Skip to main content

Pediatric Malignancies: Retinoblastoma and Wilms’ Tumor

  • Chapter
  • First Online:
Principles of Clinical Cancer Genetics

Abstract

Retinoblastoma and Wilms’ tumor represent two childhood tumors with both sporadic and familial forms. Delineation of the molecular etiology of these cancers identified the retinoblastoma gene Rb as the first example of a tumor suppressor gene and provided the first example of imprinting and cancer predisposition in Wilms’ tumor. In this chapter, we review the clinical features and genetics of these two disorders and the implications for management, early detection and potential prevention of these disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Devesa SS (1975) The incidence of retinoblastoma. Am J Ophthalmol 80(2):263–265

    PubMed  CAS  Google Scholar 

  2. Francois J, Matton MT, De Bie S, Tanaka Y, Vandenbulcke D (1975) Genesis and genetics of retinoblastoma. Ophthalmologica 170(5):405–425

    PubMed  CAS  Google Scholar 

  3. Mahoney MC, Burnett WS, Majerovics A, Tanenbaum H (1990) The epidemiology of ophthalmic malignancies in New York State. Ophthalmology 97(9):1143–1147

    PubMed  CAS  Google Scholar 

  4. Vogel F (1979) Genetics of retinoblastoma. Hum Genet 52(1): 1–54

    PubMed  CAS  Google Scholar 

  5. Abramson DH, Ellsworth RM, Grumbach N, Kitchin FD (1985) Retinoblastoma: survival, age at detection and comparison 1914–1958, 1958–1983. J Pediatr Ophthalmol Strabismus 22(6): 246–250

    PubMed  CAS  Google Scholar 

  6. Abramson DH (1999) Second nonocular cancers in retinoblastoma: a unified hypothesis. The Franceschetti Lecture. Ophthalmic Genet 20(3):193–204

    PubMed  CAS  Google Scholar 

  7. Grabowski EF, Abramson DH (1987) Intraocular and extraocular retinoblastoma. Hematol Oncol Clin North Am 1(4):721–735

    PubMed  CAS  Google Scholar 

  8. Zimmerman LE, Burns RP, Wankum G, Tully R, Esterly JA (1982) Trilateral retinoblastoma: ectopic intracranial retinoblastoma associated with bilateral retinoblastoma. J Pediatr Ophthalmol Strabismus 19(6):320–325

    PubMed  CAS  Google Scholar 

  9. Grabowski EF (2006) Intraocular and extraocular retinoblastoma. In: Burg FD, Polin RA, Ingelfinger JR, Wald ER (eds) Current pediatric therapy, 18th edn. WB Saunders Co, Philadelphia, pp 1101–1105

    Google Scholar 

  10. Friend SH, Bernards R, Rogelj S et al (1986) A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature 323(6089):643–646

    PubMed  CAS  Google Scholar 

  11. Mukai S (1993) Molecular genetic diagnosis of retinoblastoma. Informa Healthcare 8:292–299

    Google Scholar 

  12. Knudson AG Jr (1971) Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci USA 68(4):820–823

    PubMed  Google Scholar 

  13. Fung YK, Murphree AL, T’Ang A, Qian J, Hinrichs SH, Benedict WF (1987) Structural evidence for the authenticity of the human retinoblastoma gene. Science 236(4809):1657–1661

    PubMed  CAS  Google Scholar 

  14. Lee WH, Bookstein R, Hong F, Young LJ, Shew JY, Lee EY (1987) Human retinoblastoma susceptibility gene: cloning, identification, and sequence. Science 235(4794):1394–1399

    PubMed  CAS  Google Scholar 

  15. Klutz M, Horsthemke B, Lohmann DR (1999) RB1 gene mutations in peripheral blood DNA of patients with isolated unilateral retinoblastoma. Am J Hum Genet 64(2):667–668

    PubMed  CAS  Google Scholar 

  16. Lohmann DR, Gerick M, Brandt B et al (1997) Constitutional RB1-gene mutations in patients with isolated unilateral retinoblastoma. Am J Hum Genet 61(2):282–294

    PubMed  CAS  Google Scholar 

  17. Shimizu T, Toguchida J, Kato MV, Kaneko A, Ishizaki K, Sasaki MS (1994) Detection of mutations of the RB1 gene in retinoblastoma patients by using exon-by-exon PCR-SSCP analysis. Am J Hum Genet 54(5):793–800

    PubMed  CAS  Google Scholar 

  18. De Falco G, Giordano A (2006) pRb2/p130: a new candidate for retinoblastoma tumor formation. Oncogene 25(38):5333–5340

    PubMed  Google Scholar 

  19. Toguchida J, McGee TL, Paterson JC et al (1993) Complete genomic sequence of the human retinoblastoma susceptibility gene. Genomics 17(3):535–543

    PubMed  CAS  Google Scholar 

  20. DeCaprio JA, Ludlow JW, Figge J et al (1988) SV40 large tumor antigen forms a specific complex with the product of the retinoblastoma susceptibility gene. Cell 54(2):275–283

    PubMed  CAS  Google Scholar 

  21. Dyson N, Howley PM, Munger K, Harlow E (1989) The human papilloma virus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science 243(4893):934–937

    PubMed  CAS  Google Scholar 

  22. Whyte P, Buchkovich KJ, Horowitz JM et al (1988) Association between an oncogene and an anti-oncogene: the adenovirus E1A proteins bind to the retinoblastoma gene product. Nature 334(6178):124–129

    PubMed  CAS  Google Scholar 

  23. Lee JO, Russo AA, Pavletich NP (1998) Structure of the retinoblastoma tumour-suppressor pocket domain bound to a peptide from HPV E7. Nature 391(6670):859–865

    PubMed  CAS  Google Scholar 

  24. Bremner R, Du DC, Connolly-Wilson MJ et al (1997) Deletion of RB exons 24 and 25 causes low-penetrance retinoblastoma. Am J Hum Genet 61(3):556–570

    PubMed  CAS  Google Scholar 

  25. Shen WJ, Kim HS, Tsai SY (1995) Stimulation of human insulin receptor gene expression by retinoblastoma gene product. J Biol Chem 270(35):20525–20529

    PubMed  CAS  Google Scholar 

  26. Dyson N (1998) The regulation of E2F by pRB-family proteins. Genes Dev 12(15):2245–2262

    PubMed  CAS  Google Scholar 

  27. Harbour JW, Dean DC (2000) Rb function in cell-cycle regulation and apoptosis. Nat Cell Biol 2(4):E65–E67

    PubMed  CAS  Google Scholar 

  28. Chen PL, Scully P, Shew JY, Wang JY, Lee WH (1989) Phosphorylation of the retinoblastoma gene product is modulated during the cell cycle and cellular differentiation. Cell 58(6): 1193–1198

    PubMed  CAS  Google Scholar 

  29. Stein GH, Beeson M, Gordon L (1990) Failure to phosphorylate the retinoblastoma gene product in senescent human fibroblasts. Science 249(4969):666–669

    PubMed  CAS  Google Scholar 

  30. Chow KN, Dean DC (1996) Domains A and B in the Rb pocket interact to form a transcriptional repressor motif. Mol Cell Biol 16(9):4862–4868

    PubMed  CAS  Google Scholar 

  31. Weintraub SJ, Chow KN, Luo RX, Zhang SH, He S, Dean DC (1995) Mechanism of active transcriptional repression by the retinoblastoma protein. Nature 375(6534):812–815

    PubMed  CAS  Google Scholar 

  32. Nielsen SJ, Schneider R, Bauer UM et al (2001) Rb targets histone H3 methylation and HP1 to promoters. Nature 412(6846): 561–565

    PubMed  CAS  Google Scholar 

  33. Brehm A, Miska EA, McCance DJ, Reid JL, Bannister AJ, Kouzarides T (1998) Retinoblastoma protein recruits histone deacetylase to repress transcription. Nature 391(6667):597–601

    PubMed  CAS  Google Scholar 

  34. Luo RX, Postigo AA, Dean DC (1998) Rb interacts with histone deacetylase to repress transcription. Cell 92(4):463–473

    PubMed  CAS  Google Scholar 

  35. Magnaghi-Jaulin L, Groisman R, Naguibneva I et al (1998) Retinoblastoma protein represses transcription by recruiting a histone deacetylase. Nature 391(6667):601–605

    PubMed  CAS  Google Scholar 

  36. Lohmann DR, Gallie BL (2004) Retinoblastoma: revisiting the model prototype of inherited cancer. Am J Med Genet C Semin Med Genet 129C(1):23–28

    PubMed  Google Scholar 

  37. Lohmann DR (1999) RB1 gene mutations in retinoblastoma. Hum Mutat 14(4):283–288

    PubMed  CAS  Google Scholar 

  38. Frischmeyer PA, Dietz HC (1999) Nonsense-mediated mRNA decay in health and disease. Hum Mol Genet 8(10):1893–1900

    PubMed  CAS  Google Scholar 

  39. Sippel KC, Fraioli RE, Smith GD et al (1998) Frequency of somatic and germ-line mosaicism in retinoblastoma: implications for genetic counseling. Am J Hum Genet 62(3):610–619

    PubMed  CAS  Google Scholar 

  40. Boerkoel CF, Exelbert R, Nicastri C et al (1995) Leaky splicing mutation in the acid maltase gene is associated with delayed onset of glycogenosis type II. Am J Hum Genet 56(4):887–897

    PubMed  CAS  Google Scholar 

  41. Otterson GA, Chen W, Coxon AB, Khleif SN, Kaye FJ (1997) Incomplete penetrance of familial retinoblastoma linked to germ-line mutations that result in partial loss of RB function. Proc Natl Acad Sci USA 94(22):12036–12040

    PubMed  CAS  Google Scholar 

  42. Dryja TP, Rapaport J, McGee TL, Nork TM, Schwartz TL (1993) Molecular etiology of low-penetrance retinoblastoma in two pedigrees. Am J Hum Genet 52(6):1122–1128

    PubMed  CAS  Google Scholar 

  43. Windle JJ, Albert DM, O’Brien JM et al (1990) Retinoblastoma in transgenic mice. Nature 343(6259):665–669

    PubMed  CAS  Google Scholar 

  44. Howes KA, Ransom N, Papermaster DS, Lasudry JG, Albert DM, Windle JJ (1994) Apoptosis or retinoblastoma: alternative fates of photoreceptors expressing the HPV-16 E7 gene in the presence or absence of p53. Genes Dev 8(11):1300–1310

    PubMed  CAS  Google Scholar 

  45. Robanus-Maandag E, Dekker M, van der Valk M et al (1998) p107 is a suppressor of retinoblastoma development in pRb-deficient mice. Genes Dev 12(11):1599–1609

    PubMed  CAS  Google Scholar 

  46. Laurie NA, Donovan SL, Shih CS et al (2006) Inactivation of the p53 pathway in retinoblastoma. Nature 444(7115):61–66

    PubMed  CAS  Google Scholar 

  47. Hahn WC, Weinberg RA (2002) Modelling the molecular circuitry of cancer. Nat Rev Cancer 2(5):331–341

    PubMed  CAS  Google Scholar 

  48. Sherr CJ, McCormick F (2002) The RB and p53 pathways in cancer. Cancer Cell 2(2):103–112

    PubMed  CAS  Google Scholar 

  49. Vogelstein B, Kinzler KW (2004) Cancer genes and the pathways they control. Nat Med 10(8):789–799

    PubMed  CAS  Google Scholar 

  50. Kato MV, Shimizu T, Ishizaki K et al (1996) Loss of heterozygosity on chromosome 17 and mutation of the p53 gene in retinoblastoma. Cancer Lett 106(1):75–82

