Skip to main content

Baer, Quasi-Baer Modules, and Their Applications

  • Chapter
Extensions of Rings and Modules

Abstract

The Baer and the quasi-Baer properties of rings are extended to a module theoretic setting in this chapter. Using the endomorphism ring of a module, the notions of Baer, quasi-Baer, and Rickart modules are introduced and studied. Similar to the fact that every Baer ring is nonsingular, we shall see that every Baer module satisfies a weaker notion of nonsingularity of modules (\(\mathcal{K}\)-nonsingularity) which depends on the endomorphism ring of the module. Strong connections between a Baer module and an extending module will be observed via this weak nonsingularity and its dual notion. It is shown that an extending module which is \(\mathcal{K}\)-nonsingular is precisely a \(\mathcal{K}\)-cononsingular Baer module. This provides a module theoretic analogue of the Chatters-Khuri theorem for rings. Direct summands of Baer and quasi-Baer modules respectively inherit these properties. This provides a rich source of examples of Baer and quasi-Baer modules, since one can readily see that for any (quasi-)Baer ring R and an idempotent e in R, the right R-module eR R is always a (quasi-)Baer module. It will be seen that every projective module over a quasi-Baer ring is a quasi-Baer module. Connections of a (quasi-)Baer module and its endomorphism ring are discussed. Characterizations of classes of rings via the Baer property of certain classes of free modules over them are presented. An application also yields a type theory for \(\mathcal{K}\)-nonsingular extending (continuous) modules which, in particular, improve the type theory for nonsingular injective modules provided by Goodearl and Boyle.

Similar to the case of Baer modules, close links between quasi-Baer modules and FI-extending modules are established via a characterization connecting the two notions. The concepts of FI-\(\mathcal{K}\)-nonsingularity and FI-\(\mathcal{K}\)-cononsingularity are introduced and utilized to obtain this characterization. Analogous to right Rickart rings, the notion of Rickart modules is introduced as another application of the theory of Baer modules in the last section of the chapter. Connections of Rickart modules to their endomorphism rings are shown. A direct sum of Rickart modules is not Rickart in general. The closure of the class of Rickart modules with respect to direct sums is discussed among other recent results on this notion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akalan, E., Birkenmeier, G.F., Tercan, A.: Goldie extending modules. Commun. Algebra 37, 663–683 (2009). Corrigendum 38, 4747–4748 (2010). Corrigendum 41, 2005 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ara, P., Mathieu, M.: Local Multipliers of C -Algebras. Springer Monographs in Math. Springer, London (2003)

    Book  Google Scholar 

  3. Berberian, S.K.: Baer ∗-Rings. Springer, Berlin (1972)

    Book  MATH  Google Scholar 

  4. Blecher, D.P., Le Merdy, C.: Operator Algebras and Their Modules—An Operator Space Approach. London Math. Soc. Monograph. Clarendon Press, Oxford (2004)

    Book  MATH  Google Scholar 

  5. Chase, S.U.: Direct products of modules. Trans. Am. Math. Soc. 97, 457–473 (1960)

    Article  MathSciNet  Google Scholar 

  6. Chatters, A.W., Khuri, S.M.: Endomorphism rings of modules over non-singular CS rings. J. Lond. Math. Soc. 21, 434–444 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cohn, P.M.: Free Rings and Their Relations. Academic Press, London (1971)

    MATH  Google Scholar 

  8. Faith, C.: Embedding torsionless modules in projectives. Publ. Mat. 34, 379–387 (1990)

    MathSciNet  MATH  Google Scholar 

  9. Garcia, J.L.: Properties of direct summands of modules. Commun. Algebra 17, 73–92 (1989)

    Article  MATH  Google Scholar 

  10. Goodearl, K.R., Boyle, A.K.: Dimension Theory for Nonsingular Injective Modules. Memoirs, vol. 177. Amer. Math. Soc., Providence (1976)

    Google Scholar 

  11. Hausen, J.: Modules with the summand intersection property. Commun. Algebra 17, 135–148 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hirano, Y.: Regular modules and V-modules. Hiroshima Math. J. 11, 125–142 (1981)

    MathSciNet  MATH  Google Scholar 

  13. Jøndrup, S.: p.p. rings and finitely generated flat ideals. Proc. Am. Math. Soc. 28, 431–435 (1971)

    Google Scholar 

  14. Kaplansky, I.: Rings of Operators. Benjamin, New York (1968)

    MATH  Google Scholar 

  15. Kaplansky, I.: Infinite Abelian Groups. Univ. Michigan Press, Ann Arbor (1969)

    MATH  Google Scholar 

  16. Khuri, S.M.: Endomorphism rings and nonsingular modules. Ann. Sci. Math. Qué. IV, 145–152 (1980)

    MathSciNet  Google Scholar 

  17. Khuri, S.M.: Nonsingular retractable modules and their endomorphism rings. Bull. Aust. Math. Soc. 43, 63–71 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  18. Khuri, S.M.: Endomorphism rings and modules. Manuscript (2004)

