2000. Fiberoptic ductoscopy for patients with nipple discharge. Cancer 89 (7):1512–1519.

    Article  CAS  PubMed  Google Scholar 

  • Standish, B. A., X. Jin, J. Smolen, A. Mariampillai, N. R. Munce, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang. 2007a. Interstitial Doppler optical coherence tomography monitors microvascular changes during photodynamic therapy in a Dunning prostate model under varying treatment conditions. Journal of Biomedical Optics 12 (3):034022.

    Article  PubMed  Google Scholar 

  • Standish, B. A., V. X. D. Yang, N. R. Munce, L. M. W. K. Song, G. Gardiner, A. Lin, Y. I. Mao, A. Vitkin, N. E. Marcon, and B. C. Wilson. 2007b. Doppler optical coherence tomography monitoring of microvascular tissue response during photodynamic therapy in an animal model of Barrett’s esophagus. Gastrointestinal Endoscopy 66 (2):326–333.

    Article  PubMed  Google Scholar 

  • Strasswimmer, J., M. C. Pierce, B. H. Park, V. Neel, and J. F. de Boer. 2004. Polarization-sensitive optical coherence tomography of invasive basal cell carcinoma. Journal of Biomedical Optics 9 (2):292–298.

    Article  PubMed  Google Scholar 

  • Swanson, E. A., D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, and C. A. Puliafito. 1992. High-speed optical coherence domain reflectometry. Optics Letters 17 (2):151–153.

    Article  CAS  PubMed  Google Scholar 

  • Swenson, K. K., M. J. Nissen, C. Ceronsky, L. Swenson, M. W. Lee, and T. M. Tuttle. 2002. Comparison of side effects between sentinel lymph node and axillary lymph node dissection for breast cancer. Annals of Surgical Oncology 9 (8):745–753.

    Article  PubMed  Google Scholar 

  • Tearney, G. J., M. E. Brezinski, J. F. Southern, B. E. Bouma, M. R. Hee, and J. G. Fujimoto. 1995. Determination of the refractive-index of highly scattering human tissue by optical coherence tomography. Optics Letters 20 (21):2258–2260.

    Article  CAS  PubMed  Google Scholar 

  • Tumlinson, A. R., L. P. Hariri, U. Utzinger, and J. K. Barton. 2004. Miniature endoscope for simultaneous optical coherence tomography and laser-induced fluorescence measurement. Applied Optics 43 (1):113–121.

    Article  PubMed  Google Scholar 

  • Veronesi, U., G. Paganelli, G. Viale, A. Luini, S. Zurrida, V. Galimberti, M. Intra, P. Veronesi, C. Robertson, P. Maisonneuve, G. Renne, C. De Cicco, F. De Lucia, and R. Gennari. 2003. A randomized comparison of sentinel-node biopsy with routine axillary dissection in breast cancer. The New England Journal of Medicine 349 (6):546–553.

    Article  PubMed  Google Scholar 

  • Wang, Z. G., D. B. Durand, M. Schoenberg, and Y. T. Pan. 2005. Fluorescence guided optical coherence tomography for the diagnosis of early bladder cancer in a rat model. Journal of Urology 174 (6):2376–2381.

    Article  CAS  PubMed  Google Scholar 

  • Wang, R. K. K., S. Kirkpatrick, and M. Hinds. 2007a. Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time. Applied Physics Letters 90 (16):164105.

    Article  CAS  Google Scholar 

  • Wang, Z. G., C. S. D. Lee, W. C. Waltzer, J. X. Liu, H. K. Xie, Z. J. Yuan, and Y. T. Pan. 2007b. In vivo bladder imaging with microelectromechanical systems-based endoscopic spectral domain optical coherence tomography. Journal of Biomedical Optics 12 (3):034009.

    Article  PubMed  Google Scholar 

  • Whiteman, S. C., Y. Yang, D. G. van Pittius, M. Stephens, J. Parmer, and M. A. Spiteri. 2006. Optical coherence tomography: real-time imaging of bronchial airways microstructure and detection of inflammatory/neoplastic morphologic changes. Clinical Cancer Research 12 (3):813–818.

    Article  PubMed  CAS  Google Scholar 

  • Wilder-Smith, P., W. G. Jung, M. Brenner, K. Osann, H. Beydoun, D. Messadi, and Z. P. Chen. 2004. In vivo optical coherence tomography for the diagnosis of oral malignancy. Lasers in Surgery and Medicine 35 (4):269–275.

    Article  PubMed  Google Scholar 

  • Wilder-Smith, P., T. Krasieva, W. G. Jung, J. Zhang, Z. P. Chen, K. Osann, and B. Tromberg. 2005. Noninvasive imaging of oral premalignancy and malignancy. Journal of Biomedical Optics 10 (5):051601.

    Article  PubMed  Google Scholar 

  • Wong, B. J. F., R. P. Jackson, S. G. Guo, J. M. Ridgway, U. Mahmood, J. P. Su, T. Y. Shibuya, R. L. Crumley, M. Gu, W. B. Armstrong, and Z. P. Chen. 2005. In vivo optical coherence tomography of the human larynx: normative and benign pathology in 82 patients. Laryngoscope 115 (11):1904–1911.

    Article  PubMed  Google Scholar 

  • Xie, T. Q., M. L. Zeidel, and Y. T. Pan. 2002. Detection of tumorigenesis in urinary bladder with optical coherence tomography: optical characterization of morphological changes. Optics Express 10 (24):1431–1443.

    CAS  PubMed  Google Scholar 

  • Xu, C. Y., F. Kamalabadi, and S. A. Boppart. 2005. Comparative performance analysis of time-frequency distributions for spectroscopic optical coherence tomography. Applied Optics 44 (10):1813–1822.

    Article  PubMed  Google Scholar 

  • Xu, C. Y., C. Vinegoni, T. S. Ralston, W. Luo, W. Tan, and S. A. Boppart. 2006. Spectroscopic spectral-domain optical coherence microscopy. Optics Letters 31 (8):1079–1081.

    Article  PubMed  Google Scholar 

  • Xu, C. Y., J. Ye, D. L. Marks, and S. A. Boppart. 2004. Near-infrared dyes as contrast-enhancing agents for spectroscopic optical coherence tomography. Optics Letters 29 (14):1647–1649.

    Article  CAS  PubMed  Google Scholar 

  • Yadlowsky, M. J., J. M. Schmitt, and R. F. Bonner. 1995. Multiple-scattering in optical coherence microscopy. Applied Optics 34 (25):5699–5707.

    Article  CAS  PubMed  Google Scholar 

  • Yang, C. H. 2005. Molecular contrast optical coherence tomography: a review. Photochemistry and Photobiology 81 (2):215–237.

    Article  CAS  PubMed  Google Scholar 

  • Yang, C. H., L. E. L. McGuckin, J. D. Simon, M. A. Choma, B. E. Applegate, and J. A. Izatt. 2004. Spectral triangulation molecular contrast optical coherence tomography with indocyanine green as the contrast agent. Optics Letters 29 (17):2016–2018.

    Article  CAS  PubMed  Google Scholar 

  • Yang, V. X. D., S. J. Tang, M. L. Gordon, B. Qi, G. R. Gardiner, M. Cirocco, P. Kortan, G. B. Haber, G. Kandel, I. A. Vitkin, B. C. Wilson, and N. E. Marcon. 2005. Endoscopic Doppler optical coherence tomography in the human GI tract: initial experience. Gastrointestinal Endoscopy 61 (7):879–890.

    Article  PubMed  Google Scholar 

  • Yaqoob, Z., E. McDowell, J. G. Wu, X. Heng, J. Fingler, and C. H. Yang. 2006. Molecular contrast optical coherence tomography: a pump-probe scheme using indocyanine green as a contrast agent. Journal of Biomedical Optics 11 (5):054017.

    Article  PubMed  CAS  Google Scholar 

  • Yasuno, Y., V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K. P. Chan, M. Itoh, and T. Yatagai. 2005. Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments. Optics Express 13 (26):10652–10664.

    Article  PubMed  Google Scholar 

  • Youngquist, R. C., S. Carr, and D. E. N. Davies. 1987. Optical coherence-domain reflectometry – a new optical evaluation technique. Optics Letters 12 (3):158–160.

    Article  CAS  PubMed  Google Scholar 

  • Zagaynova, E., M. J. Manyak, O. Streltsova, N. Gladkova, F. Feldchtein, and V. Kamensky. 2004. A multicenter study of optical coherence tomography for diagnosis and guided surgery of bladder cancer. Journal of Clinical Oncology 22 (14):391S–391S.