    PubMed  CAS  Google Scholar 

  51. Nork TM, Poulsen GL, Millecchia LL, Jantz RG, Nickells RW (1997) p53 regulates apoptosis in human retinoblastoma. Arch Ophthalmol 115(2):213–219

    PubMed  CAS  Google Scholar 

  52. Chen D, Livne-bar I, Vanderluit JL, Slack RS, Agochiya M, Bremner R (2004) Cell-specific effects of RB or RB/p107 loss on retinal development implicate an intrinsically death-resistant cell-of-origin in retinoblastoma. Cancer Cell 5(6):539–551

    PubMed  CAS  Google Scholar 

  53. Mukai S (2009) Retinoblastoma. In: Orkin SH, Fisher DE, Look AT, Lux S, Ginsburg D, Nathan DG (eds) Oncology of infancy and childhood, WB Saunders Co, Philadelphia

    Google Scholar 

  54. Halloran SL, Boughman JA, Dryja TP et al (1985) Accuracy of detection of the retinoblastoma gene by esterase D linkage. Arch Ophthalmol 103(9):1329–1331

    PubMed  CAS  Google Scholar 

  55. Mukai S, Rapaport JM, Shields JA, Augsburger JJ, Dryja TP (1984) Linkage of genes for human esterase D and hereditary retinoblastoma. Am J Ophthalmol 97(6):681–685

    PubMed  CAS  Google Scholar 

  56. Sparkes RS, Murphree AL, Lingua RW et al (1983) Gene for hereditary retinoblastoma assigned to human chromosome 13 by linkage to esterase D. Science 219(4587):971–973

    PubMed  CAS  Google Scholar 

  57. Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32(3):314–331

    PubMed  CAS  Google Scholar 

  58. Cavenee WK, Dryja TP, Phillips RA et al (1983) Expression of recessive alleles by chromosomal mechanisms in retinoblastoma. Nature 305(5937):779–784

    PubMed  CAS  Google Scholar 

  59. Dryja TP, Cavenee W, White R et al (1984) Homozygosity of chromosome 13 in retinoblastoma. N Engl J Med 310(9):550–553

    PubMed  CAS  Google Scholar 

  60. Bookstein R, Lee EY, To H et al (1988) Human retinoblastoma susceptibility gene: genomic organization and analysis of heterozygous intragenic deletion mutants. Proc Natl Acad Sci USA 85(7):2210–2214

    PubMed  CAS  Google Scholar 

  61. Dunn JM, Phillips RA, Becker AJ, Gallie BL (1988) Identification of germline and somatic mutations affecting the retinoblastoma gene. Science 241(4874):1797–1800

    PubMed  CAS  Google Scholar 

  62. Horsthemke B, Barnert HJ, Greger V, Passarge E, Hopping W (1987) Early diagnosis in hereditary retinoblastoma by detection of molecular deletions at gene locus. Lancet 1(8531):511–512

    PubMed  CAS  Google Scholar 

  63. Wiggs J, Nordenskjold M, Yandell D et al (1988) Prediction of the risk of hereditary retinoblastoma, using DNA polymorphisms within the retinoblastoma gene. N Engl J Med 318(3):151–157

    PubMed  CAS  Google Scholar 

  64. Yandell DW, Campbell TA, Dayton SH et al (1989) Oncogenic point mutations in the human retinoblastoma gene: their application to genetic counseling. N Engl J Med 321(25):1689–1695

    PubMed  CAS  Google Scholar 

  65. Yandell DW, Dryja TP (1989) Detection of DNA sequence polymorphisms by enzymatic amplification and direct genomic sequencing. Am J Hum Genet 45(4):547–555

    PubMed  CAS  Google Scholar 

  66. Kleinerman RA, Tucker MA, Tarone RE et al (2005) Risk of new cancers after radiotherapy in long-term survivors of retinoblastoma: an extended follow-up. J Clin Oncol 23(10):2272–2279

    PubMed  Google Scholar 

  67. Abramson DH (1985) Treatment of retinoblastoma. In: Blodi FC (ed) Contemporary issues in ophthalmology, vol. 2, retinoblastoma. Churchill Livingston, New York, pp 88–93

    Google Scholar 

  68. Munier FL, Thonney F, Girardet A et al (1998) Evidence of somatic and germinal mosaicism in pseudo-low-penetrant hereditary retinoblastoma, by constitutional and single-sperm mutation analysis. Am J Hum Genet 63(6):1903–1908

    PubMed  CAS  Google Scholar 

  69. Connolly MJ, Payne RH, Johnson G et al (1983) Familial, EsD-linked, retinoblastoma with reduced penetrance and variable expressivity. Hum Genet 65(2):122–124

    PubMed  CAS  Google Scholar 

  70. Macklin MT (1960) A study of retinoblastoma in Ohio. Am J Hum Genet 12:1–43

    PubMed  CAS  Google Scholar 

  71. Strong LC, Riccardi VM, Ferrell RE, Sparkes RS (1981) Familial retinoblastoma and chromosome 13 deletion transmitted via an insertional translocation. Science 213(4515):1501–1503

    PubMed  CAS  Google Scholar 

  72. Allderdice PW, Davis JG, Miller OJ et al (1969) The 13q-deletion syndrome. Am J Hum Genet 21(5):499–512

    PubMed  CAS  Google Scholar 

  73. Seidman DJ, Shields JA, Augsburger JJ, Nelson LB, Lee ML, Sciorra LJ (1987) Early diagnosis of retinoblastoma based on dysmorphic features and karyotype analysis. Ophthalmology 94(6): 663–666

    PubMed  CAS  Google Scholar 

  74. Rivera MN, Haber DA (2005) Wilms’ tumour: connecting tumorigenesis and organ development in the kidney. Nat Rev Cancer 5(9):699–712

