Molecular Typing and Clustering Analysis as a Tool for Epidemiology of Infectious Diseases

  • Sylvia M. BruistenEmail author
  • Leo Schouls
Part of the Statistics for Biology and Health book series (SBH)


This chapter describes the mechanism of typing procedures of human pathogens and gives some examples to substantiate the added value of typing and clustering analysis in epidemiology. Three steps need to be discerned in the process toward molecular clustering analysis. First, the pathogen must be recognized and identified (the diagnostic step). Second, the typing of the pathogen genome is performed and third, the clustering of the specific type with other known or newly identified types is needed for added epidemiological information.


Polymerase Chain Reaction Product Restriction Fragment Length Polymorphism Amplify Fragment Length Polymorphism Typing Technique IS6110 Copy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors wish to thank Prof. Dr. R.A. Coutinho for his valuable comments to improve the readability for non-laboratory trained persons.


  1. Arnold C. (2007) Molecular evolution of Mycobacterium tuberculosis. Clin Microbiol Infect 13: 120–128CrossRefGoogle Scholar
  2. Bauer J, Andersen AB, Kremer K, and Miorner H (1999) Usefulness of spoligotyping To discriminate IS6110 low-copy-number Mycobacterium tuberculosis complex strains cultured in Denmark. J Clin Microbiol 37: 2602–2606Google Scholar
  3. Behr MA, and Mostowy S (2007) Molecular tools for typing and branding the tubercle bacillus. Curr Mol Med 7: 309–317CrossRefGoogle Scholar
  4. Blanc DS. (2004) The use of molecular typing for epidemiological surveillance and investigation of endemic nosocomial infections. Infect Genet Evol 4: 193–197Google Scholar
  5. Day S, Ward H, Ghani A, Bell G, Goan U, Parker M et al. (1998) Sexual histories, partnerships and networks associated with the transmission of gonorrhoea. Int J STD AIDS 9: 666–671CrossRefGoogle Scholar
  6. Deplano A, Schuermans A, Van Eldere J, Witte W, Meugnier H, Etienne J et al. (2000) Multicenter evaluation of epidemiological typing of methicillin-resistant Staphylococcus aureus strains by repetitive-element PCR analysis. The European Study Group on Epidemiological Markers of the ESCMID. J Clin Microbiol 38: 3527–3533Google Scholar
  7. Dunbar SA (2006) Applications of Luminex xMAP technology for rapid, high-throughput multiplexed nucleic acid detection. Clin Chim Acta 363: 71–82CrossRefGoogle Scholar
  8. Francois P, Huyghe A, Charbonnier Y, Bento M, Herzig S, Topolski I et al. (2005) Use of an automated multiple-locus, variable-number tandem repeat-based method for rapid and high-throughput genotyping of Staphylococcus aureus isolates. J Clin Microbiol 43: 3346–3355CrossRefGoogle Scholar
  9. Garaizar J, Rementeria A, and Porwollik S (2006) DNA microarray technology: a new tool for the epidemiological typing of bacterial pathogens? FEMS Immunol Med Microbiol 47: 178–189CrossRefGoogle Scholar
  10. Grenfell BT, Pybus OG, Gog JR, Wood JL, Daly JM, Mumford JA, and Holmes EC (2004) Unifying the epidemiological and evolutionary dynamics of pathogens. Science 303: 327–332CrossRefGoogle Scholar
  11. Hamill M, Benn P, Carder C, Copas A, Ward H, Ison C, and French P (2007) The clinical manifestations of anorectal infection with lymphogranuloma venereum (LGV) versus non-LGV strains of Chlamydia trachomatis: a case-control study in homosexual men. Int J STD AIDS 18: 472–475CrossRefGoogle Scholar
  12. Harmsen D, Claus H, Witte W, Rothganger J, Claus H, Turnwald D, and Vogel U (2003) Typing of methicillin-resistant Staphylococcus aureus in a university hospital setting by using novel software for spa repeat determination and database management. J Clin Microbiol 41: 5442–5448CrossRefGoogle Scholar
  13. Huijsdens XW, van Dijke BJ, Spalburg E, van Santen-Verheuvel MG, Heck ME, Pluister GN et al. (2006) Community-acquired MRSA and pig-farming. Ann Clin Microbiol Antimicrob 5: 26CrossRefGoogle Scholar
  14. Jonas D, Meyer HG, Matthes P, Hartung D, Jahn B, Daschner FD, and Jansen B (2000) Comparative evaluation of three different genotyping methods for investigation of nosocomial outbreaks of Legionnaires' disease in hospitals. J Clin Microbiol 38: 2284–2291Google Scholar
  15. Kamerbeek J, Schouls L, Kolk A, van Agterveld M, van Soolingen D, Kuijper S et al. (1997) Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J Clin Microbiol 35: 907–914Google Scholar