    Google Scholar 

  • Zagaynova, E. V., O. S. Streltsova, N. D. Gladkova, L. B. Snopova, G. V. Gelikonov, F. I. Feldchtein, and A. N. Morozov. 2002. In vivo optical coherence tomography feasibility for bladder disease. Journal of Urology 167 (3):1492–1496.

    Article  PubMed  Google Scholar 

  • Zakaria, S., A. C. Degnim, C. G. Kleer, K. A. Diehl, V. M. Cimmino, A. E. Chang, L. A. Newman, and M. S. Sabel. 2007. Sentinel lymph node biopsy for breast cancer: how many nodes are enough? Journal of Surgical Oncology 96 (7):554–559.

    Article  PubMed  Google Scholar 

  • Zara, J. M., and C. A. Lingley-Papadopoulos. 2008. Endoscopic OCT approaches toward cancer diagnosis. IEEE Journal of Selected Topics in Quantum Electronics 14 (1):70–81.

    Article  CAS  Google Scholar 

  • Zhao, Y. H., Z. P. Chen, C. Saxer, S. H. Xiang, J. F. de Boer, and J. S. Nelson. 2000. Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity. Optics Letters 25 (2):114–116.

    Article  CAS  PubMed  Google Scholar 

  • Zvyagin, A. V., J. B. FitzGerald, K. K. M. B. D. Silva, and D. D. Sampson. 2000. Real-time detection technique for Doppler optical coherence tomography. Optics Letters 25 (22): 1645–1647.

    Article  CAS  PubMed  Google Scholar 

  • Zvyagin, A. V., K. K. M. B. D. Silva, S. A. Alexandrov, T. R. Hillman, J. J. Armstrong, T. Tsuzuki, and D. D. Sampson. 2003. Refractive index tomography of turbid media by bifocal optical coherence refractometry. Optics Express 11 (25):3503–3517.

    Article  PubMed  Google Scholar 

  • Zysk, A. M., S. G. Adie, J. J. Armstrong, M. S. Leigh, A. Paduch, D. D. Sampson, F. T. Nguyen, and S. A. Boppart. 2007a. Needle-based refractive index measurement using low-coherence interferometry. Optics Letters 32 (4):385–387.

    Article  PubMed  Google Scholar 

  • Zysk, A. M., and S. A. Boppart. 2006. Computational methods for analysis of human breast tumor tissue in optical coherence tomography images. Journal of Biomedical Optics 11 (5):054015.

    Article  PubMed  Google Scholar 

  • Zysk, A. M., E. J. Chaney, and S. A. Boppart. 2006. Refractive index of carcinogen-induced rat mammary tumours. Physics in Medicine and Biology 51 (9):2165–2177.

    Article  PubMed  Google Scholar 

  • Zysk, A. M., D. L. Marks, D. Y. Liu, and S. A. Boppart. 2007b. Needle-based reflection refractometry of scattering samples using coherence-gated detection. Optics Express 15 (8):4787–4794.

    Article  PubMed  Google Scholar 

  • Zysk, A. M., F. T. Nguyen, E. J. Chaney, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, P. A. Johnson, K. M. Rowland, and S. A. Boppart. 2008. Clinical feasibility of microcopically-guided breast needle biopsy using a fiber-optic probe with computer-aided detection. (unpublished).

    Google Scholar 

  • Zysk, A. M., F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart. 2007c. Optical coherence tomography: a review of clinical development from bench to bedside. Journal of Biomedical Optics 12 (5):051403.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We wish to thank all the past and current members of the Biophotonics Imaging Laboratory at the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, for their technical contributions and physical efforts toward the development and clinical translation of OCT and related optical biomedical imaging technologies. We also wish to thank all of our colleagues and collaborators that have advanced this field to the state of the art. We thank those that have contributed images and data and apologize to those who could not be represented due to limited publication space. The work from the Biophotonics Imaging Laboratory was supported in part by grants from the National Institutes of Health (Roadmap Initiative/NIBIB R21 EB005321, NIBIB R01 EB005221, NCI R21/R33 CA115536), the National Science Foundation (BES 03-47747, BES 05-19920), Carle Foundation Hospital, and the Grainger Foundation. Additional information can be found at http://biophotonics.illinois.edu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen A. Boppart .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Adie, S.G., Boppart, S.A. (2010). Optical Coherence Tomography for Cancer Detection. In: Rosenthal, E., Zinn, K. (eds) Optical Imaging of Cancer. Springer, New York, NY. https://doi.org/10.1007/978-0-387-93874-5_11

Download citation

Publish with us

Policies and ethics