    PubMed  CAS  Google Scholar 

  75. Breslow N, Olshan A, Beckwith JB, Moksness J, Feigl P, Green D (1994) Ethnic variation in the incidence, diagnosis, prognosis, and follow-up of children with Wilms’ tumor. J Natl Cancer Inst 86(1):49–51

    PubMed  CAS  Google Scholar 

  76. Stiller CA, Parkin DM (1990) International variations in the incidence of childhood renal tumours. Br J Cancer 62(6):1026–1030

    PubMed  CAS  Google Scholar 

  77. National Cancer Institute (2004) Surveillance epidemiology and end results (SEER) pediatric monograph, National Cancer Institute, Bethesda, MD

    Google Scholar 

  78. Pastore G, Carli M, Lemerle J et al (1988) Epidemiological features of Wilms’ tumor: results of studies by the International Society of Paediatric Oncology (SIOP). Med Pediatr Oncol 16(1):7–11

    PubMed  CAS  Google Scholar 

  79. Breslow N, Olshan A, Beckwith JB, Green DM (1993) Epidemiology of Wilms tumor. Med Pediatr Oncol 21(3):172–181

    PubMed  CAS  Google Scholar 

  80. Daniels JL, Pan IJ, Olshan AF, Breslow NE, Bunin GR, Ross JA (2008) Obstetric history and birth characteristics and Wilms tumor: a report from the Children’s Oncology Group. Cancer Causes Control 19(10):1103–1110

    PubMed  Google Scholar 

  81. Schuz J, Kaletsch U, Meinert R, Kaatsch P, Michaelis J (2001) High-birth weight and other risk factors for Wilms tumour: results of a population-based case-control study. Eur J Pediatr 160(6): 333–338

    PubMed  CAS  Google Scholar 

  82. Olson JM, Breslow NE, Beckwith JB (1993) Wilms’ tumour and parental age: a report from the National Wilms’ Tumour Study. Br J Cancer 67(4):813–818

    PubMed  CAS  Google Scholar 

  83. Cooney MA, Daniels JL, Ross JA, Breslow NE, Pollock BH, Olshan AF (2007) Household pesticides and the risk of Wilms tumor. Environ Health Perspect 115(1):134–137

    PubMed  CAS  Google Scholar 

  84. Goel R, Olshan AF, Ross JA, Breslow NE, Pollock BH (2009) Maternal exposure to medical radiation and Wilms tumor in the offspring: a report from the Children’s Oncology Group. Cancer Causes Control 20(6):957–963

    PubMed  Google Scholar 

  85. Jurewicz J, Hanke W (2006) Exposure to pesticides and childhood cancer risk: has there been any progress in epidemiological studies? Int J Occup Med Environ Health 19(3):152–169

    PubMed  Google Scholar 

  86. Davidoff AM, Soutter AD, Shochat SJ (1998) Wilms tumor presenting with abdominal pain: a special subgroup of patients. Ann Surg Oncol 5(3):213–215

    PubMed  CAS  Google Scholar 

  87. Maas MH, Cransberg K, van Grotel M, Pieters R, van den Heuvel-Eibrink MM (2007) Renin-induced hypertension in Wilms tumor patients. Pediatr Blood Cancer 48(5):500–503

    PubMed  CAS  Google Scholar 

  88. Miller RW, Fraumeni JF Jr, Manning MD (1964) Association of Wilms’s tumor with aniridia, hemihypertrophy and other congenital malformations. N Engl J Med 270:922–927

    PubMed  CAS  Google Scholar 

  89. Ng A, Griffiths A, Cole T et al (2007) Congenital abnormalities and clinical features associated with Wilms’ tumour: a comprehensive study from a centre serving a large population. Eur J Cancer 43(9):1422–1429

    PubMed  CAS  Google Scholar 

  90. Dickson PV, Sims TL, Streck CJ et al (2008) Avoiding misdiagnosing neuroblastoma as Wilms tumor. J Pediatr Surg 43(6):1159–1163

    PubMed  Google Scholar 

  91. Breslow N, Beckwith JB, Ciol M, Sharples K (1988) Age distribution of Wilms’ tumor: report from the National Wilms’ Tumor Study. Cancer Res 48(6):1653–1657

    PubMed  CAS  Google Scholar 

  92. Dome JS, Cotton CA, Perlman EJ et al (2006) Treatment of anaplastic histology Wilms’ tumor: results from the fifth National Wilms’ Tumor Study. J Clin Oncol 24(15):2352–2358

    PubMed  Google Scholar 

  93. Bardeesy N, Falkoff D, Petruzzi MJ et al (1994) Anaplastic Wilms’ tumour, a subtype displaying poor prognosis, harbours p53 gene mutations. Nat Genet 7(1):91–97

    PubMed  CAS  Google Scholar 

  94. Bardeesy N, Beckwith JB, Pelletier J (1995) Clonal expansion and attenuated apoptosis in Wilms’ tumors are associated with p53 gene mutations. Cancer Res 55(2):215–219

    PubMed  CAS  Google Scholar 

  95. Isaacs H Jr (2008) Fetal and neonatal renal tumors. J Pediatr Surg 43(9):1587–1595

    PubMed  Google Scholar 

  96. Beckwith JB, Kiviat NB, Bonadio JF (1990) Nephrogenic rests, nephroblastomatosis, and the pathogenesis of Wilms’ tumor. Pediatr Pathol 10(1–2):1–36

    PubMed  CAS  Google Scholar 

  97. Beckwith JB (1993) Precursor lesions of Wilms tumor: clinical and biological implications. Med Pediatr Oncol 21(3):158–168

    PubMed  CAS  Google Scholar 

  98. Breslow NE, Olson J, Moksness J, Beckwith JB, Grundy P (1996) Familial Wilms’ tumor: a descriptive study. Med Pediatr Oncol 27(5):398–403

