Skip to main content

Polymeric Materials for Rapid Manufacturing

  • Chapter
  • First Online:
Stereolithography

Abstract

Rapid Manufacturing also known as solid free-form fabrication is a term describing a range of processes whereby a computer generated design is converted to a three-dimensional (3D) object. This methodology was originally used for the manufacture of models and prototypes (hence the description “Rapid Prototyping”) [1] and has becoming an increasingly important tool for designers and manufacturers [2]; indeed in some cases this approach is being extended to the manufacture of small numbers of complex articles. One particularly exciting development is the use of Rapid Manufacturing for the production of biocompatible components for medical use, where the production of a one-off component is a necessary requirement. Examples include the manufacture of dental prostheses [3] and hip joints [4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    That being said the strength to weight ratio of polyethylene which allows the production of huge (and problematic) numbers of polyethene bags, can hardly be said to be unremarkable, other than in terms of the ubiquitous nature of these articles.

  2. 2.

    This definition also might apply to rubbers, but rubbers are deformable; thermosetting plastics are generally rigid.

  3. 3.

    It is important to form such systems that the side-groups exhibit different reactivity to the polymerisable units in the monomer prior to polymerization.

  4. 4.

    It is also possible that photoactive units can be added which degrade the polymer chain to form for example free-radicals, which may themselves combine [13, 14]; similarly ionising radiation (e.g. γ-radiation) will induce free-radical formation on the chain; the high energies involved may result in unwanted degradation products such as chain-scission.

  5. 5.

    Radicals produced may themselves react with the “onium” to form cationic species and a further radical – thus giving unexpectedly high quantum yields for initiation [19].

  6. 6.

    Vinyl alcohol is of course the thermodynamically unfavoured enol tautomer of ethanal and thus the ether is generally formed by addition of ROH across the acetylene triple bond.

  7. 7.

    For stereolithography, where the component has overhanging parts the support linking this to the main structure is not formed until after the part; this can only be solved by incorporating additional support struts into the design which are removed when the final model is made.

References

  1. I. Gibson and D. Shi, Material properties and fabrication parameters in selective sintering process, Rapid Prototyping Journal, 3, 129–136, 1997.

    Article  Google Scholar 

  2. R.M. Miranda, G. Lopes, L. Quintino, J.P. Rodrigues, and S. Williams, Rapid prototyping with high power fiber lasers, Materials and Design 29, 2072–2075, 2008.

    Article  Google Scholar 

  3. B. Vandenbroucke and J.-P. Kruth in “Bio-Materials and Prototyping Applications in Medicine”, Eds P. Bartolo and B. Bidanda, Springer, NY, Pages 109–124, 2008.

    Google Scholar 

  4. A.G. Mamalis, J.J. Ramsden, A.I. Grabchenko, L.A. Lytvynov, V.A. Filipenko and S.N. Lavrynenko, A novel concept for the manufacture of individual sapphire-metallic hip joint endoprostheses, Journal of Biological Physics and Chemistry, 6, 113–117, 2006.

    Article  Google Scholar 

  5. S. Yang, and J.R.G. Evans, Metering and dispensing of powder; the quest for new solid free-forming techniques, Powder Technology 178, 56–72, 2007.

    Article  Google Scholar 

  6. P. Calvert, Freeforming of polymers. Current Opinion in Solid State and Materials Science, 3: 585–588, 1998.

    Article  Google Scholar 

  7. M. Agarwala, D. Bourell, J. Beaman, H. Marcus, and J. Barlow, Direct selective laser sintering of metals, Rapid Prototyping Journal 1, 26–36, 1995.

    Article  Google Scholar 

  8. W. Höland, V. Rheinberger, E. Apel, C. van’t Hoen, Principles and phenomena of bioengineering with glass-ceramics for dental restoration, Journal of the European Ceramic Society, 27 (2007) 1521–1526.

    Article  Google Scholar 

  9. A. del Campo and E. Arzt, Fabrication approaches for generating complex micro and nanopatterns on surfaces, Chemical Reviews, 108 (2008), 911–945.

    Article  Google Scholar 

  10. M.P. Stevens, Polymer Chemistry an Introduction, 2nd Edition, OUP, New York, 1990.

    Google Scholar 

  11. W.H. Carothers, Journal of the American Chemical Society, 51(8), 2548–2559, 1929.

    Article  Google Scholar 

  12. S.S. Morye, P.J. Hine, R.A. Duckett, D.J. Carr, I.M. Ward. A comparison of the properties of hot compacted gel-spun polyethylene fibre composites with conventional gel-spun polyethylene fibre composites. Composites: Part A 30, 649–660, 1999.

    Article  Google Scholar 

  13. N.S. Allen, J.P. Hurley, G. Pullen, A. Rahman, M. Edge, G.W. Follows, F. Catalina, and I. Weddell, in Current Trends in Polymer Photochemistry, Ed. N.S. Allen, M. Edge, I.R. Bellobono, and E. Selli, Ellis Horwood, Hemel Hempstead, 1995.

    Google Scholar 

  14. N.S. Allen, Photoinitiators for UV and visible curing of coatings, mechanisms and properties, Journal of Photochemistry and Photobiology A: Chemistry 100, 101–107, 1996.

    Article  Google Scholar 

  15. N.J. Mills, Plastics, Microstructure and Engineering Applications, 2nd Edition, Hodder, London, 123–125, 1993.

    Google Scholar 

  16. N. S. Allen, M. C. Marin, M. Edge, D. W. Davies, J. Garrett, F. Jones, S. Navaratnam, and B. J. Parsons, Journal of Photochemistry and Photobiology A: Chemistry, 1999, 126, 135–149.

    Article  Google Scholar 

  17. R. E. Kerby, L. A. Knobloch, S. Schricker, and B. Gregg, Dental Materials, 25, 302–313, 2009.

    Article  Google Scholar 

  18. C. Decker, Progress in Polymer Science, 21, 593–650, 1996.

    Article  Google Scholar 

  19. J. V. Crivello, Journal of Polymer Science: Part A: Polymer Chemistry, 1999, 37, 4241–4254.

    Article  Google Scholar 

  20. C. Decker and D. Decker, Polymer, 38(9), 2229–2237, 1997.

    Article  MathSciNet  Google Scholar 

  21. J. V. Crivello, Nuclear Instruments and Methods in Physics Research B 151, 8–21, 1999.

    Article  Google Scholar 

  22. P. Eyerer, B. Wiedemann, K.-H. Duel, B. Keller, Computers in Industry 28, 35–45, 1995.

    Article  Google Scholar 

  23. K. Suyama, and M. Shirai, Progress in Polymer Science, 2009, 34, 194–209.

    Article  Google Scholar 

  24. H. Du and M.K. Boyd, The 9-xanthenylmethyl group: a novel photocleavable protecting group for amines. Tetrahedron Letters, 42, 6645–6647, 2001.

    Article  Google Scholar 

  25. T. Ohba, T. Shimizu, K. Suyama, and M. Shirai,. Photocrosslinking and redissolution properties of oligomers bearing photoamine generating groups and epoxy groups, Journal of Photopolymer Science and Technology, 18, 221–224, 2005.

    Article  Google Scholar 

  26. Y. Yamaguchi, B.J. Palmer, C. Kutal, T. Wakamatsu, and D.B. Yang, Ferrocenes as anionic photoinitiators. Macromolecules, 31, 5155–5157, 1998.

    Article  Google Scholar 

  27. R. Balajia, D. Grande, and S. Nanjundan, Reactive and Functional Polymers, 56, 45–57, 2003.

    Article  Google Scholar 

  28. V. Ramamurthy and K. Venkatesan, Photochemical reactions of organic crystals, Chemical Review 87, 433–481, 1987.

    Article  Google Scholar 

  29. Y. Xia and G.M. Whitesides, Soft lithography, Angewandte Chemie (International Ed. in English), 37, 550–575, 1998.

    Article  Google Scholar 

  30. J. Rickerby and J. H. G. Steinke, Current trends in patterning with copper, Chemical Review, 102, 1525–1549, 2002.

    Article  Google Scholar 

  31. D. Figeys, and D. Pinto, Lab-on-a-chip: a revolution in biological and medical sciences, Analytical Chemistry, 72 (9), 330A–335A, 2000.

    Article  Google Scholar 

  32. G. Wallraff and W.D. Hinsberg, Lithographic imaging techniques for the formation of nanoscopic features, Chemical Review, 1999, 99, 1801–1821.

    Article  Google Scholar 

  33. M. Chanda, and S. Roy, 2006. Plastics Technology Handbook, 4th ed. CRC Press, Boca Raton, P4–53, 2006.

    Book  Google Scholar 

  34. G. Rabilloud, High-Performance Polymers.Vol 3, Polyimides for Electronics, Technip Paris, 2000 P165 – 234.

    Google Scholar 

  35. J. M. Shaw, J. D. Gelorme, N. C. LaBianca, W. E. Conley, and S. J. Holmes, Negative photoresists for optical lithography, IBM Journal of Research and Development, 41, 81–94, 1997.

    Article  Google Scholar 

  36. A. Reiser; G. Bowes; R. Horne, Photolysis of aromatic azides, Transactions of the Faraday Society, 66, 3194, 1967.

    Google Scholar 

  37. H Lorenz, M Despont, N Fahrni, N LaBianca, P Renaud, and P Vettiger. SU-8: a low-cost negative resist for MEMS, Journal of Micromechanics and Microengineering, 7, 121–124, 1997.

    Article  Google Scholar 

  38. S.A. Wilson, R.P.J. Jourdain, Q. Zhang, R.A. Dorey, C. R. Bowen, M. Willander, Q. Ul Wahab, M. Willander, S. M. Al-hillie, O. Nur, E. Quandt, C. Johansson, E. Pagounis, M. Kohl, J. Matovic, B. Samel k,10, W. van der Wijngaart, E.W.H. Jager, D. Carlsson, Z. Djinovic, M. Wegener, C. Moldovan, R. Iosub, E. Abad, M. Wendlandt, C. Rusu, and K. Persson, New materials for micro-scale sensors and actuators: An engineering review, Materials Science and Engineering, R 56, 1–129, 2007.

    Google Scholar 

  39. X. Yan and P. Gu, A review of rapid prototyping technologies and systems, Computer Aided Design, 26, 307–318, 1996.

    Article  Google Scholar 

  40. C. Decker in Radiation Curing in Polymer Science and Technology 3, ed. J. P. Fouassier and J. F. Rabek, Elsevier, Chichester (1993). 1993 Chapter 2 33–64.

    Google Scholar 

  41. J.S. Ulletta, T. Benson-Tolle, J.W. Schultz, and R.P. Chartoff, Materials and Design, 20, 91–97, 1999.

    Article  Google Scholar 

  42. U. Bulut, and J.V. Crivello, Investigation of the reactivity of epoxide monomers in photoinitiated cationic polymerization, Macromolecules, 2005, 38, 3584–3595.

    Article  Google Scholar 

  43. U. Bulut, and J.V. Crivello, Reactivity of oxetane monomers in photoinitiated cationic polymerization, Journal of Polymer Science, Part A, Polymer Chemistry, 2005, 43, 3205–3220.

    Article  Google Scholar 

  44. W. L. Wang, C. M. Cheah, J. Y. H. Fuh, and L. Lu, Influence of process parameters on stereolithography part shrinkage, Materials and Design, 17, 205–213, 1996.

    Article  MATH  Google Scholar 

  45. L. Lecamp, B. Youssef, C. Bunel, and P. Lebaudy, Photoinitiated polymerization of a dimethacrylate oligomer Part 3 Postpolymerization study, Polymer, 40, 6313–6320, 1999.

    Article  Google Scholar 

  46. J.-P. Kruth, M.C. Leu, T. Nakagawa, Progress in additive manufacturing and rapid prototyping, Annals of the ClRP, 47, 525–540, 1998.

    Article  Google Scholar 

  47. M. Wozniak, T. Graule, Y. de Hazan, D. Kata, and J. Lis, Highly loaded UV curable nanosilica dispersions for rapid prototyping applications, Journal of the European Ceramic Society in Press.

    Google Scholar 

  48. D. Karalekas and K. Antoniou, Composite rapid prototyping: overcoming the drawback of poor mechanical properties, Journal of Materials Processing Technology 2004, 153–154, 526–530.

    Article  Google Scholar 

  49. A. Rosochowski, A. Matuszak, Rapid tooling: the state of the art, Journal of Materials Processing Technology, 2000, 106, 191–198.

    Article  Google Scholar 

  50. V. E. Beal, C. H. Ahrens, and P. A. Wendhausen, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 26, 40–46, 2004.

    Article  Google Scholar 

  51. J.C. Nelson, N.K. Vail, J.W. Barlow, J.J. Beaman, D.L. Bourell, and H.L. Marcuss, Selective laser sintering of polymer-coated silicon carbide powders, Industrial and Engineering Chemistry Research, 34, 1641–1651, 1995.

    Article  Google Scholar 

  52. H.C.H. Ho, I. Gibson, and W.L. Cheung, Effects of energy density on morphology and properties of selective laser sintered polycarbonate, Journal of Materials Processing Technology, 89–90, 204–210, 1999.

    Article  Google Scholar 

  53. J. Yang, Y. Shi, Q. Shen, and C. Yan, Selective laser sintering of HIPS and investment casting technology, Journal of Materials Processing Technology, 209, 1901–1908, 2009.

    Article  Google Scholar 

  54. B. Caulfield, P.E. McHugh, S. Lohfeld, Dependence of mechanical properties of polyamide components on build parameters in the SLS process, Journal of Materials Processing Technology, 182, 477–488, 2007.

    Article  Google Scholar 

  55. N.K. Vail, L.D. Swain, W.C. Fox, T.B. Aufdlemorte, G. Lee, and J.W. Barlow, Materials for biomedical applications, Materials and Design, 20, 123–132, 1999.

    Article  Google Scholar 

  56. J.L. Lombardi and P. Calvert, Extrusion freeforming of Nylon 6 materials, Polymer, 1999, 40, 1775–1779.

    Article  Google Scholar 

  57. S.H. Masood and W.Q. Song, Development of new metal/polymer materials for rapid tooling using Fused deposition modelling, Materials and Design 2004, 25, 587–594.

    Article  Google Scholar 

  58. J. Mateus, H.A. Almeida, N.M. Ferreira, N.M. Alves, P.J. Bartolo, C.M. Mota, and J.P. de SousaVirtual and Rapid Manufacturing: Advanced Research in Virtual and Rapid Prototyping ed P.J. Bartolo, Taylor and Francis, London, 171–175, 2008.

    Google Scholar 

  59. C. Zhang, X. Wen, N.R. Vyavahare, and T. Boland, Synthesis and characterization of biodegradable elastomeric polyurethane scaffolds fabricated by the inkjet technique, Biomaterials, 29, 3781–3791, 2008.

    Article  Google Scholar 

  60. G. Vozzi and A. Ahluwalia, Microfabrication for tissue engineering: rethinking the cells-on-a scaffold approach, Journal of Material Chemisty, 17, 1248–1254, 2007.

    Article  Google Scholar 

  61. K-S. Lee, R.H. Kim, D-Y. Yang, and S.H. Park, Advances in 3D nano/microfabrication using two-photon initiated polymerization, Progress in Polymer Science, 33, 631–681, 2008.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey R. Mitchell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Davis, F.J., Mitchell, G.R. (2011). Polymeric Materials for Rapid Manufacturing. In: Bártolo, P. (eds) Stereolithography. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-92904-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-92904-0_5

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-92903-3

  • Online ISBN: 978-0-387-92904-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics