Skip to main content

Structure and Function of Polysaccharide Gum-Based Edible Films and Coatings

  • Chapter
  • First Online:
Edible Films and Coatings for Food Applications

Abstract

Polysaccharide gums are hydrocolloids of considerable molecular weight, and are water-soluble. They dissolve in and form intensive hydrogen bonds with water. Because of the size and configuration of their molecules, these polysaccharides have the ability to thicken and/or gel aqueous solutions as a result of both hydrogen bonding between polymer chains and intermolecular friction when subjected to shear. Gums dissolve in water through the formation of solvent–polymer hydrogen bonds; in solution, polymer molecules may arrange themselves into an ordered structure, called a micelle that is stabilized or fortified by intermolecular hydrogen bonds (Fig. 3.1). The micelle traps and immobilizes water and, depending on the extent of the intermolecular association, the water is either thickened, as measured by a parameter called viscosity, or converted into a gel that possesses both liquid- and solid-like characteristics or viscoelasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.airgreen.co.jp/fenugreek/index_e.html

  2. 2.

    http://www.am-fe.ift.org/cms/?pid=1000355]

  3. 3.

    http://www.businessweek.com/magazine/content/06_31/b3995059.htm

  4. 4.

    http:www.pre.wur.nl/UK/Research/Food+Structuring/Microstructured/

References

  • Amanatidou A, Slump RA, Gorris LGM, Smid EJ (2000) High oxygen and high carbon dioxide modified atmospheres for shelf life extension of minimally processed carrots. J Food Sci 65:61–6

    CAS  Google Scholar 

  • Arnold FW (1968) Infrared roasting of coated nutmeats. U.S. patent 3, 383, 220

    Google Scholar 

  • Aspinall GO, Christensen JB (1965) Gum ghatti (Indian gum) Part IV. Acidic oligosaccharides from the gum. J Chem Soc 2673–2676 DOI: 10.1039/JR9650002673

    Google Scholar 

  • Aspinall GO, Hirst EL, Wickstrom A (1955) Gum ghatti (Indian gum) Part I. The composition of the gum and the structure of two aldobiuronic acids derived from it. J Chem Soc 1160–1165. DOI: 10.1039/JR9550001160

    Google Scholar 

  • Aspinall GO, Auret BJ, Hirst EL (1958a) Gum ghatti (Indian gum) Part II. The hydrolysis products obtained from the methylated degraded gum and the methylated gum. J Chem Soc 221–230. DOI: 10.1039/JR9580000221. 47

    Google Scholar 

  • Aspinall GO, Auret BJ, Hirst EL (1958b) Gum ghatti (Indian gum) Part III. Neutral oligosaccharides formed on partial acid hydrolysis of the gum. J Chem Soc 4408–4414. DOI: 10.1039/JR9580004408

    Google Scholar 

  • Aspinall GO, Bhavanadan VP, Christensen JB (1965) Gum ghatti (Indian gum) Part V. Degradation of the periodate-oxidized gum. J Chem Soc 2677–2684. DOI: 10.1039/JR9650002677

    Google Scholar 

  • Banks NH (1985) Internal atmosphere modification in pro-long coated apples. Acta Hort 157:105

    Google Scholar 

  • Bastioli C (2005) Handbook of biodegradable polymers. Toronto-Scarborough, Ontario, Canada, Chem Tec Publishing, 553 p

    Google Scholar 

  • Bender H, Wallenfels K (1961) Investigations on pullulan II. Specific degradation by means of a bacterial enzyme. Biochem Z 334:79–95

    CAS  Google Scholar 

  • Bernier B (1958) The production of polysaccharides by fungi active in the decomposition of wood and forest litter. Can J Microbiol 4:195–204

    CAS  Google Scholar 

  • Bouveng HO, Kiessling H, Lindberg B, McKay J (1962) Polysaccharides elaborated by Pullularia pullulans. I. The neutral glucan synthesized from sucrose solutions. Acta Chem Scand 16:615–622

    CAS  Google Scholar 

  • Bouveng HO, Kiessling H, Lindberg B, McKay J (1963) Polysaccharides elaborated by Pullularia pullulans. II. The partial acid hydrolysis of the neutral glucan synthesised from sucrose solutions. Acta Chem Scand 17:797–800

    CAS  Google Scholar 

  • Bryan DS (1972) Prepared citrus fruit halves and method of making the same. U.S. patent 3, 707, 383

    Google Scholar 

  • Carolan G, Catley BJ, McDougal FJ (1983) The location of tetrasaccharide units in pullulan. Carbohydr Res 114:237–243

    CAS  Google Scholar 

  • Catley BJ (1970) Pullulan, a relationship between molecular weight and fine structure. FEBS Lett 10:190–193

    CAS  Google Scholar 

  • Catley BJ, Whelan WJ (1971) Observations on the structure of pullulan. Arch Biochem Biophys 143:138–142

    CAS  Google Scholar 

  • Catley BJ, Robyt JF, Whelan WJ (1966) A minor structural feature of pullulan. Biochem J 100:5P–8P

    CAS  Google Scholar 

  • Chandramouli V, Kailasapathy K, Peiris P, Jones M (2004) An improved method of microencapsulation and its evaluation to protect Lactobacillus spp. in simulated gastric conditions. J Microbiol Methods 57:27–35

    Google Scholar 

  • Chandrasekaran R, Radha A (1995) Molecular architectures and functional properties of gellan gum and related polysaccharides. Trends Food Sci 6:143–148

    CAS  Google Scholar 

  • Chaplin M (2008) Water Structure and Science – Gum Arabic http://www.lsbu.ac.uk/water/hyarabic.html

    Google Scholar 

  • Chen S, Nussinovitch A (2000) The role of xanthan gum in traditional coatings of easy peelers. Food Hydrocolloids 14(4):319–326(8)

    CAS  Google Scholar 

  • Chien PJ, Sheu F, Yang FH (2007) Effects of edible chitosan coating on quality and shelf life of sliced mango fruit. J Food Eng 78:225–9

    CAS  Google Scholar 

  • Choi JH, Cha DS, Park HJ (2001) The antimicrobial films based on Na-alginate and κ-carrageenan. In: IFT Annual Meeting, Food Packaging Division (74D). New Orleans, LA

    Google Scholar 

  • Conca KR, Yang TCS (1993) Edible food barrier coatings. In: Ching C, Kaplan D, Thomas D (eds) Biodegradable Polymers and Packaging. Technomic Publishing Co. Inc, Lancaster, PA, pp 357–69

    Google Scholar 

  • Cottrell IW, Kovacks P (1980) Alginates. In: Davidson RL (ed) Handbook of Water-Soluble Gums and Resins. McGraw-Hill, New York, NY, p 143

    Google Scholar 

  • Daas PJH, Schols HA, de Jongh HHJ (2000) On the galactosyl distribution of commercial galactomannans. Carbohydr Res 329:609–619

    CAS  Google Scholar 

  • Decher G, Schlenoff JB (2003) Multilayer thin films: sequential assembly of nanocomposite materials. Wiley VCH, Weinheim, Germany, p 543

    Google Scholar 

  • DeLeenheer L, Hoebregs H (1994). Progress in the elucidation of the composition of chicory inulin. Starch 46:193

    CAS  Google Scholar 

  • Donati I, Holtan S, Mørch YA, Borgogna M, Dentini M, Skjåk-Bræk (2005) New hypothesis on the role of alternating sequences in calcium-alginate gels. Biomacromolecules 6:1031–1040

    CAS  Google Scholar 

  • Dow Chemical (2002) METHOCEL Cellulose Ethers Technical Handbook. http://www.dowchemical.com/methocel/ pharm/ resource/lit_gnl.htm

    Google Scholar 

  • Draget KI (2000) Alginates. In: Phillips GO, Williams PA (eds) Handbook of Hydrocolloids. CRC , Boca Raton, FL pp 379–395

    Google Scholar 

  • Druchta JM, Jonhston CD (1997) An Update on Edible Films-Scientific Status Summary. Food Technol 51(2):60, 62–63

    Google Scholar 

  • Durango AM, Soares NF, Andrade NJ (2006) Microbiological evaluation of an edible antimicrobial coating on minimally processed carrots. Food Control 17:336–41

    CAS  Google Scholar 

  • Ebringerova A, Hromadkova Z, Heinze T (2005) Hemicellulose. In: Heinze T (ed) Advances in Polymer Science [186] Polysaccharides-Structure Characterization and Use. Springer, Berlin, pp 1–68

    Google Scholar 

  • Environmental Protection Agency, US (2006) Municipal solid waste in the United States: 2005 facts and figures. EPA530-R-06-011, Washington D.C., p 153

    Google Scholar 

  • Evans AJ, Hood RL, Oakenfull DG, Sidhu GS (1992) Relationship between structure and function of dietary fibre: A comparative study of the effects of three galactomannans on cholesterol metabolism in the rat. Br J Nutr 68(1):217–229

    CAS  Google Scholar 

  • Falshaw R, Bixler HJ, Johndro K (2001) Structure and performance of commercial kappa-2 carrageenan extracts I. Structure analysis. Food Hydrocolloids 15:441–452

    CAS  Google Scholar 

  • Fisher LG, Wong P (1972) Method of forming an adherent coating on foods. U.S. patent 3, 676, 158

    Google Scholar 

  • Giannouli P, Morris ER (2000) Cryogelation of xanthan. Food Hydrocolloids 17:495–501

    Google Scholar 

  • Goodrum LJ, Patel A, Leykam JF, Kieliszewski MJ (2000) Gum arabic glycoprotein contains glycomodules of both extensin and arabinogalactan-glycoproteins. Phytochemistry 54:99–106

    CAS  Google Scholar 

  • Goycoolea FM, Milas M, Rinaudo M (2001) Associative phenomena in galactomannan-deacetylated xanthan systems. Int J Biol Macromol 29:181–192

    CAS  Google Scholar 

  • Han C, Lederer C, McDaniel M, Zhao Y (2004a) Sensory evaluation of fresh strawberries (Fragaria ananassa) coated with chitosan-based edible coatings. J Food Sci 70:S172–8

    Google Scholar 

  • Han C, Zhao Y, Leonard SW, Traber MG (2004b) Edible coatings to improve storability and enhance nutritional value of fresh and frozen strawberries (Fragaria ananassa) and raspberries (Rubus ideaus). Postharvest Biol Technol 33:67–78

    CAS  Google Scholar 

  • Hanna D, Shaw EHJ (1941) Chemical constitution of gum ghatti. Proc S Dakota Acad Sci 21:78

    CAS  Google Scholar 

  • Hershko V, Nussinovitch A (1998) Relationships between hydrocolloid coating and mushroom structure. J Agric Food Chem 46:2988–97

    CAS  Google Scholar 

  • Iijima H, Takeo K (2000) Microcrystalline cellulose: an overview. In: Handbook of Hydrocolloids, Phillips GO, Williams PA (eds) CRC/Woodhead Publishing, Boca Raton, p 664

    Google Scholar 

  • Iverson CE, Ager SP (inventors) CH.sub.2O Incorporated (assignee)(2003) Method of coating food products and a coating composition. U.S. patent 6, 586, 029

    Google Scholar 

  • Jansson PE, Keene L, Lindberg B (1975) Structure of the exocellular polysaccharide from Xanthomonas campestris, Carbohydr Res 45:275–82

    CAS  Google Scholar 

  • Juang RS, Shao HJ (2002) A simplified equilibrium model for sorption of heavy metal ions from aqueous solutions on chitosan. Water Res 36(12):2999–3008

    CAS  Google Scholar 

  • Kato K (1973) Isolation of oligosaccharides corresponding to the branching-point of Konjac Mannan. Agr Biol Chem 37(9):2045–2051

    CAS  Google Scholar 

  • Kato K, Matsuda K (1969) Studies on the chemical stucture of konjac mannan. Part I. Isolation and characterization of oligosaccharides from the partial acid hydrolyzate of mannan. Agric Biol Chem 33, 1446–1453.

    CAS  Google Scholar 

  • Kester JJ, Fennema OR (1986) Edible films and coatings: a review. Food Technol 40(12):47–59

    CAS  Google Scholar 

  • King AH (1983) Brown seaweed extracts (alginates). In: Food Hydrocolloids. vol II Glicksman M (ed) CRC, Boca Raton FL, pp 115–88

    Google Scholar 

  • Kirk-Othmer (1993) Cellulose ethers. In: Encyclopedia of Chemical Technology, 4th edn. vol 5, Kroschwitz J (ed). Wiley, New York, NY, pp 541–561

    Google Scholar 

  • Krochta JM (1997) Edible protein films and coatings. In: Food Proteins and Their Applications. Damodaran S, Paraf A (eds) Marcel Dekker, New York, NY

    Google Scholar 

  • Krumel KL, Lindsay TA (1976) Nonionic cellulose ethers. Food Technol 30(4):36–8, 40, 43

    CAS  Google Scholar 

  • Labropoulos KC, Niesz DE, Danforth SC, Kevrekidis PG (2002) Dynamic rheology of agar gels: theory and experiment. Part I. Development of a rheological model. Carbohydr Polym 50:393–406

    CAS  Google Scholar 

  • Le Cerf D, Irinei F, Muller G (1990) Solution properties of gum exudates from Steculia urens [karaya gum]. Carbohydr Polym 13(4):375–386

    CAS  Google Scholar 

  • Leathers TD (2003) Biotechnological production and applications of pullulan. Appl Microbiol Biotechnol. 62:468–473

    CAS  Google Scholar 

  • Lee JY, Park HJ, Lee CY, Choi WY (2003) Extending shelf-life of minimally processed apples with edible coatings and antibrowning agents. Lebens Wissen Technol 36:323–9

    CAS  Google Scholar 

  • Li B, Xie B, Kennedy JF (2006) Studies on the molecular chain morphology of konjac glucomannan. Carbohydr Polym 64(4):510–515

    CAS  Google Scholar 

  • Lin D, Zhao Y (2007) Innovations in the Development and Application of Edible Coatings for Fresh and Minimally Processed Fruits and Vegetables. Compr Rev Food Sci Food Safety 6(3):60–75

    CAS  Google Scholar 

  • Lootens D, Capel F, Durand D, Nicolai T, Boulenguer P, Langendorff V (2003) Influence of pH, Ca concentration, temperature and amidation on the gelation of low methoxyl pectin. Food Hydrocolloids 17:237–244

    CAS  Google Scholar 

  • Lowings PH, Cutts DF (1982) The preservation of fresh fruits and vegetables. In Proceedings of the Institute of Food Science and Technology Annual Symposium, Nottingham, UK, p 52

    Google Scholar 

  • Maeda M, Shimahara H, Sugiyama N (1980) Detailed examination of the branched structure of konjac glucomannan. Agric Biol Chem 44:245–252

    CAS  Google Scholar 

  • Maekaji K (1974) The mechanism of gelation of konjacmannan. Agric. Biol. Chem., 38, 315–321

    CAS  Google Scholar 

  • Maekaji K (1978) Nippon Nogeikagakukaishi. 52:251, 485, 513

    CAS  Google Scholar 

  • Maftoonazad N, Ramaswamy HS (2005) Postharvest shelf-life extension of avocados using methyl cellulose-based coating. Lebens Wissen Technol 38:617–24

    CAS  Google Scholar 

  • Mason DF (1969) Oct 14. Fruit preservation process. U.S. patent 3, 472, 662

    Google Scholar 

  • Mazza G, Qi H (1991) Control of after cooking darkening in potatoes with edible film-forming products and calcium chloride. J Agric Food Chem 39:2163–6

    CAS  Google Scholar 

  • Marsh K, Bugusu B (2007). Food packaging-roles, materials and environmental issues. J Food Sci 72(3):39–55

    Google Scholar 

  • May CD (2000) Pectins. In: Handbook of Hydrocolloids. Phillips GO and Williams, PA (eds) Woodhead Publishing Ltd, Cambridge, UK, pp. 219–229

    Google Scholar 

  • Meheriuk M, Lau OL (1988) Effect of two polymeric coatings on fresh quality of ‘Bartlett’ and ‘d’Anjou’ pears. J Am Soc Hort Sci 113:222–6

    CAS  Google Scholar 

  • Mei Y, Zhao Y, Yang J, Furr HC (2002) Using edible coating to enhance nutritional and sensory qualities of baby carrots. J Food Sci 67(5):1964–1968

    CAS  Google Scholar 

  • Melton LD, Mindt L, Rees DA, Sanderson GR (1976) Covalent structure of the polysaccharide from Xanthomonas campestris: Evidence from partial hydrolysis studies. Carbohydr Res 46:245–57

    CAS  Google Scholar 

  • Morgan BH (1971) Edible packaging update. Food Prod Devel 5:75–7, 108

    CAS  Google Scholar 

  • Murray JCF (2000) Cellulosics. In: Handbook of Hydrocolloids. Phillips GO, Williams PA (eds) Woodhead Publishing Ltd, Cambridge, UK, pp 219–229

    Google Scholar 

  • Naouli N (2006) Molecular weight analysis of linear and branched gums using triple detection technique. Application Report Number 0076-06 by Polymer Laboratories. (Unpublished)

    Google Scholar 

  • Nieto M, Grazaitis D (2006) Edible Films with Unique Properties Using Gums. (Unpublished) Presented at IFT in Orlando, FL

    Google Scholar 

  • Nisperos-Carriedo MO, Baldwin EA (1990) Edible coatings for fresh fruits and vegetables. In: Subtropical Technology Conference Proceedings. Lake Alfred, FL

    Google Scholar 

  • Park SI, Zhao Y (2004) Incorporation of a high concentration of mineral or vitamin into-chitosan-based films. J Agric Food Chem 52:1933–9

    CAS  Google Scholar 

  • Park S, Stan SD, Daeschel MA, Zhao Y (2005) Antifungal coatings on fresh strawberries (Fragaria ananassa) to control mold growth during cold storage. J Food Sci 70: M202–7

    CAS  Google Scholar 

  • Pedroni VI, Schulz PC, Gschaider ME, Andreucetti N (2003) Chitosan structure in aqueous solution. Colloid Polym Sci 282(1):100–102

    CAS  Google Scholar 

  • Petkowicz CLO, Reicher F, Mazeau K (1998) Conformational analysis of galactomannans: from oligomeric segments to polymeric chains. Carbohydr Polym 37:25–39

    CAS  Google Scholar 

  • Pérez S, Mazeau K, Hervé du Penhoat C (2000) The three-dimensional structures of the pectic polysaccharides. Plant Physiol Biochem 38:37–55

    Google Scholar 

  • Pérez S, Rodríguez-Carvajal MA, Doco T (2003) A complex plant cell wall polysaccharide: rhamnogalacturonan II. A structure in quest of a function, Biochimie 85:109–121

    Google Scholar 

  • Ralet MC, Dronnet V, Buchholt HC, Thibault JF (2001) Enzymatically and chemically de-esterified lime pectins: characterisation, polyelectrolyte behaviour and calcium binding properties. Carbohydr Res 336:117–125

    CAS  Google Scholar 

  • Ribeiro C, Vicente AA, Teixeira JA Miranda C (2007) Optimization of edible coating composition to retard strawberry fruit senescence. Postharvest Bio Technol 44:63–70

    CAS  Google Scholar 

  • Risbud M, Hardikar A, Bhonde R (2000) Growth modulation of fibroblast by chitosan-polyvinyl pyrrolidone hydrogel: implications for wound management. J Biosci 25(1):147–159

    Google Scholar 

  • Sacharow S (1972) Edible films. Packaging 43:6, 9

    Google Scholar 

  • Sanderson GR (1981) Polysaccharides in foods. Food Technol 35:50–7, 83

    CAS  Google Scholar 

  • Santerre CR, Leach TF, Cash JN (1989) The influence of the sucrose polyester, Sempfresh, on the storage of Michigan grown ‘McIntosh’ and ‘Golden Delicious’ apples. J Food Proc Preserv 13:293–305

    Google Scholar 

  • Shahidi F, Arachchi JKV, Jeon Y (1999) Food applications of chitin and chitosans. Trends Food Sci Technol 10:37–51

    CAS  Google Scholar 

  • Shimahara H, Suzuki H, Sugiyama N, Nishizawa K (1975a) Isolation and Characterization of Oligosaccharides from an Enzymic Hydrolysate of Konjac Glucomannan. Agri Biol Chem 39(2):293–299

    CAS  Google Scholar 

  • Shimahara H, Suzuki H, Sugiyama N, Nishizawa K (1975b) Partial Purification of ß-Mannanases from the Konjac tubers and Their Substrate Specificity in Relation to the Structure of Konjac Glucomannan. Agri Biol Chem 39(2):301–312

    CAS  Google Scholar 

  • Sowa W, Blackwood AC, Adams GA (1963) Neutral extracellular glucan of Pullularia pullulans (de Bary) Berkhout. Can J Chem 41:2314–2319

    CAS  Google Scholar 

  • Srinivasa P, Baskaran R, Ramesh M, Harish Prashanth K, Tharanathan R (2002) Storage studies of mango packed using biodegradable chitosan film. Eur Food Res Technol 215(6):504–508

    CAS  Google Scholar 

  • Stephen AM, Churms SC (1995) Gums and mucilages. In: Food Polysaccharides and Their Applications. Stephen AM (ed) Marcel Dekker, New York, NY, pp 377–425

    Google Scholar 

  • Sugiyama N, Shimahara H, Andoh T, Takemoto M, Kamata T (1972) Molecular weights of Konjac Mannans of various sources. Agri Biol Chem 36(8):1381–1387

    CAS  Google Scholar 

  • Sworn G (2000) Gellan gums. In: Handbook of Hydrocolloids. Phillips GO, Williams PA (eds) CRC/Woodhead Publishing, Boca Raton, pp 117–35

    Google Scholar 

  • Takahashi R, Kusukabe I, Kusano S, Sakurai Y, Murakami K, Maekawa A, Suzuki T (1984) Structures of Glucomanno-oligosaccharides from the Hydrolytic Products of Konjac Glucomannan Produced by a β-Mannanase from Streptomyces sp. Agric Biol Chem 48, 2943–2950

    Google Scholar 

  • Takigami S (2000) Konjac Mannan. In: Handbook of Hydrocolloids. Phillips GO, Williams PA (eds) CRC/Woodhead Publishing, Boca Raton pp 413–424

    Google Scholar 

  • Tischer CA, Iacomini M, Wagner R, Gorin PAJ (2002) New structural features of the polysaccharide from gum ghatti (Anogeissus latifolia). Carbohydr Res 37:2205–2210

    Google Scholar 

  • Tsujisaka Y, Mitsuhashi M (1993) Pullulan. In: Whistler RL, BeMiller JN (eds) Industrial Gums. Polysaccharides and Their Derivatives, 3rd edn. Academic, San Diego, CA, pp 447–460

    Google Scholar 

  • Ueda S, Fujita K, Komatsu K, Nakashima Z (1963) Polysaccharide produced by the genus Pullularia. I. Production of polysaccharide by growing cells. Appl Microbiol 11:211–215

    CAS  Google Scholar 

  • Vargas M, Albors A, Chiralt A, Gonzalez-Martinez C (2006) Quality of cold-stored strawberries as affected by chitosan-oleic acid edible coatings. Postharvest Biol Technol 41:164–71

    CAS  Google Scholar 

  • Verbeken D, Dierckx S, Dewettinck K (2003) Exudate gums: occurence, production, and applications, Appl Microbiol Biotechnol 63:10–21

    CAS  Google Scholar 

  • Wallenfels K, Bender H, Keilich G, Bechtler G (1961) On pullulan, the glucan of the slime coat of Pullularia pullulans. Angew Chem 73:245–246

    Google Scholar 

  • Wallenfels K, Keilich G, Bechtler G, Freudenberger D (1965) Investigations on pullulan. IV. Resolution of structural problems using physical, chemical and enzymatic methods. Biochem Z 341:433–450

    CAS  Google Scholar 

  • Weiss J, Takhistov P, McClements J (2006) Functional materials in food nanotechnology. J Food Sci 71(9):107–116

    Google Scholar 

  • Wielinga WC, (2000) Galactomannans. In: Handbook of Hydrocolloids, Phillips GO, Williams PA (eds) CRC/Woodhead Publishing, Boca Raton, pp 413–423

    Google Scholar 

  • Williams PA, Phillips GO (2000) Gum Arabic. In: Handbook of Hydrocolloids. Phillips GO, Williams PA (eds) CRC/Woodhead Publishing, Boca Raton, pp 155–168

    Google Scholar 

  • Yuen S (1974) Pullulan and its applications. Process Biochem 9:7–9

    CAS  Google Scholar 

  • Zhang D, Quantick PC (1998) Antifungal effects of chitosan coating on fresh strawberries and raspberries during storage. J Hort Sci Biotechnol 73:763–7

    CAS  Google Scholar 

Download references

Acknowledgements

I would like to recognize the assistance of the following TIC Gums employees in preparing and testing the gum films and in editing the photos and figures shown in this chapter for print quality: Nick Pippen, Dan Grazaitis, Renrick Atkins, Frances Bowman and Maureen Akins.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marceliano B. Nieto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Nieto, M.B. (2009). Structure and Function of Polysaccharide Gum-Based Edible Films and Coatings. In: Huber, K., Embuscado, M. (eds) Edible Films and Coatings for Food Applications. Springer, New York, NY. https://doi.org/10.1007/978-0-387-92824-1_3

Download citation

Publish with us

Policies and ethics