    Google Scholar 

  19. Lam, T.Y.: Lectures on Modules and Rings. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  20. Lee, G.: Theory of Rickart Modules. Doctoral Dissertation, Ohio State Univ. (2010)

    Google Scholar 

  21. Lee, G., Rizvi, S.T., Roman, C.: Rickart modules. Commun. Algebra 38, 4005–4027 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lee, G., Rizvi, S.T., Roman, C.: Dual Rickart modules. Commun. Algebra 39, 4036–4058 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lee, G., Rizvi, S.T., Roman, C.: Direct sums of Rickart modules. J. Algebra 353, 62–78 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lee, G., Rizvi, S.T., Roman, C.: When do the direct sums of modules inherit certain properties? In: Kim, J.Y., Huh, C., Kwak, T.K., Lee, Y. (eds.) Proc. 6th China-Japan-Korea International Conf. on Ring Theory, pp. 47–77. World Scientific, Englewood Cliffs (2012)

    Google Scholar 

  25. Lee, G., Rizvi, S.T., Roman, C.: Modules whose endomorphism rings are von Neumann regular. Commun. Algebra (to appear)

    Google Scholar 

  26. Lee, T.K., Zhou, Y.: Reduced modules. In: Facchini, A., Houston, E., Salce, L. (eds.) Rings, Modules, Algebras, and Abelian Groups. Lecture Notes in Pure and Appl. Math., vol. 236, pp. 365–377. Marcel Dekker, New York (2004)

    Google Scholar 

  27. Lee, T.K., Zhou, Y.: Regularity and morphic property of rings. J. Algebra 322, 1072–1085 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lee, T.K., Zhou, Y.: A characterization of von Neumann regular rings and applications. Linear Algebra Appl. 433, 1536–1540 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lenzing, H.: Halberbliche Endomorphismenringe. Math. Z. 118, 219–240 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  30. Mao, L.: Baer endomorphism rings and envelopes. J. Algebra Appl. 9, 365–381 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Mao, L.: Properties of P-coherent and Baer modules. Period. Math. Hung. 60, 97–114 (2010)

    Article  MATH  Google Scholar 

  32. Mohamed, S.H., Müller, B.J.: Continuous and Discrete Modules. Cambridge Univ. Press, Cambridge (1990)

    Book  MATH  Google Scholar 

  33. Passman, D.S.: A Course in Ring Theory. Brooks/Cole, Pacific Grove (1991)

    MATH  Google Scholar 

  34. Rizvi, S.T.: Commutative rings for which every continuous module is quasi-injective. Arch. Math. 50, 435–442 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  35. Rizvi, S.T., Roman, C.S.: Baer and quasi-Baer modules. Commun. Algebra 32, 103–123 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  36. Rizvi, S.T., Roman, C.S.: Baer property of modules and applications. In: Chen, J.L., Ding, N.Q., Marubayashi, H. (eds.) Advances in Ring Theory. Proc. of 4th China-Japan-Korea International Conference, pp. 225–241. World Scientific, Englewood Cliffs (2005)

    Chapter  Google Scholar 

  37. Rizvi, S.T., Roman, C.S.: On \(\mathcal{K}\)-nonsingular modules and applications. Commun. Algebra 35, 2960–2982 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  38. Rizvi, S.T., Roman, C.S.: On direct sums of Baer modules. J. Algebra 321, 682–696 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  39. Roman, C.S.: Baer and Quasi-Baer Modules. Doctoral Dissertation, Ohio State Univ. (2004)

    Google Scholar 

  40. Stephenson, B.W., Tsukerman, G.M.: Rings of endomorphisms of projective modules. Sib. Math. J. 11, 181–184 (1970)

    Article  MATH  Google Scholar 

  41. Ware, R.: Endomorphism rings of projective modules. Trans. Am. Math. Soc. 155, 233–256 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  42. Wilson, G.V.: Modules with the summand intersection property. Commun. Algebra 14, 21–38 (1986)

    Article  MATH  Google Scholar 

  43. Zelmanowitz, J.: Regular modules. Trans. Am. Math. Soc. 163, 341–355 (1972)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Birkenmeier, G.F., Park, J.K., Rizvi, S.T. (2013). Baer, Quasi-Baer Modules, and Their Applications. In: Extensions of Rings and Modules. Springer, New York, NY. https://doi.org/10.1007/978-0-387-92716-9_4

Download citation

Publish with us

Policies and ethics