  16. Klint M, Fuxelius HH, Goldkuhl RR, Skarin H, Rutemark C, Andersson SG et al. (2007) High-resolution genotyping of Chlamydia trachomatis strains by multilocus sequence analysis. J Clin Microbiol 45: 1410–1414CrossRefGoogle Scholar
  17. Klovdahl AS, Graviss EA, Yaganehdoost A, Ross MW, Wanger A, Adams GJ, and Musser JM (2001) Networks and tuberculosis: an undetected community outbreak involving public places. Soc Sci Med 52: 681–694CrossRefGoogle Scholar
  18. Koek AG, Bovee LP, van den Hoek JA, Bos AJ, and Bruisten SM (2006) Additional value of typing Noroviruses in gastroenteritis outbreaks in Amsterdam, The Netherlands. J Clin Virol 35: 167–172CrossRefGoogle Scholar
  19. Koeleman JG, Stoof J, Biesmans DJ, Savelkoul PH, and Vandenbroucke-Grauls CM (1998) Comparison of amplified ribosomal DNA restriction analysis, random amplified polymorphic DNA analysis, and amplified fragment length polymorphism fingerprinting for identification of Acinetobacter genomic species and typing of Acinetobacter baumannii. J Clin Microbiol 36: 2522–2529Google Scholar
  20. Kolader ME, Dukers NH, van der Bij AK, Dierdorp M, Fennema JS, Coutinho RA, and Bruisten SM (2006) Molecular epidemiology of Neisseria gonorrhoeae in Amsterdam, The Netherlands, shows distinct heterosexual and homosexual networks. J Clin Microbiol 44: 2689–2697CrossRefGoogle Scholar
  21. Kremer K, Arnold C, Cataldi A, Gutierrez MC, Haas WH, Panaiotov S et al. (2005) Discriminatory power and reproducibility of novel DNA typing methods for Mycobacterium tuberculosis complex strains. J Clin Microbiol 43: 5628–5638CrossRefGoogle Scholar
  22. Lewis F, Hughes GJ, Rambaut A, Pozniak A, and Leigh Brown AJ (2008) Episodic sexual transmission of HIV revealed by molecular phylodynamics. PLoS Med 5: e50CrossRefGoogle Scholar
  23. Lindstedt BA (2005) Multiple-locus variable number tandem repeats analysis for genetic fingerprinting of pathogenic bacteria. Electrophoresis 26: 2567–2582CrossRefGoogle Scholar
  24. Maiden MC, Bygraves JA, Feil E, Morelli G, Russell JE, Urwin R et al. (1998) Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci USA 95: 3140–3145CrossRefGoogle Scholar
  25. Noller AC, McEllistrem MC, Shutt KA, and Harrison LH. (2006) Locus-specific mutational events in a multilocus variable-number tandem repeat analysis of Escherichia coli O157:H7. J Clin Microbiol 44: 374–377CrossRefGoogle Scholar
  26. Pilcher CD, Wong JK, and Pillai SK (2008) Inferring HIV transmission dynamics from phylogenetic sequence relationships. PLoS Med 5: e69CrossRefGoogle Scholar
  27. Reisig F, Kremer K, Amthor B, van Soolingen D, and Haas WH. (2005) Fast ligation-mediated PCR, a fast and reliable method for IS6110-based typing of Mycobacterium tuberculosis complex. J Clin Microbiol 43: 5622–5627CrossRefGoogle Scholar
  28. Schouls LM, van der Heide HG, Vauterin L, Vauterin P, and Mooi FR (2004) Multiple-locus variable-number tandem repeat analysis of Dutch Bordetella pertussis strains reveals rapid genetic changes with clonal expansion during the late 1990 s. J Bacteriol 186: 5496–5505CrossRefGoogle Scholar
  29. Schouls LM, van der Ende A, Damen M., and van de Pol I (2006) Multiple-locus variable-number tandem repeat analysis of Neisseria meningitidis yields groupings similar to those obtained by multilocus sequence typing. J Clin Microbiol 44: 1509–1518CrossRefGoogle Scholar
  30. Singh A, Goering RV, Simjee S, Foley SL, and Zervos MJ (2006) Application of molecular techniques to the study of hospital infection. Clin Microbiol Rev 19: 512–530CrossRefGoogle Scholar
  31. Snell RG, and Wilkins RJ (1986) Separation of chromosomal DNA molecules from C. albicans by pulsed field gel electrophoresis. Nucleic Acids Res 14: 4401–4406CrossRefGoogle Scholar
  32. Snipes KP, Hirsh DC, Kasten RW, Hansen LM, Hird DW, Carpenter TE, and McCapes RH (1989) Use of an rRNA probe and restriction endonuclease analysis to fingerprint Pasteurella multocida isolated from turkeys and wildlife. J Clin Microbiol 27: 1847–1853Google Scholar
  33. Spaargaren J, Schachter J, Moncada J, de Vries HJ, Fennema HS, Pena AS et al. (2005) Slow epidemic of lymphogranuloma venereum L2b strain. Emerg Infect Dis 11: 1787–1788Google Scholar
  34. Stene-Johansen K, Tjon G, Schreier E, Bremer V, Bruisten S, Ngui SL et al. (2007) Molecular epidemiological studies show that hepatitis A virus is endemic among active homosexual men in Europe. J Med Virol 79: 356–365CrossRefGoogle Scholar
  35. Syvanen AC (2005) Toward genome-wide SNP genotyping. Nat Genet 37 Suppl: S5–S10CrossRefGoogle Scholar
  36. Tenover FC, Arbeit RD, Goering RV, Mickelsen PA, Murray BE, Persing DH., and Swaminathan B (1995) Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol 33: 2233–2239Google Scholar
  37. Tjon G, Xiridou M, Coutinho R, and Bruisten S (2007) Different transmission patterns of hepatitis A virus for two main risk groups as evidenced by molecular cluster analysis. J Med Virol 79: 488–494CrossRefGoogle Scholar
  38. van Belkum A, Duim B, Regelink A, Moller L, Quint W, and van Alphen L. (1994) Genomic DNA fingerprinting of clinical Haemophilus influenzae isolates by polymerase chain reaction amplification: comparison with major outer-membrane protein and restriction fragment length polymorphism analysis. J Med Microbiol 41: 63–68CrossRefGoogle Scholar
  39. van Belkum A, Kluytmans J, van Leeuwen W, Bax R, Quint W, Peters E et al. (1995) Multicenter evaluation of arbitrarily primed PCR for typing of Staphylococcus aureus strains. J Clin Microbiol 33: 1537–1547Google Scholar
  40. van Belkum A, Scherer S, van Alphen L, and Verbrugh H (1998) Short-sequence DNA repeats in prokaryotic genomes. Microbiol Mol Biol Rev 62: 275–293Google Scholar
  41. van Belkum A, Tassios PT, Dijkshoorn L, Haeggman S, Cookson B, Fry NK et al. (2007) Guidelines for the validation and application of typing methods for use in bacterial epidemiology. Clin Microbiol Infect 13 Suppl 3: 1–46CrossRefGoogle Scholar
  42. van den Braak N, Simons G, Gorkink R, Reijans M, Eadie K, Kremers K et al. (2004) A new high-throughput AFLP approach for identification of new genetic polymorphism in the genome of the clonal microorganism Mycobacterium tuberculosis. J Microbiol Methods 56: 49–62CrossRefGoogle Scholar
  43. van der Zanden AG, Kremer K, Schouls LM, Caimi K, Cataldi A, Hulleman A et al. (2002) Improvement of differentiation and interpretability of spoligotyping for Mycobacterium tuberculosis complex isolates by introduction of new spacer oligonucleotides. J Clin Microbiol 40: 4628–4639CrossRefGoogle Scholar
  44. van der Zee A, Verbakel H, van Zon JC, Frenay I, van Belkum A, Peeters M et al. (1999) Molecular genotyping of Staphylococcus aureus strains: comparison of repetitive element sequence-based PCR with various typing methods and isolation of a novel epidemicity marker. J Clin Microbiol 37: 342–349Google Scholar
  45. van Deutekom H, Supply P, de Haas PE, Willery E, Hoijng SP, Locht C et al. (2005) Molecular typing of Mycobacterium tuberculosis by mycobacterial interspersed repetitive unit-variable-number tandem repeat analysis, a more accurate method for identifying epidemiological links between patients with tuberculosis. J Clin Microbiol 43: 4473–4479CrossRefGoogle Scholar
  46. van Embden JD, Cave MD, Crawford JT, Dale JW, Eisenach KD, Gicquel B et al. (1993) Strain identification of Mycobacterium tuberculosis by DNA fingerprinting: recommendations for a standardized methodology. J Clin Microbiol 31: 406–409Google Scholar
  47. Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M et al (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23: 4407–4414CrossRefGoogle Scholar
  48. Voss A, Loeffen F, Bakker J, Klaassen C, and Wulf M (2005) Methicillin-resistant Staphylococcus aureus in pig farming. Emerg Infect Dis 11: 1965–1966Google Scholar
  49. Ward H, Ison CA, Day SE, Martin I, Ghani AC, Garnett GP et al. (2000) A prospective social and molecular investigation of gonococcal transmission. Lancet 356: 1812–1817CrossRefGoogle Scholar
  50. Williams JG, Kubelik AR, Livak KJ, Rafalski JA, and Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18: 6531–6535CrossRefGoogle Scholar
  51. Zhang Y, Lu L, Ba L, Liu L, Yang L, Jia M et al. (2006) Dominance of HIV-1 subtype CRF01_AE in sexually acquired cases leads to a new epidemic in Yunnan province of China. PLoS Med 3: e443CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Cluster Infectious Diseases, Public Health Service of AmsterdamAmsterdamThe Netherlands
  2. 2.Laboratory for Infectious Diseases and Perinatal screeningNational Institute for Public Health and the EnvironmentBilthovenThe Netherlands

Personalised recommendations