Skip to main content

Abstract

This chapter discusses diffuse optical tomography. We present the origins of this method in terms of spectroscopic analysis of tissue using near-infrared light and its extension to an imaging modality. Models for light propagation at the macroscopic and mesoscopic scale are developed from the radiative transfer equation (RTE). Both time and frequency domain systems are discussed. Some formal results based on Green’s function models are presented, and numerical methods are described based on discrete finite element method (FEM) models and a Bayesian framework for image reconstruction. Finally, some open questions are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 679.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References and Further Reading

  1. Amaldi E (1959) The production and slowing down of neutrons. In Flügge S (ed) Encyclopedia of physics, vol 38/2. Springer, Berlin, pp 1–659

    Google Scholar 

  2. Aronson R (1995) Boundary conditions for diffusion of light. J Opt Soc Am A 12:2532–2539

    Article  Google Scholar 

  3. Aydin ED (2007) Three-dimensional photon migration through voidlike regions and channels. Appl Opt 46(34):8272–8277

    Article  Google Scholar 

  4. Aydin ED, de Oliveira CRE, Goddard AJH (2004) A finite element-spherical harmonics radiation transport model for photon migration in turbid media. J Quant Spectrosc Radiat Transf 84: 247–260

    Article  Google Scholar 

  5. Bal G (2002) Transport through diffusive and nondiffusive regions, embedded objects, and clear layers. SIAM J Appl Math 62(5):1677–1697

    Article  MathSciNet  MATH  Google Scholar 

  6. Bal G (2006) Radiative transfer equation with varying refractive index: a mathematical perspective. J Opt Soc Am A 23:1639–1644

    Article  MathSciNet  Google Scholar 

  7. Bal G (2009) Inverse transport theory and applications. Inv Probl 25:053001 (48pp)

    Google Scholar 

  8. Bal G, Maday Y (2002) Coupling of transport and diffusion models in linear transport theory. Math Model Numer Anal 36(1):69–86

    Article  MathSciNet  MATH  Google Scholar 

  9. Bluestone AV, Abdoulaev G, Schmitz CH, Barbour RL, Hielscher AH (2001) Three-dimensionalopticaltomographyofhemodynamicsinthehumanhead.OptExpress 9(6):272–286

    Google Scholar 

  10. Contini D, Martelli F, Zaccanti G (1997) Photon migration through a turbid slab described by a model based on diffusion approximation. I. Theory Appl Opt 36(19):4587–4599

    Google Scholar 

  11. Dehghani H, Arridge SR, Schweiger M, Delpy DT (2000) Optical tomography in the presence of void regions. J Opt Soc Am A 17(9): 1659–1670

    Article  Google Scholar 

  12. Fantini S, Franceschini MA, Gratton E (1997) Effective source term in the diffusion equation for photon transport in turbid media. Appl Opt 36(1):156–163

    Article  Google Scholar 

  13. Ferwerda HA (1999) The radiative transfer equation for scattering media with a spatially varying refractive index. J Opt A Pure Appl Opt 1(3): L1–L2

    Article  Google Scholar 

  14. Furutsu K (1980) Diffusion equation derived from space-time transport equation. J Opt Soc Am 70(4):360–366

    Article  MathSciNet  Google Scholar 

  15. Groenhuis RAJ, Ferwerda HA, Ten Bosch JJ (1983) Scattering and absorption of turbid materials determined from reflection measurements. Part 1: Theory Appl Opt 22(16):2456–2462

    Google Scholar 

  16. Hebden JC, Gibson A, Md Yusof R, Everdell N, Hillman EMC, Delpy DT, Arridge SR, Austin T, Meek JH, Wyatt JS (2002) Three-dimensional optical tomography of the premature infant brain. Phys Med Biol 47:4155–4166

    Article  Google Scholar 

  17. Khan T, Jiang H (2003) A new diffusion approximation to the radiative transfer equation for scattering media with spatially varying refractive indices. J Opt A Pure Appl Opt 5:137–141

    Article  Google Scholar 

  18. Kim AD, Ishimaru A (1998) Optical diffusion of continuos-wave, pulsed, and density waves in scattering media and comparisons with radiative transfer. Appl Opt 37(22):5313–5319

    Article  Google Scholar 

  19. Klose AD, Larsen EW (2006) Light transport in biological tissue based on the simplified spherical harmonics equations. J Comput Phys 220: 441–470

    Article  MathSciNet  MATH  Google Scholar 

  20. Kolehmainen V, Arridge SR, Vauhkonen M, Kaipio JP (2000) Simultaneous reconstruction of internal tissue region boundaries and coefficients in optical diffusion tomography. Phys Med Biol 45:3267–3283

    Article  Google Scholar 

  21. Marti-Lopez L, Bouza-Dominguez J, Hebden JC, Arridge SR, Martinez-Celorio RA (2003) Validity conditions for the radiative transfer equation. J Opt Soc Am A 20(11):2046–2056

    Article  Google Scholar 

  22. Wang LV (1998) Rapid modeling of diffuse reflectance of light in turbid slabs. J Opt Soc Am A 15(4):936–944

    Article  Google Scholar 

  23. Wright S, Schweiger M, Arridge SR (2007) Reconstruction in optical tomography using the PN approximations. Meas Sci Technol 18:79–86

    Article  Google Scholar 

  24. Ackroyd RT (1997) Finite element methods for particle transport : applications to reactor and radiation physics. Research Studies, Taunton

    Google Scholar 

  25. Anderson BDO, Moore JB (1979) Optimal filtering. Prentice Hall, Englewood Cliffs

    MATH  Google Scholar 

  26. Arridge SR (1999) Optical tomography in medical imaging. Inverse Probl 15(2):R41–R93

    Article  MathSciNet  MATH  Google Scholar 

  27. Arridge SR, Cope M, Delpy DT (1992) Theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis. Phys Med Biol 37:1531–1560

    Article  Google Scholar 

  28. Arridge SR, Dehghani H, Schweiger M, Okada E (2000) The finite element model for the propagation of light in scattering media: a direct method for domains with non-scattering regions. Med Phys 27(1):252–264

    Article  Google Scholar 

  29. Arridge SR, Kaipio JP, Kolehmainen V, Schweiger M, Somersalo E, Tarvainen T, Vauhkonen M (2006) Approximation errors and model reduction with an application in optical diffusion tomography. Inverse Probl 22(1):175–196

    Article  MathSciNet  MATH  Google Scholar 

  30. Arridge SR, Lionheart WRB (1998) Non-uniqueness in diffusion-based optical tomography. Opt Lett 23:882–884

    Article  Google Scholar 

  31. Arridge SR, Schotland JC (2009) Optical tomography: forward and inverse problems. Inverse Prob 25(12):123010 (59pp)

    Google Scholar 

  32. Arridge SR, Schweiger M, Hiraoka M, Delpy DT (1993) A finite element approach for modeling photon transport in tissue. Med Phys 20(2): 299–309

    Article  Google Scholar 

  33. Arridge SR, Kaipio JP, Kolehmainen V, Schweiger M, Somersalo E, Tarvainen T, Vauhkonen M (2006) Approximation errors and model reduction with an application in optical diffusion tomography. Inverse Probl 22:175–195

    Article  MathSciNet  MATH  Google Scholar 

  34. Benaron DA, Stevenson DK (1993) Optical time-of-flight and absorbance imaging of biological media. Science 259:1463–1466

    Article  Google Scholar 

  35. Berg R, Svanberg S, Jarlman O (1993) Medical transillumination imaging using short-pulse laser diodes. Appl Opt 32:574–579

    Article  Google Scholar 

  36. Berger JO (2006) Statistical decision theory and Bayesian analysis. Springer, New York

    Google Scholar 

  37. Calvetti D, Kaipio JP, Somersalo E (2006) Aristotelian prior boundary conditions. Int J Math 1:63–81

    MATH  Google Scholar 

  38. Case MC, Zweifel PF (1967) Linear transport theory. Addison-Wesley, New York

    MATH  Google Scholar 

  39. Cope M, Delpy DT (1988) System for long term measurement of cerebral blood and tissue oxygenation on newborn infants by near infra- red transillumination. Med Biol Eng Comput 26:289–294

    Article  Google Scholar 

  40. Cutler M (1929) Transillumination as an aid in the diagnosis of breast lesions. Surg Gynecol Obstet 48:721–729

    Google Scholar 

  41. Delpy DT, Cope M, van der Zee P, Arridge SR, Wray S, Wyatt J (1988) Estimation of optical pathlength through tissue from direct time of flight measurement. Phys Med Biol 33:1433–1442

