Skip to main content

Genetic Improvement of Xylose Utilization by Saccharomyces cerevisiae

  • Chapter
  • First Online:

Abstract

It is estimated that capital costs associated with lignocellulosic ethanol are about US $4 per gallon and that these need to be reduced by more than half to be ­economically sustainable (Hahn-Hagerdal et al. 2006; Gray et al. 2006). Complete substrate utilization is one of the prerequisites to render lignocellulosic ethanol processes economically competitive. This means that all types of sugars in cellulose must be converted to ethanol, and that microorganisms must be obtained that efficiently perform this conversion under industrial conditions. Biomass is composed of cellulose (40–50%), hemicellulose (25–35%), and lignin (15–20%) (Ragauskas et al. 2006; Lin and Tanaka 2006). Glucose constitutes about 60% of the total sugars available in cellulosic biomaterial. Fermentation of the available sugars in cellulosic biomass presents a unique challenge because of the presence of other sugars such as xylose and arabinose (C5 sugars). The degree of branching and identity of the minor sugars in hemicelluloses tends to vary depending upon the type of plant. The conversion of biomass to useable energy is, however, not economical, unless hemicellulose is used in addition to cellulose.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Amore, R., Kotter, P., Kuster, C., Ciriacy, M., and Hollenberg, C. P. 1991. Cloning and expression in S. cerevisiae of the NAD(P)H-dependent xylose reductase-enconding gene (XYL1) from the xylose assimilating yeast Pichia stipitis. Gene 109:8–97.

    Article  Google Scholar 

  • Amore, R., Wilhelm, M., and Hollenberg, C. P. 1989. The fermentation of xylose – an analysis of the expression of Bacillus and Actinoplanes xylose isomerase genes in yeast. Appl. Microbiol. Biotechnol. 30:351–357.

    Article  CAS  Google Scholar 

  • Attfield, P. V. and Bell, P. J. L. 2006. Use of population genetics to derive nonrecombinant Saccharomyces cerevisiae strains that grow using xylose as a sole carbon source. FEMS Yeast Res. 6:862–868.

    Article  CAS  PubMed  Google Scholar 

  • Batista, A. S., Miletti, L. C., and Stambuck, B. U. 2004. Sucrose fermentation by Saccharomyces cerevisiae lacking hexose transport. J. Mol. Microbiol. Biotechnol. 8:26–33.

    Article  CAS  PubMed  Google Scholar 

  • Bertilsson, M., Andersson, J., and Liden, G. 2008. Modeling simultaneous glucose and xylose uptake in Saccharomyces cerevisiae from kinetics and gene expression of sugar transporters. Bioprocess Biosyst. Eng. 31:369–377.

    Article  CAS  PubMed  Google Scholar 

  • Boles, E., Iller, S., and Zimmermann, F. K. 1996. A multi-layered sensory system controls yeast glycolytic gene expression. Mol. Microbiol. 1:641–642.

    Article  Google Scholar 

  • Brat, D., Boles, E., and Wiedemann, B. 2009. Functional expression of a bacterial xylose isomerase in Saccharomyces cerevisiae. Appl. Env. Microbiol. 75:2304–2311.

    Article  CAS  Google Scholar 

  • Chu, B. C. H. and Lee, H. 2007. Genetic improvement of Saccharomyces cerevisiae for xylose fermentation. Biotechnol. Adv. 25:425–441.

    Article  CAS  PubMed  Google Scholar 

  • Diderich, J. A., Schepper, M., van Hoek, P., Luttik, M. A., van Dijken, J. P., Pronk, J. T., Klaassen, P., Boelens, H. F., de Mattos, M. J., van Dam, K., and Kruckeberg, A. L. 1999. Glucose uptake kinetics and transcription of HXT genes in chemostat cultures of Saccharomyces cerevisiae. J. Biol. Chem. 274:15350–15359.

    Article  CAS  PubMed  Google Scholar 

  • Eliasson, A., Christensson, C., Wahlbom, C. F., and Hahn-Hagerdal, B. 2000. Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures. Appl. Environ. Microbiol. 66:3381–3386.

    Article  CAS  PubMed  Google Scholar 

  • Gray, K. A., Zhao, L., and Emptage, M. 2006. Bioethanol. Curr. Opin. Chem. Biol. 10:141–146.

    Article  CAS  Google Scholar 

  • Hahn-Hagerdal, B., Galbe, M., Gorwa-Grauslund, M. F., Lidén, G., and Zacchi, G. 2006. Bio-ethanol – the fuel of tomorrow from the residues of today. Trends Biotechnol. 24:549–556.

    Article  CAS  PubMed  Google Scholar 

  • Hahn-Hagerdal, B., Karhumaa, K., Fonseca, C., Spencer-Martins, I., Gorwa-Grauslund, M. F. 2007. Towards industrial pentose-fermenting yeast strains. Appl. Microbiol. Biotechnol. 74:937–953.

    Article  PubMed  Google Scholar 

  • Hallborn, J., Walfridsson, M., Airaksinen, U., Ojamo, H., Hahn-Hagerdal, B., Pentilla, M., and Kerasnen, S. 1991. Xylitol production by recombinant Saccharomyces cerevisiae. Biotechnology (N.Y.) 9:1090–1095.

    Google Scholar 

  • Hamacher, T., Becker, J., Gardonyi, M., Hahn-Hagerdal, B., and Boles, E. 2002. Characterization of the xylose-transporting properties of yeast hexose transporters and their influence on xylose utilization. Microbilogy 148 (pt-9):2783–2788.

    Google Scholar 

  • Jeffries, T. W. 2006. Engineering yeasts for xylose metabolism. Curr. Opin. Biotechnol. 17:320–326.

    Article  CAS  PubMed  Google Scholar 

  • Jeffries, T. W. and Jin, Y. S. 2000. Ethanol and thermotolerance in the bioconversion of xylose by yeasts. Adv. Appl. Microbiol. 47:221–268.

    Article  CAS  PubMed  Google Scholar 

  • Jeppsson, M., Bengtsson, O., Franke, K., Lee, H., Hahn-Hagerdal, B., and Gorwa-Grauslund, M. F. 2006. The expression of a Pichia stipitis xylose reductase mutant with higher K M for NADPH increases ethanol production from xylose recombinant Saccharomyces cerevisiae. Biotechnol. Bioeng. 3:665–673.

    Google Scholar 

  • Jin, Y., Lapaza, J. M., and Jeffries, T. W. 2004. Saccharomyces cerevisiae engineered for xylose metabolism exhibits a respiratory response. Appl. Env. Microbiol. 70:6816–6825.

    Article  CAS  Google Scholar 

  • Karhumaa, K., Fromanger, R., Hahn-Hagerdal, B., and Gorwa-Grauslund, M. F. 2007. High activity of xylose reductase and xylitol dehydrogenase improves xylose fermentation by recombinant Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 73:103–1046.

    Google Scholar 

  • Karkhumaa, K., Hahn-Hagerdal, B., and Gorwa-Grauslund, M. F. 2005. Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccaromyces cerevisiae using metabolic engineering. Appl. Microbiol. Biotechnol. 73:103–1046.

    Google Scholar 

  • Killian, S. G. and Uden, N. 1988. Transport of xylose and glucose in the xylose-fermenting yeast Pichia stipitis. Appl. Microbiol. Biotechnol. 27:545–548.

    Google Scholar 

  • Kotter, P. and Ciriacy, M. 1993. Xylose fermentation by Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 38:776–783

    Article  Google Scholar 

  • Kuyper, M., Harhangi, H. R., Stave, A. K., Winkler, A. A., Jetten, M. S., de Laat, W. T., den Ridder, J. J., Op den Camp, H. J., van Dijken, J. P., and Pronk, J. T. 2003. High-level functional expression of a fungal xylose isomerase: the key to efficient ethanolic fermentation of xylose by Saccharomyces cerevisiae. FEMS Yeast Res. 4:6–78.

    Article  Google Scholar 

  • Lee, W. J., Kim, M. D., Ryu, Y. W., Bisson, L. F., and Seo, J. H. 2002. Kinetic studies on glucose and xylose transport in Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 60:186–191.

    Article  CAS  PubMed  Google Scholar 

  • Lin, Y. and Tanaka, S. 2006. Ethanol fermentation from biomass resources: current state and prospects. Appl. Microbiol. Biotechnol. 69:627–642.

    Article  CAS  PubMed  Google Scholar 

  • Liu, H., Yan, M., Lai, C., Xu, L., and Ouyang, P. 2010. gTME for improved xylose fermentation of Saccharomyces cerevisiae. Appl. Biochem. Biotechnol. 160(2):574–582.

    Google Scholar 

  • Lonn, A., Gardonyi, M., van Zyl, W., Hahn-Hagerdal, B., and Otero, R. C. 2002. Cold adaptation of xylose isomerase from Thermus thermophilus through random PCR mutagenesis. Gene cloning and protein characterization. Eur. J. Biochem. 26:157–163.

    Article  Google Scholar 

  • Madhavan, A., Tamalampudi, S., Ushida, K., Kanai, D., Katahira, S., Srivastava, A., Fukuda, H., Bisaria, V. S., and Kondo, A. 2009. Xylose isomerase from polycentric fungus Orpinomyces: gene sequencing, cloning, and expression in Saccharomyces cerevisiae for bioconversion of xylose to ethanol. Appl. Microbiol. Biotechnol. 82:1067–1078.

    Article  CAS  PubMed  Google Scholar 

  • Matsushika, A., Watanabe, S., Kodaki, T., Makino, K., Inoue, H., Murakami, K., Takimura, O., and Sawayama, S. 2008. Expression of protein engineered NADP+-dependent xylitol dehydrogenase increases ethanol productions from xylose in recombinant Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 81:243–255.

    Article  CAS  PubMed  Google Scholar 

  • Meinander, N. Q., Boels, I., and Hahn-Hagerdal, B. 1999. Fermentation of xylose/glucose mixtures by metabolically engineered Saccharomyces cerevisiae strains expressing XYL1 abd XYL2 from Pichia stipitis with and without overexpression of TAL1. Bioresour. Technol. 68:79–87.

    Article  CAS  Google Scholar 

  • Meinander, N. Q. and Hahn-Hagerdal, B. 1997. Influence of cosubstrate concentration on xylose conversion by recombinant, XYLI-expressing Saccharomyces cerevisiae: a comparison of different sugars and ethanol as cosubstrates. Appl. Environ. Microbiol. 63:195–1964.

    Google Scholar 

  • Moes, C. J., Pretorius, L. S., and van Zyl, W. H. 1996. Cloning and expressing of the Clostridium thermosulfurogenes D-xylose isomerase gene (xylA) in Saccharomyces cerevisiae. Biotechnol. Lett. 18:26–274.

    Article  Google Scholar 

  • Nelson, D. L. and Cox, M. M. 2008. Lehninger, Principles of Biochemistry, fifth edition. W. H. Freeman, New York.

    Google Scholar 

  • Nevoigt, E. 2008. Progress in metabolic engineering of Saccharomyces cerevisiae. Microbial. Mol. Biol. Rev. 72:37–412.

    Google Scholar 

  • Nissen, T. L., Anderlund, M., Nielsen, J., Villadsen, J., and Kielland-Brandt, M. C. 2001. Expression of a cytoplasmic trnashydrogenase in Saccharomyces cerevisiae results in formation of 2-oxoglutarate due to depletion of the NADPH pool. Yeast 18:19–32.

    Article  CAS  PubMed  Google Scholar 

  • Pitkanen, J., Aristidou, A., Salusjarvi, L., Ruohonen, L., and Pentilla, M. 2003. Metabolic flux analysis of xylose metabolism in recombinant Saccharomyces cerevisiae using continuous culture. Metab. Eng. 5:16–31.

    Article  CAS  PubMed  Google Scholar 

  • Ragauskas, A. J., Williams, C. K., Davidson, B. H., Britovsek, G., Cairney, J., Eckert, C. A., Frederick Jr., W. J., Hallett, J. P., Leak, D. J., Liotta, C. L., Mielenz, J. R., Murphy, R., Templer, R., and Tschaplinski, T. 2006. The path forward for biofuels and biomaterials. Science 311:484–489.

    Article  CAS  PubMed  Google Scholar 

  • Richard, P., Toivari, M. H., and Pentilla, M. 2000. The role of xylulokinase in Saccharomyces cerevisiae xylulose catabolism. FEMS Microbiol. Lett. 10:3–43.

    Google Scholar 

  • Santos, C. N. S. and Stephanopoulos, G. 2008. Combinatorial engineering of microbes for optimizing cellular phenotype. Curr. Opin. Chem. Biol. 12:168–176.

    Article  CAS  PubMed  Google Scholar 

  • Sarthy, A. V., McConaughy, B. L., Lobo, Z., Sundstrom, J. A., Furlong, C. E., and Hall, B. D. 1987. Expression of the Escherichia coli xylose isomerase gene in Saccharomyces cerevisiae. Appl. Env. Microbiol. 53:196–2000.

    Google Scholar 

  • Senac, T. and Hahn-Hagerdal, B. 1990. Intermediary metabolite concentrations in xylulose- and glucose-fermenting Saccharomyces cerevisiae cells. Appl. Environ. Microbiol. 56:120–126.

    CAS  PubMed  Google Scholar 

  • Takuma, S., Nakshima, N., Tantirungkij, M., Kinoshita, S., Okada, H., Seki, T., and Yoshida T. 1991. Isolation of xylose reductase gene of Pichia pastoris and its expression in Saccharomyces cerevisiae. Appl. Biochem. Biotechnol. 28:327–340.

    Article  PubMed  Google Scholar 

  • Toivari, M. H., Salusjarvi, L., Ruohonen, L., and Pentilla, M. 2004. Endogenous xylose pathway in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 70:3681–3686.

    Article  CAS  PubMed  Google Scholar 

  • Walfridsson, M., Bao, X., Anderlund, M., Lilius, G., Bulow, L., and Hahn-Hagerdal, B. 1996. Ethanolic fermentation of xylose with Saccharomyces cerevisiae harboring the Thermus thermophilus xylA gene, which expresses an active xylose (glucose) isomerase. Appl. Env. Microbiol. 62:4648–4651.

    CAS  Google Scholar 

  • Walfridsson, M., Hallborn, J., Penttila, M., Keranen, S., and Hahn-Hagerdal, B. 1995. Xylose-metabolizing Saccharomyces cerevisiae strains overexpressing the TKL1 and TAL1 genes encoding the pentose phosphate pathway enzymes transketolase and transaldolase. Appl. Environ. Microbiol. 61:4184–4190.

    CAS  PubMed  Google Scholar 

  • Watanabe, S., Kodaki, T., and Makino, K. 2005. Complete reversal of coenzyme specificity of xylitol dehydrogenase and increase of thermostability by the introduction of structural zinc. J. Biol. Chem. 280:10340–1034.

    Article  CAS  PubMed  Google Scholar 

  • Watanabe, S., Pack, S. P., Saleh, A. A., Annaluru, N., Kodaki, T., and Makino, K. 2007a. The positive effect of the decreased NADPH-preferring activity of xylose reductase from Pichia stipitis on ethanol production using xylose-fermenting recombinant Saccharomyces cerevisiae. Biosci. Biotechnol. Biochem. 71:1365–1366.

    Article  CAS  PubMed  Google Scholar 

  • Watanabe, S., Saleh, A. A., Pack, S. P., Annaluru, N., Kodaki, T., and Makino, K. 2007b. Ethanol production from xylose by recombinant Saccharomyces cerevisiae expressing protein engineered NADP+-dependent xylitol dehydrogenase. J. Biotechnol. 130:316–319.

    Article  CAS  PubMed  Google Scholar 

  • Wieczorke, R., Kramer, S., Weierstall, T., Frediedl, K., Hllenber, C. P., and Boles, E. 1999. Concurrent knock-out of at least 20 transporter genes is required to block uptake of hexoses in Saccharomyces cerevisiae. FEBS Lett. 464:123–128.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo H. Goldman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Goldman, G.H. (2011). Genetic Improvement of Xylose Utilization by Saccharomyces cerevisiae . In: Buckeridge, M., Goldman, G. (eds) Routes to Cellulosic Ethanol. Springer, New York, NY. https://doi.org/10.1007/978-0-387-92740-4_10

Download citation

Publish with us

Policies and ethics