Skip to main content

Electrical Impedance Tomography

  • Reference work entry
Handbook of Mathematical Methods in Imaging

Introduction

Electrical Impedance Tomography (EIT) is the recovery of the conductivity (or conductivity and permittivity) of the interior of a body from a knowledge of currents and voltages applied to its surface. In geophysics, where the method is used in prospecting and archaeology, it is known as electrical resistivity tomography. In industrial process tomography it is known as electrical resistance tomography or electrical capacitance tomography. In medical imaging, when at the time of writing it is still an experimental technique rather than routine clinical practice, it is called EIT. A very similar technique is used by weakly electric fish to navigate and locate prey and in this context it is called electrosensing.

The simplest mathematical formulation of inverse problem of EIT can be stated as follows. Let Ω be a conducting body described by a bounded domain in \({\mathbb{R}}^{n}\), n ≥ 2, with electrical conductivity a bounded and positive function γ(x) (later we will...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 679.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adler A, Lionheart WRB (2006) Uses and abuses of EIDORS: an extensible software base for EIT. Physiol Meas 27:S25–S42

    Article  Google Scholar 

  2. Alessandrini G (1988) Stable determination of conductivity by boundary measurements. Appl Anal 27:153–172

    Article  MathSciNet  MATH  Google Scholar 

  3. Alessandrini G (1990) Singular solutions of elliptic equations and the determination of conductivity by boundary measurements. J Differ Equations 84(2):252–272

    Article  MathSciNet  MATH  Google Scholar 

  4. Alessandrini G (1991) Determining conductivity by boundary measurements, the stability issue. In: Spigler R (ed) Applied and industrial mathematics. Kluwer, Dordrecht, pp 317–324

    Chapter  Google Scholar 

  5. Alessandrini G (2007) Open issues of stability for the inverse conductivity problem. J Inverse Ill-Posed Prob 15:451–460

    Article  MathSciNet  MATH  Google Scholar 

  6. Alessandrini G, Gaburro R (2001) Determining Conductivity with Special Anisotropy by Boundary Measurements. SIAM J Math Anal 33:153–171

    Article  MathSciNet  MATH  Google Scholar 

  7. Alessandrini G, Gaburro R (2009) The local Calderón problem and the determination at the boundary of the conductivity. Commun Part Differ Eq 34:918–936

    Article  MathSciNet  MATH  Google Scholar 

  8. Alessandrini G, Vessella S (2005) Lipschitz stability for the inverse conductivity problem. Adv Appl Math 35:207–241

    Article  MathSciNet  MATH  Google Scholar 

  9. Ammari H, Buffa A, Nédélec J-C (2000) A justification of eddy currents model for the Maxwell equations. SIAM J Appl Math 60: 1805–1823

    Article  MathSciNet  MATH  Google Scholar 

  10. Aronszajn N (1957) A unique continuation theorem for solutions of elliptic partial differential equations or inequalities of second order. J Math Pures Appl 36:235–249

    MathSciNet  MATH  Google Scholar 

  11. Astala K, Päivärinta L (2006) Calderón’s inverse conductivity problem in the plane. Annals of Mathematics 163:265–299

    Article  MathSciNet  MATH  Google Scholar 

  12. Barber D, Brown B (1986) Recent developments in applied potential tomography – APT. In: Bacharach SL (ed) Information processing in medical imaging. Nijhoff, Amsterdam, pp 106–121

    Chapter  Google Scholar 

  13. Barceló JA, Faraco D, Ruiz A (2001) Stability of the inverse problem in the plane for less regular conductivities. J Differ Equations 173:231–270

    Article  MATH  Google Scholar 

  14. Barceló JA, Barceló T, Ruiz A (2007) Stability of Calderón inverse conductivity problem in the plane. J Math Pures Appl 88:522–556

    Article  MathSciNet  MATH  Google Scholar 

  15. Berenstein CA, Casadio Tarabusi E (1996) Integral geometry in hyperbolic spaces and electrical impedance tomography. SIAM J Appl Math 56:75564

    Article  MathSciNet  Google Scholar 

  16. Bikowski J (2009) Electrical impedance tomography reconstructions in two and three dimensions; from Calderón to direct methods. PhD thesis, Colorado State University, Fort Collins

    Google Scholar 

  17. Borcea L (2002) Electrical impedance tomography. Inverse Prob 18:R99–R136; Borcea L (2003) Addendum to electrical impedance tomography. Inverse Prob 19:997–998

    Google Scholar 

  18. Borsic A, Graham BM, Adler A, Lionheart WRB (2010) Total variation regularization in electrical impedance tomography. IEEE Trans Med Imaging 29(1):44–54

    Article  Google Scholar 

  19. Brown R (2001) Recovering the conductivity at the boundary from the Dirichlet to Neumann map: a pointwise result. J Inverse Ill-Posed Prob 9:567–574

    MATH  Google Scholar 

  20. Beals R, Coifman R (1982) Transformation spectrales et equation d’evolution non lineares. Seminaire Goulaouic-Meyer-Schwarz, exp 9, pp 1981–1982

    Google Scholar 

  21. Beals R, Coifman RR (1989) Linear spectral problems, non-linear equations and the \(\bar{\partial }\)-method. Inverse Prob 5:87130

    Article  MathSciNet  Google Scholar 

  22. Brown R, Torres R (2003) Uniqueness in the inverse conductivity problem for conductivities with 3 ∕ 2 derivatives in L p, p > 2n. J Fourier Anal Appl 9:1049–1056

    Article  MathSciNet  Google Scholar 

  23. Brown R, Uhlmann G (1997) Uniqueness in the inverse conductivity problem with less regular conductivities in two dimensions. Commun Part Differ Eq 22:1009–1027

    Article  MathSciNet  MATH  Google Scholar 

  24. Bukhgeim AL, Uhlmann G (2002) Recovery a potential from partial Cauchy data. Commun Part Differ Eq 27:653–668

    Article  MathSciNet  MATH  Google Scholar 

  25. Calderón AP (1980) On an inverse boundary value problem. In: Seminar on numerical analysis and its applications to continuum physics (Rio de Janeiro, 1980). Soc Brasil Mat, Rio de Janeiro, pp 65–73

    Google Scholar 

  26. Calderón AP (2006) On an inverse boundary value problem. Comput Appl Math 25(2–3):133–138 (Note this reprint has some different typographical errors from the original: in particular on the first page the Dirichlet data for w is φ not zero)

    Google Scholar 

  27. Chambers JE, Meldrum PI, Ogilvy RD, Wilkinson PB (2005) Characterisation of a NAPL-contaminated former quarry site using electrical impedance tomography. Near Surface Geophysics 3:79–90

    Google Scholar 

  28. Chambers JE, Kuras O, Meldrum PI, Ogilvy RD, Hollands J (2006) Electrical resistivity tomography applied to geologic, hydrogeologic, and engineering investigations at a former waste-disposal site. Geophysics 71:B231–B239

    Article  Google Scholar 

  29. Cheng K, Isaacson D, Newell JC, Gisser DG (1989) Electrode models for electric current computed tomography. IEEE Trans Biomed Eng 36:918–924

    Article  Google Scholar 

  30. Cheney M, Isaacson D, Newell JC (1999) Electrical Impedance Tomography. SIAM Rev 41:85–101

    Article  MathSciNet  MATH  Google Scholar 

  31. Cornean H, Knudsen K, Siltanen S (2006) Towards a D-bar reconstruction method for three dimensional EIT. J Inverse Ill-Posed Prob 14:111134

    MathSciNet  Google Scholar 

  32. Colin de Verdière Y, Gitler I, Vertigan D (1996) Réseaux électriques planaires II. Comment Math Helv 71:144–167

    Article  MathSciNet  MATH  Google Scholar 

  33. Di Cristo M (2007) Stable determination of an inhomogeneous inclusion by local boundary measurements. J Comput Appl Math 198:414–425

    Article  MathSciNet  MATH  Google Scholar 

  34. Ciulli S, Ispas S, Pidcock MK (1996) Anomalous thresholds and edge singularities in electrical impedance tomography. J Math Phys 37:4388

    Article  MathSciNet  MATH  Google Scholar 

  35. Dobson DC (1990) Stability and regularity of an inverse elliptic boundary value problem. Technical report TR90-14, Rice University, Department of Mathematical Sciences

    Google Scholar 

  36. Doerstling BH (1995) A 3-d reconstruction algorithm for the linearized inverse boundary value problem for Maxwell’s equations. PhD thesis, Rensselaer Polytechnic Institute, Troy

    Google Scholar 

  37. Druskin V (1982) The unique solution of the inverse problem of electrical surveying and electrical well-logging for piecewise-constant conductivity. Izv Phys Solid Earth 18:51–53 (in Russian)

    Google Scholar 

  38. Druskin V (1985) On uniqueness of the determination of the three-dimensional underground structures from surface measurements with variously positioned steady-state or monochromatic field sources. Sov Phys Solid Earth 21:210–214 (in Russian)

    Google Scholar 

  39. Druskin V (1998) On the uniqueness of inverse problems for incomplete boundary data. SIAM J Appl Math 58(5):1591–1603

    Article  MathSciNet  MATH  Google Scholar 

  40. Gaburro R (1999) Sul Problema Inverso della Tomografia da Impedenza Elettrica nel Caso di Conduttivitá Anisotropa. Tesi di Laurea in Matematica, Universitá degli Studi di Trieste

    Google Scholar 

  41. Gaburro R (2003) Anisotropic conductivity. Inverse boundary value problems. PhD thesis, University of Manchester Institute of Science and Technology (UMIST), Manchester

    Google Scholar 

  42. Gaburro R, Lionheart WRB (2009) Recovering Riemannian metrics in monotone families from boundary data. Inverse Prob 25:045004 (14pp)

    Google Scholar 

  43. Geotomo Software (2009) RES3DINV ver 2.16, Rapid 3D resistivity and IP inversion using the least-squares method. Geotomo Software, Malaysia. www.geoelectrical.com

  44. Gisser DG, Isaacson D, Newell JC (1990) Electric current computed tomography and eigenvalues. SIAM J Appl Math 50:1623–1634

    Article  MathSciNet  MATH  Google Scholar 

  45. Griffiths H, Jossinet J (1994) Bioelectric tissue spectroscopy from multifrequency EIT. Physiol Meas 15(2A):29–35

    Google Scholar 

  46. Griffiths H (2001) Magnetic induction tomography. Meas Sci Technol 12:1126–1131

    Article  Google Scholar 

  47. Hanke M (2008) On real-time algorithms for the location search of discontinuous conductivities with one measurement. Inverse Prob 24:045005

    Article  MathSciNet  Google Scholar 

  48. Hanke M, Schappel B (2008) The factorization method for electrical impedance tomography in the half-space. SIAM J Appl Math 68:907–924

    Article  MathSciNet  MATH  Google Scholar 

  49. Hähner P (1996) A periodic Faddeev-type solution operator. J Differ Equations 128: 300–308

    Article  MATH  Google Scholar 

  50. Huang SM, Plaskowski A, Xie CG, Beck MS (1988) Capacitance-based tomographic flow imaging system. Electronics Lett 24:418–419

    Article  Google Scholar 

  51. Heck H, Wang J-N, (2006) Stability estimates for the inverse boundary value problem by partial Cauchy data. Inverse Prob 22:1787–1796

    Article  MathSciNet  MATH  Google Scholar 

  52. Heikkinen LM, Vilhunen T, West RM, Vauhkonen M (2002) Simultaneous reconstruction of electrode contact impedances and internal electrical properties: II. Laboratory experiments. Meas Sci Technol 13:1855

    Article  Google Scholar 

  53. Henderson RP, Webster JG (1978) An Impedance camera for spatially specific measurements of the thorax. IEEE Trans Biomed Eng BME-25(3):250–254

    Google Scholar 

  54. Holder DS (2005) Electrical impedance tomography methods history and applications. Institute of Physics, Bristol

    Google Scholar 

  55. Ikehata M (2001) The enclosure method and its applications, chapter 7. In: Analytic extension formulas and their applications (Fukuoka, 1999/Kyoto, 2000). Kluwer; Int Soc Anal Appl Comput 9:87–103

    MathSciNet  Google Scholar 

  56. Ikehata M, Siltanen S (2000) Numerical method for nding the convex hull of an inclusion in conductivity from boundary measurements. Inverse Prob 16:273–296

    MathSciNet  Google Scholar 

  57. Ingerman D, Morrow JA (1998) On a characterization of the kernel of the Dirichlet-to-Neumann map for a planar region. SIAM J Math Anal 29:106115

    Article  MathSciNet  Google Scholar 

  58. Isaacson D (1986) Distinguishability of conductivities by electric current computed tomography. IEEE TransMed Imaging 5:92–95

    Google Scholar 

  59. Isaacson D, Mueller JL, Newell J, Siltanen S (2004) Reconstructions of chest phantoms by the d-bar method for electrical impedance tomography. IEEE Trans Med Imaging 23:821–828

    Article  Google Scholar 

  60. Isaacson D, Mueller JL, Newell J, Siltanen S (2006) Imaging cardiac activity by the D-bar method for electrical impedance tomography. Physiol Meas 27:S43–S50

    Article  Google Scholar 

  61. Isakov V (1991) Completeness of products of solutions and some inverse roblems for PDE. J Differ Equations 92:305–317

    Article  MathSciNet  MATH  Google Scholar 

  62. Isakov V (2007) On the uniqueness in the inverse conductivity problem with local data. Inverse Prob Imaging 1:95–105

    Article  MathSciNet  MATH  Google Scholar 

  63. Kaipio J, Kolehmainen V, Somersalo E, Vauhkonen M (2000) Statistical inversion and Monte Carlo sampling methods in electrical impedance tomography. Inverse Prob 16:1487–1522

    Article  MathSciNet  MATH  Google Scholar 

  64. Kang H, Yun K (2002) Boundary determination of conductivities and Riemannian metrics via local Dirichlet-to-Neumann operator. SIAM J Math Anal 34:719–735

    Article  MathSciNet  Google Scholar 

  65. Kenig C, Sjöstrand J, Uhlmann G (2007) The Calderón problem with partial data. Ann Math 165:567–591

    Article  MATH  Google Scholar 

  66. Kim Y, Woo HW (1987) A prototype system and reconstruction algorithms for electrical impedance technique in medical body imaging. Clin Phys Physiol Meas 8:63–70

    Article  Google Scholar 

  67. Kohn R, Vogelius M (1984) Identification of an Unknown Conductivity by Means of Measurements at the Boundary. SIAM-AMS Proc 14:113–123

    MathSciNet  Google Scholar 

  68. Kohn R, Vogelius M (1985) Determining conductivity by boundary measurements II. Interior results. Comm Pure Appl Math 38: 643–667

    Article  MathSciNet  MATH  Google Scholar 

  69. Knudsen K, Lassas M, Mueller JL, Siltanen S (2009) Regularized D-bar method for the inverse conductivity problem. Inverse Prob Imaging 3:599–624

    Article  MathSciNet  MATH  Google Scholar 

  70. Lassas M, Uhlmann G (2001) Determining a Riemannian manifold from boundary measurements. Ann Sci École Norm Sup 34: 771–787

    MathSciNet  MATH  Google Scholar 

  71. Lassas M, Taylor M, Uhlmann G (2003) The Dirichlet-to-Neumann map for complete Riemannian manifolds with boundary. Commun Geom Anal 11:207–222

    MathSciNet  MATH  Google Scholar 

  72. Lionheart WRB (1997) Conformal Uniqueness Results in Anisotropic Electrical Impedance Imaging. Inverse Prob 13:125–134

    Article  MathSciNet  MATH  Google Scholar 

  73. Lee JM, Uhlmann G (1989) Determining anisotropic real-analytic conductivities by boundary measurements. Commun Pure Appl Math 42:1097–1112

    Article  MathSciNet  MATH  Google Scholar 

  74. Liu L (1997) Stability estimates for the two-dimensional inverse conductivity problem. PhD thesis, University of Rochester, New York

    Google Scholar 

  75. Loke MH (2010) Tutorial: 2-D and 3-D electrical imaging surveys, Geotomo software. www.geoelectrical.com

  76. Loke MH, Barker RD (1996) Rapid least- squares inversion by a quasi- Newton method. Geophys Prospect 44:131152

    Google Scholar 

  77. Loke MH, Chambers JE, Ogilvy RD (2006) Inversion of 2D spectral induced polarization imaging data. Geophys Prospect 54: 287–301

    Article  Google Scholar 

  78. Mandache N (2001) Exponential instability in an inverse problem for the Schrödinger equation. Inverse Prob 17:1435–1444

    Article  MathSciNet  MATH  Google Scholar 

  79. Meyers NG (1963) An Lp estimate for the gradient of solutions of second order elliptic divergence equations. Ann Scuola Norm Sup-Pisa 17(3):189–206

    MathSciNet  MATH  Google Scholar 

  80. Molinari M, Blott BH, Cox SJ, Daniell GJ (2002) Optimal imaging with adaptive mesh refinement in electrical tomography. Physiol Meas 23(1):121–128

    Article  Google Scholar 

  81. Nachman A (1988) Reconstructions from boundary measurements. Ann Math 128:531–576

    Article  MathSciNet  MATH  Google Scholar 

  82. Nachman A (1996) Global uniqueness for a two dimensional inverse boundary value problem. Ann Math 143:71–96

    Article  MathSciNet  MATH  Google Scholar 

  83. Nachman A, Sylvester J, Uhlmann G (1988) An n-dimensional Borg-Levinson theorem. Commun Math Phys 115:593–605

    Article  MathSciNet  Google Scholar 

  84. Nakamura G, Tanuma K (2001) Local determination of conductivity at the boundary from the Dirichlet-to-Neumann map. Inverse Prob 17:405–419

    Article  MathSciNet  MATH  Google Scholar 

  85. Nakamura G, Tanuma K (2001) Direct determination of the derivatives of conductivity at the boundary from the localized Dirichlet to Neumann map. Commun Korean Math Soc 16:415–425

    MathSciNet  MATH  Google Scholar 

  86. Nakamura G, Tanuma K (2003) Formulas for reconstrucing conductivity and its normal derivative at the boundary from the localized Dirichlet to Neumann map. In: Hon Y-C, Yamamoto M, Cheng J, Lee J-Y (eds) Proceeding international conference on inverse problem-recent development in theories and numerics. World Scientific, River Edge, pp 192–201

    Chapter  Google Scholar 

  87. Novikov RG (1988) A multidimensional inverse spectral problem for the equation \(-\Delta \psi + (v(x) - Eu(x))\psi \,=\,0\). (Russian) Funktsional. Anal i Prilozhen 22, 4:11–22, 96; translation in Funct Anal Appl 22, 4:263–272 (1989)

    Google Scholar 

  88. Paulson K, Breckon W, Pidcock M (1992) Electrode modeling in electrical-impedance tomography. SIAM J Appl Math 52:1012–1022

    Article  MATH  Google Scholar 

  89. Päivärinta L, Panchenko A, Uhlmann G (2003) Complex geometrical optics solutions for Lipschitz conductivities. Rev Mat Iberoam 19: 57–72

    Article  MATH  Google Scholar 

  90. Polydorides N, Lionheart WRB (2002) A Matlab toolkit for three-dimensional electrical impedance tomography: a contribution to the electrical impedance and diffuse optical reconstruction software project. Meas Sci Technol 13:1871–1883

    Article  Google Scholar 

  91. Seagar AD (1983) Probing with low frequency electric current. PhD thesis, University of Canterbury, Christchurch

    Google Scholar 

  92. Seagar AD, Bates RHT (1985) Full-wave computed tomography. Pt 4: Low-frequency electric current CT. Inst Electr Eng Proc Pt A 132:455–466

    Google Scholar 

  93. Siltanen S, Mueller JL, Isaacson D (2000) An implementation of the reconstruction algorithm of A. Nachman for the 2-D inverse conductivity problem. Inverse Prob 16:681–699

    Article  MathSciNet  MATH  Google Scholar 

  94. Soleimani M, Lionheart WRB (2005) Nonlinear image reconstruction for electrical capacitance tomography experimental data using. Meas Sci Technol 16(10):1987–1996

    Article  Google Scholar 

  95. Soleimani M, Lionheart WRB, Dorn O (2006) Level set reconstruction of conductivity and permittivity from boundary electrical measurements using expeimental data. Inverse Prob Sci Eng 14:193–210

    Article  MATH  Google Scholar 

  96. Somersalo E, Cheney M, Isaacson D (1992) Existence and uniqueness for electrode models for electric current computed tomography. SIAM J Appl Math 52:1023–1040

    Article  MathSciNet  MATH  Google Scholar 

  97. Soni NK (2005) Breast imaging using electrical impedance tomography. PhD thesis, Dartmouth College, NH

    Google Scholar 

  98. Sylvester J (1990) An anisotropic inverse boundary value problem. Commun Pure Appl Math 43:201–232

    Article  MathSciNet  MATH  Google Scholar 

  99. Sylvester J, Uhlmann G (1986) A uniqueness theorem for an inverse boundary value problem in electrical prospection. Commun Pure Appl Math 39:92–112

    Article  MathSciNet  Google Scholar 

  100. Sylvester J, Uhlmann G (1987) A global uniqueness theorem for an inverse boundary valued problem. Ann Math 125:153–169

    Article  MathSciNet  MATH  Google Scholar 

  101. Sylvester J, Uhlmann G (1988) Inverse boundary value problems at the boundary – continuous dependence. Commun Pure Appl Math 41:197–221

    Article  MathSciNet  Google Scholar 

  102. Tamburrino A, Rubinacci G (2002) A new non-iterative inversion method for electrical resistance tomography. Inverse Prob 18: 1809–1829

    Article  MathSciNet  MATH  Google Scholar 

  103. Uhlmann G (2009) Topical review: electrical impedance tomography and Calderón’s problem. Inverse Prob 25:123011 (39pp)

    Google Scholar 

  104. Vauhkonen M, Lionheart WRB, Heikkinen LM, Vauhkonen PJ, Kaipio JP (2001) A MATLAB package for the EIDORS project to reconstruct two-dimensional EIT images. Physiol Meas 22:107–111

    Article  Google Scholar 

  105. Vauhkonen M (1997) Electrical impedance tomography and prior information. PhD thesis, University of Kuopio, Kuopio

    Google Scholar 

  106. Vauhkonen M, Karjalainen PA, Kaipio JP (1998) A Kalman Filter approach to track fast impedance changes in electrical impedance tomography. IEEE Trans Biomed Eng 45:486–493

    Article  Google Scholar 

  107. West RM, Soleimani M, Aykroyd RG, Lionheart WRB (2006) Speed Improvement of MCMC Image Reconstruction in Tomography by Partial Linearization. Int J Tomogr Stat 4, No. S06: 13–23

    MathSciNet  Google Scholar 

  108. West RM, Jia X, Williams RA (2000) Parametric modelling in industrial process tomography. Chem Eng J 77:31–36

    Article  Google Scholar 

  109. Yang WQ, Spink DM, York TA, McCann H (1999) An image reconstruction algorithm based on Landwebers iteration method for electrical-capacitance tomography. Meas Sci Technol 10:1065–1069

    Article  Google Scholar 

  110. York T (2001) Status of electrical tomography in industrial applications. J Electron Imaging 10:608–619

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this entry

Cite this entry

Adler, A., Gaburro, R., Lionheart, W. (2011). Electrical Impedance Tomography. In: Scherzer, O. (eds) Handbook of Mathematical Methods in Imaging. Springer, New York, NY. https://doi.org/10.1007/978-0-387-92920-0_14

Download citation

Publish with us

Policies and ethics