    Article  Google Scholar 

  42. Diamond SG, Huppert TJ, Kolehmainen V, Franceschini MA, Kaipio JP, Arridge SR, Boas DA (2006) Dynamic physiological modeling for functional diffuse optical tomography. Neuroimage 30:88–101

    Article  Google Scholar 

  43. Dorn O (1997) Das inverse Transportproblem in der Lasertomographie. PhD thesis, University of MĂĽnster

    Google Scholar 

  44. Doucet A, de Freitas N, Gordon N (2001) Sequential Monte Carlo methods in practice. Springer, New York

    MATH  Google Scholar 

  45. Duderstadt JJ, Martin WR (1979) Transport theory. Wiley, New York

    MATH  Google Scholar 

  46. Durbin J, Koopman J (2001) Time series analysis by state space methods. Oxford University Press, Oxford

    MATH  Google Scholar 

  47. Firbank M, Arridge SR, Schweiger M, Delpy DT (1996) An investigation of light transport through scattering bodies with non-scattering regions. Phys Med Biol 41:767–783

    Article  Google Scholar 

  48. Haskell RC, Svaasand LO, Tsay T-T, Feng T-C, McAdams MS, Tromberg BJ (1994) Boundary conditions for the diffusion equation in radiative transfer. J Opt Soc Am A 11(10):2727–2741

    Article  Google Scholar 

  49. Hayashi T, Kashio Y, Okada E (2003) Hybrid Monte Carlo-diffusion method for light propagation in tissue with a low-scattering region. Appl Opt 42(16):2888–2896

    Article  Google Scholar 

  50. Hebden JC, Kruger RA, Wong KS (1991) Time resolved imaging through a highly scattering medium. Appl Opt 30(7):788–794

    Article  Google Scholar 

  51. Heino J, Somersalo E (2002) Estimation of optical absorption in anisotropic background. Inverse Prob 18:559–573

    Article  MathSciNet  MATH  Google Scholar 

  52. Heino J, Somersalo E (2004) A modelling error approach for the estimation of optical absorption in the presence of anisotropies. Phys Med Biol 49:4785–4798

    Article  Google Scholar 

  53. Heino J, Somersalo E, Kaipio JP (2005) Compensation for geometric mismodelling by anisotropies in optical tomography. Opt Express 13(1):296–308

    Article  Google Scholar 

  54. Henyey LG, Greenstein JL (1941) Diffuse radiation in the galaxy. AstroPhys J 93:70–83

    Article  Google Scholar 

  55. Hielscher AH, Alcouffe RE, Barbour RL (1998) Comparison of finitedifference transport and diffusion calculations for photon migration in homogeneous and hetergeneous tissue. Phys Med Biol 43:1285–1302

    Article  Google Scholar 

  56. Ho PP, Baldeck P, Wong KS, Yoo KM, Lee D, Alfano RR (1989) Time dynamics of photon migration in semiopaque random media. Appl Opt 28:2304–2310

    Article  Google Scholar 

  57. Huttunen JMJ, Kaipio JP (2007) Approximation error analysis in nonlinear state estimation with an application to state-space identification. Inverse Prob 23:2141–2157

    Article  MathSciNet  MATH  Google Scholar 

  58. Huttunen JMJ, Kaipio JP (2007) Approximation errors in nostationary inverse problems. Inverse Prob Imaging 1(1):77–93

    Article  MathSciNet  MATH  Google Scholar 

  59. Huttunen JMJ, Kaipio JP (2009) Model reduction in state identification problems with an application to determination of thermal parameters. Appl Numer Math 59: 877–890

    Article  MathSciNet  MATH  Google Scholar 

  60. Huttunen JMJ, Lehikoinen A, Hämäläinen J, Kaipio JP (2009) Importance filtering approach for the nonstationary approximation error method. Inverse Prob in review

    Google Scholar 

  61. Ishimaru A (1978) Wave propagation and scattering in random media, vol 1. Academic, New York

    Google Scholar 

  62. Jarry G, Ghesquiere S, Maarek JM, Debray S, Bui M-H, Laurent HD (1984) Imaging mammalian tissues and organs using laser collimated transillumination. J Biomed Eng 6:70–74

    Article  Google Scholar 

  63. Jöbsis FF (1977) Noninvasive infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science 198: 1264–1267

    Article  Google Scholar 

  64. Kaipio J, Somersalo E (2005) Statistical and computational inverse problems. Springer, New York

    MATH  Google Scholar 

  65. Kaipio J, Somersalo E (2007) Statistical and computational inverse problems. J Comput Appl Math 198:493–504

    Article  MathSciNet  MATH  Google Scholar 

  66. Kaipio JP, Kolehmainen V, Vauhkonen M, Somersalo E (1999) Inverse problems with structural prior information. Inverse Probl 15:713–729

    Article  MathSciNet  MATH  Google Scholar 

  67. Kak AC, Slaney M (1987) Principles of computerized tomographic imaging. IEEE, New York

    Google Scholar 

  68. Kalman RE (1960) A new approach to linear filtering and prediction problems. Trans ASME. J Basic Eng 82D(1):35–45

    Article  Google Scholar 

  69. Kolehmainen V, Prince S, Arridge SR, Kaipio JP (2000) A state estimation approach to non-stationary optical tomography problem. J Opt Soc Am A 20:876–884

    Article  Google Scholar 

  70. Kolehmainen V, Schweoger M, Nissilä I, Tarvainen T, Arridge SR, Kaipio JP (2009) Approximation errors and model reduction in three-dimensional optical tomography. J Optical Soc Amer A 26:2257–2268

    Article  Google Scholar 

  71. Kolehmainen V, Tarvainen T, Arridge SR, Kaipio JP (2010) Marginalization of uninteresting distributed parameters in inverse problems – application to diffuse optical tomography. Int J Uncertainty Quantification, In press

    Google Scholar 

  72. Lakowicz JR, Berndt K (1990) Frequency domain measurement of photon migration in tissues. Chem Phys Lett 166(3):246–252

    Article  Google Scholar 

  73. Lehikoinen A, Finsterle S, Voutilainen A, Heikkinen LM, Vauhkonen M, Kaipio JP (2007) Approximation errors and truncation of computational domains with application to geophysical tomography. Inverse Probl Imaging 1: 371–389

    Article  MathSciNet  MATH  Google Scholar 

  74. Lehikoinen A, Huttunen JMJ, Finsterle S, Kowalsky MB, Kaipio JP: Dynamic inversion for hydrological process monitoring with electrical resistance tomography under model uncertainties, Water Resour Res 46: W04513, doi:10.1029/2009WR008470, 2010

    Google Scholar 

  75. Mitic G, Kolzer J, Otto J, Plies E, Solkner G, Zinth W (1994) Timegated transillumination of biological tissue and tissuelike phantoms. Opt Lett 33:6699–6710

    Google Scholar 

  76. Natterer F, WĂĽbbeling F (2001) Mathematical methods in image reconstruction. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  77. Nissilä I, Noponen T, Kotilahti K, Tarvainen T, Schweiger M, Lipiänen L, Arridge SR, Katila T (2005) Instrumentation and calibration methods for the multichannel measurement of phase and amplitude in optical tomography. Rev Sci Instrum 76(4):004302

    Article  Google Scholar 

  78. Nissinen A, Heikkinen LM, Kolehmainen V, Kaipio JP (2009) Compensation of errors due to discretization, domain truncation and unknown contact impedances in electrical impedance tomography. Meas Sci Technol 20, doi: 10.1088/0957–0233/20/10/105504

    Google Scholar 

  79. Nissinen A, Kolehmainen V, Kaipio JP: Compensation of modelling errors due to unknown domain boundary in electrical impedance tomography, IEEE Trans Med Imaging, in review, 2010.

    Google Scholar 

  80. Nissinen A, Heikkinen LM, Kaipio JP (2008) Approximation errors in electrical impedance tomography – an experimental study. Meas Sci Technol 19, doi: 10.1088/0957-0233/19/1/015501

    Google Scholar 

  81. Ntziachristos V, Ma X, Chance B (1998) Time-correlated single photon counting imager for simultaneous magnetic resonance and near-infrared mammography. Rev Sci Instrum 69:4221–4233

    Article  Google Scholar 

  82. Okada E, Schweiger M, Arridge SR, Firbank M, Delpy DT (1996) Experimental validation of Monte Carlo and Finite-Element methods for the estimation of the optical path length in inhomogeneous tissue. Appl Opt 35(19):3362–3371

    Article  Google Scholar 

  83. Prince S, Kolehmainen V, Kaipio JP, Franceschini MA, Boas D, Arridge SR (2003) Time series estimation of biological factors in optical diffusion tomography. Phys Med Biol 48(11): 1491–1504

    Article  Google Scholar 

  84. Schmidt A, Corey R, Saulnier P (1995) Imaging through random media by use of low-coherence optical heterodyning. Opt Lett 20:404–406 

    Article  Google Scholar 

  85. Schmidt FEW, Fry ME, Hillman EMC, Hebden JC, Delpy DT (2000) A 32-channel time-resolved instrument for medical optical tomography. Rev Sci Instrum 71(1):256–265

    Article  Google Scholar 

  86. Schmitt JM, Gandbjbakhche AH, Bonner RF (1992) Use of polarized light to discriminate short-path photons in a multiply scattering medium. Appl Opt 31:6535–6546

    Article  Google Scholar 

  87. Schotland JC, Markel V (2001) Inverse scattering with diffusing waves. J Opt Soc Am A 18: 2767–2777

    Article  MathSciNet  Google Scholar 

  88. Schweiger M, Arridge SR (1997) The finite element model for the propagation of light in scattering media: frequency domain case. Med Phys 24(6):895–902

    Article  Google Scholar 

  89. Schweiger M, Arridge SR, Hiraoka M, Delpy DT (1995) The finite element model for the propagation of light in scattering media: boundary and source conditions. Med Phys 22(11): 1779–1792

    Article  Google Scholar 

  90. Schweiger M, Arridge SR, Nissilä I (2005) Gauss–Newton method for image reconstruction in diffuse optical tomography. Phys Med Biol 50:2365–2386

    Article  Google Scholar 

  91. Schweiger M, Nissilä I, Boas DA, Arridge SR (2007) Image reconstruction in optical tomography in the presence of coupling errors. Appl Opt 46(14):2743–2756

    Article  Google Scholar 

  92. Spears KG, Serafin J, Abramson NH, Zhu X, Bjelkhagen H (1989) Chronocoherent imaging for medicine. IEEE Trans Biomed Eng 36: 1210–1221

    Article  Google Scholar 

  93. Sylvester J, Uhlmann G (1987) A global uniquness theorem for an inverse boundary value problem. Ann Math 125:153–169

    Article  MathSciNet  MATH  Google Scholar 

  94. Tarvainen T, Kolehmainen V, Pulkkinen A, Vauhkonen M, Schweiger M, Arridge SR, Kaipio JP (2010) Approximation error approach for compensating for modelling errors between the radiative transfer equation and the diffusion approximation in diffuse optical tomography. Inverse Probl 26, doi: 10.1088/0266–5611/ 26/1/015005

    Google Scholar 

  95. Tarvainen T, Vauhkonen M, Kolehmainen V, Arridge SR, Kaipio JP (2005) Coupled radiative transfer equation and diffusion approximation model for photon migration in turbid medium with low-scattering and non-scattering regions. Phys Med Biol 50:4913–4930

    Article  Google Scholar 

  96. Tarvainen T, Vauhkonen M, Kolehmainen V, Kaipio JP (2005) A hybrid radiative transfer – diffusion model for optical tomography. Appl Opt 44(6):876–886

    Article  Google Scholar 

  97. Tarvainen T, Vauhkonen M, Kolehmainen V, Kaipio JP (2006) Finite element model for the coupled radiative transfer equation and diffusion approximation. Int J Numer Meth Engng 65(3):383–405

    Article  MathSciNet  MATH  Google Scholar 

  98. Tervo J, Kolmonen P, Vauhkonen M, Heikkinen LM, Kaipio JP (1999) A finite-element model of electron transport in radiation therapy and a related inverse problem. Inverse Prob 15: 1345–1362

    Article  MathSciNet  MATH  Google Scholar 

  99. Wang L, Ho PP, Liu C, Zhang G, Alfano RR (1991) Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate. Science 253:769–771

    Article  Google Scholar 

  100. Wang L, Jacques SL (1993) Hybrid model of Monte Carlo simulation diffusion theory for light reflectance by turbid media. J Opt Soc Am A 10(8):1746–1752

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this entry

Cite this entry

Arridge, S.R., Kaipio, J.P., Kolehmainen, V., Tarvainen, T. (2011). Optical Imaging. In: Scherzer, O. (eds) Handbook of Mathematical Methods in Imaging. Springer, New York, NY. https://doi.org/10.1007/978-0-387-92920-0_17

Download citation

Publish with us

Policies and ethics