    PubMed  CAS  Google Scholar 

  99. Knudson AG Jr, Strong LC (1975) Letter: Familial Wilms’s tumor. Am J Hum Genet 27(6):809–810

    PubMed  Google Scholar 

  100. Li FP, Williams WR, Gimbrere K, Flamant F, Green DM, Meadows AT (1988) Heritable fraction of unilateral Wilms tumor. Pediatrics 81(1):147–149

    PubMed  CAS  Google Scholar 

  101. Knudson AG Jr, Strong LC (1972) Mutation and cancer: a model for Wilms’ tumor of the kidney. J Natl Cancer Inst 48(2):313–324

    PubMed  Google Scholar 

  102. Kreidberg JA, Sariola H, Loring JM et al (1993) WT-1 is required for early kidney development. Cell 74(4):679–691

    PubMed  CAS  Google Scholar 

  103. Gessler M, Konig A, Arden K et al (1994) Infrequent mutation of the WT1 gene in 77 Wilms’ Tumors. Hum Mutat 3(3):212–222

    PubMed  CAS  Google Scholar 

  104. Varanasi R, Bardeesy N, Ghahremani M et al (1994) Fine structure analysis of the WT1 gene in sporadic Wilms tumors. Proc Natl Acad Sci USA 91(9):3554–3558

    PubMed  CAS  Google Scholar 

  105. Ton CC, Huff V, Call KM et al (1991) Smallest region of overlap in Wilms tumor deletions uniquely implicates an 11p13 zinc finger gene as the disease locus. Genomics 10(1):293–297

    PubMed  CAS  Google Scholar 

  106. Riccardi VM, Sujansky E, Smith AC, Francke U (1978) Chromosomal imbalance in the Aniridia-Wilms’ tumor association: 11p interstitial deletion. Pediatrics 61(4):604–610

    PubMed  CAS  Google Scholar 

  107. Fischbach BV, Trout KL, Lewis J, Luis CA, Sika M (2005) WAGR syndrome: a clinical review of 54 cases. Pediatrics 116(4): 984–988

    PubMed  Google Scholar 

  108. Breslow NE, Norris R, Norkool PA et al (2003) Characteristics and outcomes of children with the Wilms tumor-Aniridia syndrome: a report from the National Wilms Tumor Study Group. J Clin Oncol 21(24):4579–4585

    PubMed  Google Scholar 

  109. Xu S, Han JC, Morales A, Menzie CM, Williams K, Fan YS (2008) Characterization of 11p14-p12 deletion in WAGR syndrome by array CGH for identifying genes contributing to mental retardation and autism. Cytogenet Genome Res 122(2):181–187

    PubMed  CAS  Google Scholar 

  110. Pelletier J, Bruening W, Kashtan CE et al (1991) Germline mutations in the Wilms’ tumor suppressor gene are associated with abnormal urogenital development in Denys-Drash syndrome. Cell 67(2):437–447

    PubMed  CAS  Google Scholar 

  111. Klamt B, Koziell A, Poulat F et al (1998) Frasier syndrome is caused by defective alternative splicing of WT1 leading to an altered ratio of WT1 +/−KTS splice isoforms. Hum Mol Genet 7(4):709–714

    PubMed  CAS  Google Scholar 

  112. Barbaux S, Niaudet P, Gubler MC et al (1997) Donor splice-site mutations in WT1 are responsible for Frasier syndrome. Nat Genet 17(4):467–470

    PubMed  CAS  Google Scholar 

  113. Li CM, Kim CE, Margolin AA et al (2004) CTNNB1 mutations and overexpression of Wnt/beta-catenin target genes in WT1-mutant Wilms’ tumors. Am J Pathol 165(6):1943–1953

    PubMed  CAS  Google Scholar 

  114. Koufos A, Grundy P, Morgan K et al (1989) Familial Wiedemann-Beckwith syndrome and a second Wilms tumor locus both map to 11p15.5. Am J Hum Genet 44(5):711–719

    PubMed  CAS  Google Scholar 

  115. Ping AJ, Reeve AE, Law DJ, Young MR, Boehnke M, Feinberg AP (1989) Genetic linkage of Beckwith-Wiedemann syndrome to 11p15. Am J Hum Genet 44(5):720–723

    PubMed  CAS  Google Scholar 

  116. Waziri M, Patil SR, Hanson JW, Bartley JA (1983) Abnormality of chromosome 11 in patients with features of Beckwith-Wiedemann syndrome. J Pediatr 102(6):873–876

    PubMed  CAS  Google Scholar 

  117. Pueschel SM, Padre-Mendoza T (1984) Chromosome 11 and Beckwith-Wiedemann syndrome. J Pediatr 104(3):484–485

    PubMed  CAS  Google Scholar 

  118. Grundy PE, Telzerow PE, Breslow N, Moksness J, Huff V, Paterson MC (1994) Loss of heterozygosity for chromosomes 16q and 1p in Wilms’ tumors predicts an adverse outcome. Cancer Res 54(9):2331–2333

    PubMed  CAS  Google Scholar 

  119. Wiedemann H-R (1983) Tumours and hemihypertrophy associated with Wiedemann-Beckwith syndrome (letter). Eur J Pediatr 141:129

    Google Scholar 

  120. Lapunzina P (2005) Risk of tumorigenesis in overgrowth syndromes: a comprehensive review. Am J Med Genet C Semin Med Genet 137C(1):53–71

    PubMed  Google Scholar 

  121. Hao Y, Crenshaw T, Moulton T, Newcomb E, Tycko B (1993) Tumour-suppressor activity of H19 RNA. Nature 365(6448): 764–767

    PubMed  CAS  Google Scholar 

  122. Scott RH, Douglas J, Baskcomb L et al (2008) Constitutional 11p15 abnormalities, including heritable imprinting center mutations, cause nonsyndromic Wilms tumor. Nat Genet 40(11): 1329–1334

    PubMed  CAS  Google Scholar 

  123. Sparago A, Russo S, Cerrato F et al (2007) Mechanisms causing imprinting defects in familial Beckwith-Wiedemann syndrome with Wilms’ tumour. Hum Mol Genet 16(3):254–264

    PubMed  CAS  Google Scholar 

  124. Feinberg AP, Williams BR (2003) Wilms’ tumor as a model for cancer biology. Methods Mol Biol 222:239–248

    PubMed  CAS  Google Scholar 

  125. Cooper WN, Luharia A, Evans GA et al (2005) Molecular subtypes and phenotypic expression of Beckwith-Wiedemann syndrome. Eur J Hum Genet 13(9):1025–1032

    PubMed  CAS  Google Scholar 

  126. Bliek J, Gicquel C, Maas S, Gaston V, Le Bouc Y, Mannens M (2004) Epigenotyping as a tool for the prediction of tumor risk and tumor type in patients with Beckwith-Wiedemann syndrome (BWS). J Pediatr 145(6):796–799

    PubMed  Google Scholar 

  127. Weksberg R, Shuman C, Smith AC (2005) Beckwith-Wiedemann syndrome. Am J Med Genet C Semin Med Genet 137C(1):12–23

    PubMed  Google Scholar 

  128. DeBaun MR, Niemitz EL, McNeil DE, Brandenburg SA, Lee MP, Feinberg AP (2002) Epigenetic alterations of H19 and LIT1 distinguish patients with Beckwith-Wiedemann syndrome with cancer and birth defects. Am J Hum Genet 70(3):604–611

    PubMed  CAS  Google Scholar 

  129. Lam WW, Hatada I, Ohishi S et al (1999) Analysis of germline CDKN1C (p57KIP2) mutations in familial and sporadic Beckwith-Wiedemann syndrome (BWS) provides a novel genotype-phenotype correlation. J Med Genet 36(7):518–523

    PubMed  CAS  Google Scholar 

  130. Lee MP, DeBaun M, Randhawa G, Reichard BA, Elledge SJ, Feinberg AP (1997) Low frequency of p57KIP2 mutation in Beckwith-Wiedemann syndrome. Am J Hum Genet 61(2):304–309

    PubMed  CAS  Google Scholar 

  131. Shuman C, Smith AC, Steele L et al (2006) Constitutional UPD for chromosome 11p15 in individuals with isolated hemihyperplasia is associated with high tumor risk and occurs following assisted reproductive technologies. Am J Med Genet A 140(14): 1497–1503

    PubMed  Google Scholar 

  132. Rump P, Zeegers MP, van Essen AJ (2005) Tumor risk in Beckwith-Wiedemann syndrome: a review and meta-analysis. Am J Med Genet A 136(1):95–104

    PubMed  CAS  Google Scholar 

  133. Weksberg R, Nishikawa J, Caluseriu O et al (2001) Tumor development in the Beckwith-Wiedemann syndrome is associated with a variety of constitutional molecular 11p15 alterations including imprinting defects of KCNQ1OT1. Hum Mol Genet 10(26): 2989–3000

    PubMed  CAS  Google Scholar 

  134. Manipalviratn S, DeCherney A, Segars J (2009) Imprinting disorders and assisted reproductive technology. Fertil Steril 91(2): 305–315

    PubMed  CAS  Google Scholar 

  135. Maw MA, Grundy PE, Millow LJ et al (1992) A third Wilms’ tumor locus on chromosome 16q. Cancer Res 52(11):3094–3098

    PubMed  CAS  Google Scholar 

  136. Shearer PD, Valentine MB, Grundy P et al (1999) Hemizygous deletions of chromosome band 16q24 in Wilms tumor: detection by fluorescence in situ hybridization. Cancer Genet Cytogenet 115(2):100–105

    PubMed  CAS  Google Scholar 

  137. Sheng WW, Soukup S, Bove K, Gotwals B, Lampkin B (1990) Chromosome analysis of 31 Wilms’ tumors. Cancer Res 50(9):2786–2793

    PubMed  CAS  Google Scholar 

  138. Kondo K, Chilcote RR, Maurer HS, Rowley JD (1984) Chromosome abnormalities in tumor cells from patients with sporadic Wilms’ tumor. Cancer Res 44(11):5376–5381

    PubMed  CAS  Google Scholar 

  139. Betts DR, Ilg EC, Oezahin H, von der Weid N, Niggli FK (1999) Trisomy 1q generating translocations in Wilms tumor. Cancer Genet Cytogenet 112(2):138–143

    PubMed  CAS  Google Scholar 

  140. Messahel B, Williams R, Ridolfi A et al (2009) Allele loss at 16q defines poorer prognosis Wilms tumour irrespective of treatment approach in the UKW1-3 clinical trials: a Children’s Cancer and Leukaemia Group (CCLG) Study. Eur J Cancer 45(5):819–826

    PubMed  CAS  Google Scholar 

  141. Grundy PE, Breslow NE, Li S et al (2005) Loss of heterozygosity for chromosomes 1p and 16q is an adverse prognostic factor in favorable-histology Wilms tumor: a report from the National Wilms Tumor Study Group. J Clin Oncol 23(29):7312–7321

    PubMed  CAS  Google Scholar 

  142. Perotti D, De Vecchi G, Testi MA et al (2004) Germline mutations of the POU6F2 gene in Wilms tumors with loss of heterozygosity on chromosome 7p14. Hum Mutat 24(5):400–407

    PubMed  CAS  Google Scholar 

  143. Perotti D, Testi MA, Mondini P et al (2001) Refinement within single yeast artificial chromosome clones of a minimal region commonly deleted on the short arm of chromosome 7 in Wilms tumours. Genes Chromosomes Cancer 31(1):42–47

    PubMed  CAS  Google Scholar 

  144. Rivera MN, Kim WJ, Wells J et al (2007) An X chromosome gene, WTX, is commonly inactivated in Wilms tumor. Science 315(5812):642–645

    PubMed  CAS  Google Scholar 

  145. Perotti D, Gamba B, Sardella M et al (2008) Functional inactivation of the WTX gene is not a frequent event in Wilms’ tumors. Oncogene 27(33):4625–4632

    PubMed  CAS  Google Scholar 

  146. Ruteshouser EC, Robinson SM, Huff V (2008) Wilms tumor genetics: mutations in WT1, WTX, and CTNNB1 account for only about one-third of tumors. Genes Chromosomes Cancer 47(6):461–470

    PubMed  CAS  Google Scholar 

  147. Major MB, Camp ND, Berndt JD et al (2007) Wilms tumor suppressor WTX negatively regulates WNT/beta-catenin signaling. Science 316(5827):1043–1046

    PubMed  CAS  Google Scholar 

  148. Chung NG, Kim MS, Chung YJ, Yoo NJ, Lee SH (2008) Tumor suppressor WTX gene mutation is rare in acute leukemias. Leuk Lymphoma 49(8):1616–1617

    PubMed  Google Scholar 

  149. Yoo NJ, Kim S, Lee SH (2009) Mutational analysis of WTX gene in Wnt/ beta-catenin pathway in gastric, colorectal, and hepatocellular carcinomas. Dig Dis Sci 54(5):1011–1014

    PubMed  CAS  Google Scholar 

  150. Owen C, Virappane P, Alikian M et al (2008) WTX is rarely mutated in acute myeloid leukemia. Haematologica 93(6):947–948

    PubMed  CAS  Google Scholar 

  151. Virappane P, Gale R, Hills R et al (2008) Mutation of the Wilms’ tumor 1 gene is a poor prognostic factor associated with chemotherapy resistance in normal karyotype acute myeloid leukemia: the United Kingdom Medical Research Council Adult Leukaemia Working Party. J Clin Oncol 26(33):5429–5435

    PubMed  CAS  Google Scholar 

  152. Jenkins ZA, van Kogelenberg M, Morgan T et al (2009) Germline mutations in WTX cause a sclerosing skeletal dysplasia but do not predispose to tumorigenesis. Nat Genet 41(1):95–100

    PubMed  CAS  Google Scholar 

  153. Rahman N, Arbour L, Tonin P et al (1996) Evidence for a familial Wilms’ tumour gene (FWT1) on chromosome 17q12-q21. Nat Genet 13(4):461–463

    PubMed  CAS  Google Scholar 

  154. Rahman N, Abidi F, Ford D et al (1998) Confirmation of FWT1 as a Wilms’ tumour susceptibility gene and phenotypic characteristics of Wilms’ tumour attributable to FWT1. Hum Genet 103(5):547–556

    PubMed  CAS  Google Scholar 

  155. Rahman N, Arbour L, Tonin P et al (1997) The familial Wilms’ tumour susceptibility gene, FWT1, may not be a tumour suppressor gene. Oncogene 14(25):3099–3102

    PubMed  CAS  Google Scholar 

  156. McDonald JM, Douglass EC, Fisher R et al (1998) Linkage of familial Wilms’ tumor predisposition to chromosome 19 and a two-locus model for the etiology of familial tumors. Cancer Res 58(7):1387–1390

    PubMed  CAS  Google Scholar 

  157. Huff V, Amos CI, Douglass EC et al (1997) Evidence for genetic heterogeneity in familial Wilms’ tumor. Cancer Res 57(10): 1859–1862

    PubMed  CAS  Google Scholar 

  158. Hirsch B, Shimamura A, Moreau L et al (2004) Association of biallelic BRCA2/FANCD1 mutations with spontaneous chromosomal instability and solid tumors of childhood. Blood 103(7):2554–2559

    PubMed  CAS  Google Scholar 

  159. Scott RH, Stiller CA, Walker L, Rahman N (2006) Syndromes and constitutional chromosomal abnormalities associated with Wilms tumour. J Med Genet 43(9):705–715

    PubMed  CAS  Google Scholar 

  160. Reid S, Renwick A, Seal S et al (2005) Biallelic BRCA2 mutations are associated with multiple malignancies in childhood including familial Wilms tumour. J Med Genet 42(2):147–151

    PubMed  CAS  Google Scholar 

  161. Xuan JY, Besner A, Ireland M, Hughes-Benzie RM, MacKenzie AE (1994) Mapping of Simpson-Golabi-Behmel syndrome to Xq25-q27. Hum Mol Genet 3(1):133–137

    PubMed  CAS  Google Scholar 

  162. Neri G, Gurrieri F, Zanni G, Lin A (1998) Clinical and molecular aspects of the Simpson-Golabi-Behmel syndrome. Am J Med Genet 79(4):279–283

    PubMed  CAS  Google Scholar 

  163. Pilia G, Hughes-Benzie RM, MacKenzie A et al (1996) Mutations in GPC3, a glypican gene, cause the Simpson-Golabi-Behmel overgrowth syndrome. Nat Genet 12(3):241–247

    PubMed  CAS  Google Scholar 

  164. Lapunzina P, Badia I, Galoppo C et al (1998) A patient with Simpson-Golabi-Behmel syndrome and hepatocellular carcinoma. J Med Genet 35(2):153–156

    PubMed  CAS  Google Scholar 

  165. Gillan TL, Hughes R, Godbout R, Grundy PE (2003) The Simpson-Golabi-Behmel gene, GPC3, is not involved in sporadic Wilms tumorigenesis. Am J Med Genet A 122A(1):30–36

    PubMed  Google Scholar 

  166. Henneveld HT, van Lingen RA, Hamel BC, Stolte-Dijkstra I, van Essen AJ (1999) Perlman syndrome: four additional cases and review. Am J Med Genet 86(5):439–446

    PubMed  CAS  Google Scholar 

  167. Alessandri JL, Cuillier F, Ramful D et al (2008) Perlman syndrome: report, prenatal findings and review. Am J Med Genet A 146A(19):2532–2537

    PubMed  Google Scholar 

  168. Leventopoulos G, Kitsiou-Tzeli S, Kritikos K et al (2009) A clinical study of sotos syndrome patients with review of the literature. Pediatr Neurol 40(5):357–364

    PubMed  Google Scholar 

  169. Tatton-Brown K, Rahman N (2007) Sotos syndrome. Eur J Hum Genet 15(3):264–271

    PubMed  CAS  Google Scholar 

  170. Hanks S, Coleman K, Reid S et al (2004) Constitutional aneuploidy and cancer predisposition caused by biallelic mutations in BUB1B. Nat Genet 36(11):1159–1161

    PubMed  CAS  Google Scholar 

  171. D’Angio GJ (2007) The National Wilms Tumor Study: a 40 year perspective. Lifetime Data Anal 13(4):463–470

    PubMed  Google Scholar 

  172. Green DM, Breslow NE, Beckwith JB, Norkool P (1993) Screening of children with hemihypertrophy, aniridia, and Beckwith-Wiedemann syndrome in patients with Wilms tumor: a report from the National Wilms Tumor Study. Med Pediatr Oncol 21(3):188–192

    PubMed  CAS  Google Scholar 

  173. McNeil DE, Langer JC, Choyke P, DeBaun MR (2002) Feasibility of partial nephrectomy for Wilms’ tumor in children with Beckwith-Wiedemann syndrome who have been screened with abdominal ultrasonography. J Pediatr Surg 37(1):57–60

    PubMed  Google Scholar 

  174. Beckwith JB (1998) Children at increased risk for Wilms tumor: monitoring issues. J Pediatr 132(3 Pt 1):377–379

    PubMed  CAS  Google Scholar 

  175. Coppes MJ, Arnold M, Beckwith JB et al (1999) Factors affecting the risk of contralateral Wilms tumor development: a report from the National Wilms Tumor Study Group. Cancer 85(7): 1616–1625

    PubMed  CAS  Google Scholar 

  176. Choyke PL, Siegel MJ, Craft AW, Green DM, DeBaun MR (1999) Screening for Wilms tumor in children with Beckwith-Wiedemann syndrome or idiopathic hemihypertrophy. Med Pediatr Oncol 32(3):196–200

    PubMed  CAS  Google Scholar 

  177. Surveillance, Epidemiology, and End Results (SEER) Program (2001) Public Use Data (1973–1998), National Cancer Institute, DCCPS, Surveillance Research Program, Cancer Statistics Branch, Bethesda, MD

    Google Scholar 

  178. Gronskov K, Olsen JH, Sand A et al (2001) Population-based risk estimates of Wilms tumor in sporadic aniridia. A comprehensive mutation screening procedure of PAX6 identifies 80% of mutations in aniridia. Hum Genet 109(1):11–18

    PubMed  CAS  Google Scholar 

  179. Craft AW, Parker L, Stiller C, Cole M (1995) Screening for Wilms’ tumour in patients with aniridia, Beckwith syndrome, or hemihypertrophy. Med Pediatr Oncol 24(4):231–234

    PubMed  CAS  Google Scholar 

  180. Scott RH, Walker L, Olsen OE et al (2006) Surveillance for Wilms tumour in at-risk children: pragmatic recommendations for best practice. Arch Dis Child 91(12):995–999

    PubMed  CAS  Google Scholar 

  181. Niemitz EL, Feinberg AP, Brandenburg SA, Grundy PE, DeBaun MR (2005) Children with idiopathic hemihypertrophy and beckwith-wiedemann syndrome have different constitutional epigenotypes associated with wilms tumor. Am J Hum Genet 77(5): 887–891

    PubMed  CAS  Google Scholar 

  182. Gylys-Morin V, Hoffer FA, Kozakewich H, Shamberger RC (1993) Wilms tumor and nephroblastomatosis: imaging characteristics at gadolinium-enhanced MR imaging. Radiology 188(2):517–521

    PubMed  CAS  Google Scholar 

  183. Choyke PL, Siegel MJ, Oz O, Sotelo-Avila C, DeBaun MR (1998) Nonmalignant renal disease in pediatric patients with Beckwith-Wiedemann syndrome. AJR Am J Roentgenol 171(3):733–737

    PubMed  CAS  Google Scholar 

  184. Han JW, Kwon SY, Won SC, Shin YJ, Ko JH, Lyu CJ (2009) Comprehensive clinical follow-up of late effects in childhood cancer survivors shows the need for early and well-timed intervention. Ann Oncol 20(7):1170–1177

    PubMed  CAS  Google Scholar 

  185. Cotton CA, Peterson S, Norkool PA, Takashima J, Grigoriev Y, Breslow NE (2009) Early and late mortality after diagnosis of Wilms’ tumor. J Clin Oncol 27(8):1304–1309

    PubMed  Google Scholar 

  186. Shaw NJ, Eden OB, Jenney ME et al (1991) Pulmonary function in survivors of Wilms’ tumor. Pediatr Hematol Oncol 8(2):131–137

    PubMed  CAS  Google Scholar 

  187. Green DM, Peabody EM, Nan B, Peterson S, Kalapurakal JA, Breslow NE (2002) Pregnancy outcome after treatment for Wilms tumor: a report from the National Wilms Tumor Study Group. J Clin Oncol 20(10):2506–2513

    PubMed  Google Scholar 

  188. Byrne J, Mulvihill JJ, Connelly RR et al (1988) Reproductive problems and birth defects in survivors of Wilms’ tumor and their relatives. Med Pediatr Oncol 16(4):233–240

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to David A. Sweetser or Eric F. Grabowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Sweetser, D.A., Grabowski, E.F. (2010). Pediatric Malignancies: Retinoblastoma and Wilms’ Tumor. In: Chung, D., Haber, D. (eds) Principles of Clinical Cancer Genetics. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-93846-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-93846-2_12

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-93844-8

  • Online ISBN: 978-0-387-93846-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics