Skip to main content

Single-Molecule Imaging of LacI Diffusing Along Nonspecific DNA

  • Chapter
  • First Online:
Biophysics of DNA-Protein Interactions

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

Abstract

Transcription factors, restriction enzymes, and RNA polymerases are proteins that function by binding to their specific target sites on DNA [1, 2]. The DNA targets for these proteins are typically a few tens of base pairs long, while the chromosomes contain over a million base pairs of DNA (E. coli, for example, has 4.6 million base pairs); therefore, before reaching their targets, it is inevitable that DNA-binding ­proteins encounter nonspecific DNA first. In this process, protein–nonspecific-DNA binding does occur (although with weaker affinity than DNA target binding [3]) and this interaction affects the specific-DNA targeting rate of the protein. In order to regulate the targeting rate of DNA-binding proteins, which is an important step for gene expression regulations, the mechanisms of protein interaction with nonspecific DNA must be elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ptashne M (1992) A genetic switch: phage lambda and higher organisms, 2nd edn. Blackwell, Cambridge, MA

    Google Scholar 

  2. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002) Molecular biology of the cell, fourth edn. Garland Science, New York

    Google Scholar 

  3. Revzin A (1990) The biology of nonspecific DNA protein interactions. CRC Press, London

    Google Scholar 

  4. Riggs AD, Bougeois S, Cohn M (1970) The lac repressor-operator interaction. 3. Kinetic studies. J Mol Biol 53:401–417

    Article  Google Scholar 

  5. Adam G, Delbruck M (1968) Reduction of dimensionality in biological diffusion process. In: Rich A, Davidson N (eds) Structural chemistry in molecular biology, Freeman, San Francisco, pp. 198–215

    Google Scholar 

  6. Berg OG, Blomberg C (1976) Association kinetics with coupled diffusional flow. Special application to the Lac repressor-operator system. Biophys Chem 4:367–381

    Article  Google Scholar 

  7. Berg OG (1978) On diffusion-controlled dissociation. Chem Phys 31:47–57

    Article  ADS  Google Scholar 

  8. Winter RB, von Hippel PH (1981) Diffusion-driven mechanisms of protein translocation on nucleic acids. 2. The Escherichia coli repressor-operator interaction: equilibrium measurements. Biochemistry 20:6948–6960

    Article  Google Scholar 

  9. Jack WE, Terry BJ, Modrich P (1982) Involvement of outside DNA sequences in the major kinetic path by which EcoRI endonuclease locates and leaves its recognition sequence. Proc Natl Acad Sci U S A 79:4010–4014

    Article  ADS  Google Scholar 

  10. Ricchetti M, Metzger W, Heumann H (1988) One-dimensional diffusion of Escherichia coli DNA-dependent RNA polymerase: A mechanism to facilitate promoter location. Proc Natl Acad Sci U S A 85:4610–4614

    Article  ADS  Google Scholar 

  11. Ruusala T, Crothers DM (1992) Sliding and intermolecular transfer of the Lac repressor - kinetic perturbation of a reaction intermediate by a distant DNA-sequence. Proc Natl Acad Sci U S A 89:4903–4907

    Article  ADS  Google Scholar 

  12. Kabata H, Kurosawa O, Arai I, Washizu M, Margarson SA, Glass RE, Shimamoto N (1993) Visualization of single molecules of RNA polymerase sliding along DNA. Science 262:1561–1563

    Article  ADS  Google Scholar 

  13. Hsien M, Brenowitz M (1997) Comparison of the DNA association kinetics of the Lac repressor tetramer, its dimeric mutant LacIadj and the native dimeric Gal repressor. J Biol Chem 272:22092–22096

    Article  Google Scholar 

  14. Shimamoto N (1999) One-dimensional diffusion of proteins along DNA. J Biol Chem 274:15293–15296

    Article  Google Scholar 

  15. Halford SE, Marko JF (2004) How do site-specific DNA-binding proteins find their targets? Nucleic Acids Res 32:3040–3052

    Article  Google Scholar 

  16. Misteli T (2001) Nuclear structure - Protein dynamics: Implications for nuclear architecture and gene expression. Science 291:843–847

    Article  ADS  Google Scholar 

  17. Stanford NP, Szczelkun D, Marko JF, Halford SE (2000) One- and three-dimensional pathways for proteins to reach specific DNA sites. EMBO J 23:6546–6557

    Article  Google Scholar 

  18. Gowers DM, Halford SE (2003) Protein motion from non-specific to specific DNA by three-dimensional routes aided by supercoiling. Embo J 22:1410–1418

    Article  Google Scholar 

  19. Elf J, Li G-W, Xie XS (2007) Probing transcription factor dynamics at the single-molecule level in a living cell. Science 316:1191–1194

    Article  ADS  Google Scholar 

  20. Biebricher A, Wende W, Escudé C, Pingoud A, Desbiolles P (2009) Tracking of single quantum dot labeled EcoRV sliding along DNA manipulated by double optical tweezers. Biophys J: Biophys Lett 96:L50–L52

    Google Scholar 

  21. Li G-W, Berg OG, Elf J (2009) Effects of macromolecular crowding and DNA looping on gene regulation kinetics. Nat Phys 5:294–297

    Article  Google Scholar 

  22. Barbi M, Place C, Popkov V, Salerno M (2004) A model of sequence-dependent protein diffusion along DNA. J Biol phys 30:203–226

    Article  Google Scholar 

  23. Berg OG, Ehrenberg M (1982) Association kinetics with coupled three- and one-dimensional diffusion : Chain-length dependence of the association rate to specific DNA sites. Biophys Chem 15:41–51

    Article  ADS  Google Scholar 

  24. Gowers DM, Wilson GG, Halford SE (2005) Measurement of the contributions of 1D and 3D pathways to the translocation of a protein along DNA. Proc Natl Acad Sci U S A 102:15883–15888

    Article  ADS  Google Scholar 

  25. Porecha RH, Stivers JT (2008) Uracil DNA glycosylase uses DNA hopping ad short-range sliding to trap extrahelical uracils. Proc Natl Acad Sci U S A 105:10791–10796

    Article  ADS  Google Scholar 

  26. Harada Y, Funatsu T, Murakami K, Nonoyama Y, Ishihama A, Yanagida T (1999) Single-molecule imaging of RNA polymerase-DNA interactions in real time. Biophys J 76:709–715

    Article  Google Scholar 

  27. Berg OG, von Hippel PH (1985) Diffusion-controlled macromolecular interactions. Annu Rev Biophys Biophys Chem 14:131–160

    Article  Google Scholar 

  28. Barkley MD (1981) Salt dependence of the kinetics of the lac repressor-operator interaction: role of nonoperator deoxyribonucleic acid (DNA) in the association reaction. Biochemistry 20:3833–3842

    Article  Google Scholar 

  29. Hu L, Grosberg AY, Bruinsma R (2008) Are DNA transcription factor proteins Maxwellian demons? Biophys J 95:1151–1156

    Article  Google Scholar 

  30. Wunderlich Z, Mirny LA (2008) Spatial effects on the speed and reliability of protein-DNA search. Nucleic Acids Res 36:3570–3578

    Article  Google Scholar 

  31. Wang YM, Tegenfeldt J, Reisner W, Riehn R, Guan X-J, Guo L, Golding I, Cox EC, Sturm J, Austin RH (2005) Single-molecule studies of repressor-DNA interactions show long-range interactions. Proc Natl Acad Sci U S A 102:9796–9801

    Article  ADS  Google Scholar 

  32. Perkins TT, Smith DE, Larson RG, Chu S (1995) Stretching of a single tethered polymer in a uniform flow. Science 268:83–87

    Article  ADS  Google Scholar 

  33. Kalodimos CG, Biris N, Bonvin AMJJ, Levandoski MM, Guennuegues M, Boelens R, Kaptein R (2004) Adaptation in nonspecific and specific protein-DNA complexes. Science 305:386–389

    Article  ADS  Google Scholar 

  34. Smith SB, Finzi L, Bustamante C (1992) Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads. Science 258:1122–1126

    Article  ADS  Google Scholar 

  35. Thompson RE, Larson DR, Webb WW (2002) Precise nanometer localization analysis for individual fluorescent probes. Biophys J 82:2775–2783

    Article  Google Scholar 

  36. Qian H, Sheetz MP, Elson EL (1991) Single particle tracking: Analysis of diffusion and flow in two-dimensional systems. Biophys J 60:910–921

    Article  Google Scholar 

  37. Blainey PC, van Oijent AM, Banerjee A, Verdine GL, Xie XS (2006) A base-excision DNA-repair protein finds intrahelical lesion bases by fast sliding in contact with DNA. Proc Natl Acad Sci U S A 103:5752–5757

    Article  ADS  Google Scholar 

  38. Graneli A, Yeykal C, Robertson R, Greene E (2006) Long-distance lateral diffusion of human Rad51 on double-stranded DNA. Proc Natl Acad Sci U S A 103:1221–1226

    Article  ADS  Google Scholar 

  39. Austin RH, Beeson K, Eisenstein L, Frauenfelder H, Gunsalus I, Marshall V (1974) Activation energy spectrum of a biomolecule: Photodissociation of carbonmonoxy myoglobin at low temperatures. Phys Rev Lett 32:403–405

    Article  ADS  Google Scholar 

  40. Slutsky M, Mirny LA (2004) Kinetics of protein-DNA interaction: Facilitated target location in sequence-dependent potential. Biophys J 87:4021–4035

    Article  Google Scholar 

  41. Barbi M, Place C, Popkov V, Salerno M (2004) Base-sequence-dependent sliding of proteins on DNA. Phys Rev E 70:041901

    Article  ADS  Google Scholar 

  42. Gerland U, Moroz JD, Hwa T (2002) Physical constraints and functional characteristics of transcription factor–DNA interaction. Proc Natl Acad Sci U S A 99:12015–12020

    Article  ADS  Google Scholar 

  43. Berg OG, von Hippel PH (1989) Selection of DNA binding sites by regulatory proteins statistical-mechanical theory and application to operators and Promoters. J Mol Biol 193:723–750

    Article  Google Scholar 

  44. von Hippel P, Rees WA, Rippe K, Wilson KS (1996) Specificity mechanisms in the control of transcription. Biophys Chem 59:231

    Article  Google Scholar 

  45. Wang YM, Austin RH, Cox EC (2006) Single molecule measurements of repressor protein 1D diffusion on DNA. Phys Rev Lett 97:048302

    Article  ADS  Google Scholar 

  46. Gorman J, Chowdhury A, Surtees JA, Shimada J, Reichman DR, Alani E, Greene EC (2007) Dynamic Basis for one-dimensional DNA scanning by the mismatch repair complex Msh2-Msh6. Cell 28:359–370

    Google Scholar 

  47. Kim JH, Larson RG (2007) Single-molecule analysis of 1D diffusion and transcription elongation of T7 RNA polymerase along individual stretched DNA molecules. Nucleic Acids Res 35:3848–3858

    Article  Google Scholar 

  48. Tafvizi A, Huang F, Leith JS, Fersht AR, Mirny LA, van Oijen AM (2008) Tumor Suppressor p53 Slides on DNA with low friction and high stability. Biophys J: Biophys Lett 95:L01–L03

    Google Scholar 

  49. Bonnet I, Biebricher A, Porté P-L, Loverdo C, Bénichou O, Voituriez R, Escudé C, Wende W, Pingoud A, Desbiolles P (2008) Sliding and jumping of single EcoRV restriction enzymes on non-cognate DNA. Nucleic Acids Res 36:4118–4127

    Article  Google Scholar 

  50. Gorman J, Greene EC (2008) Visualizing one-dimensional diffusion of proteins along DNA. Nat Struct Mol Biol 15:768–774

    Article  Google Scholar 

  51. van Mameren J, Peterman EJG, Wuite GJL (2008) See me, feel me: methods to concurrently visualize and manipulate single DNA molecules and associated proteins. Nucleic Acids Res 36:4381–4389

    Article  Google Scholar 

  52. Komazin-Meredith G, Mirchev R, Golan DE, van Oijen AM, Coen DM (2008) Hopping of a precessivity factor on DNA revealed by single-molecule assays of diffusion. Proc Natl Acad Sci U S A 105:10721–10726

    Article  ADS  Google Scholar 

  53. Laurence TA, Kwon Y, Johnson A, Hollars CW, O’Donnell M, Camarero JA, Barsky D (2009) Motion of a DNA sliding clamp observed by single molecule fluorescence spectroscopy. J Biol Chem 283:22895–22906

    Article  Google Scholar 

  54. Lin Y, Zhao T, Jian X, Farooqui Z, Qu X, He C, Dinner AR, Scherer NF (2009) Using the bias from flow to elucidate single DNA repair protein sliding and interactions with DNA. Biophys J 96:1911–1917

    Article  Google Scholar 

  55. Kurita H, Torii K, Yasuda H, Takashima K, Katsura S, Mizuno A (2009) The effect of physical form of DNA on exonucleaseIII activity revealed by single-molecule observations. J Fluoresc 19:33–40

    Article  Google Scholar 

  56. Fan H-F, Li H-W (2009) Studying RecBCD helicase translocation along χ-DNA using tethered partical motion with a stretching force. Biophys J 96:1875–1883

    Article  Google Scholar 

  57. van Oijen A, Köhler J, Schmidt J, Müller M, Brakenhoff G (1998) 3-Dimensional super-resolution by spectrally selective imaging. Chem Phys Lett 292:183–187

    Article  Google Scholar 

  58. Speidel M, Jonas A, Florin E-L (2003) Three-dimensional tracking of fluorescent nanoparticles with subnanometer precision by use of off-focus imaging. Opt Lett 28:69–71

    Article  ADS  Google Scholar 

  59. Huang B, Wang W, Bates M, Zhuang X (2008) Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319:810–813

    Article  ADS  Google Scholar 

  60. DeCenzo S, DeSantis M, Wang YM (2010) Single-image separation measurements of two unresolved fluorophores. Opt Express 18:16628–16639

    Article  Google Scholar 

  61. DeSantis M, DeCenzo S, Li JL, Wang Y (submitted) Precision analysis for standard deviation measurements of immobile single fluorescent molecule images. Opt Express 18:6563–6576

    Google Scholar 

  62. Yildiz A, Tomishige M, Vale RD, Selvin PR (2004) Kinesin walks hand-over-hand. Science 303:676–678

    Article  ADS  Google Scholar 

  63. Schütz GJ, Pastushenko VP, Gruber HJ, Knaus H-G, Pragl B, Schindler H (2000) 3D imaging of individual ion channels in live cells at 40 nm resolution. Single Mol 1:25–31

    Article  ADS  Google Scholar 

  64. Quake SR, Babcock H, Chu S (1997) The dynamics of partially extended single molecules of DNA. Nature 388:151–154

    Article  ADS  Google Scholar 

  65. Crut A, Lasne D, Allemand JF, Dahan M, Desbiolles P (2003) Transverse fluctuations of single DNA molecules attached at both extremities to a surface. Phys Rev E 67:051910

    Article  ADS  Google Scholar 

  66. Loverdo C, BĂ©nichou O, Voituriez R (2009) Quantifying hopping and jumping in facilitated diffusion of DNA-binding proteins. Phys Rev Lett 102:188101

    Google Scholar 

  67. Austin R, Beeson K, Eisenstein L, Frauenfelder H, Gunsalus I, Marshall V (1975) Dynamics of ligand binding to myoglobin. Biochemistry 14:5355–5373

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Wang, Y.M., Austin, R.H. (2010). Single-Molecule Imaging of LacI Diffusing Along Nonspecific DNA. In: Williams, M., Maher, L. (eds) Biophysics of DNA-Protein Interactions. Biological and Medical Physics, Biomedical Engineering. Springer, New York, NY. https://doi.org/10.1007/978-0-387-92808-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-92808-1_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-92807-4

  • Online ISBN: 978-0-387-92808-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics