Skip to main content

The Cadherin Superfamily in Synapse Formation and Function

  • Chapter
  • First Online:
The Sticky Synapse

Abstract

The cadherin superfamily of adhesion molecules encompasses over 100 members, which can be subdivided into classical cadherins, desmosomal cadherins, and protocadherins. Many classical cadherins and protocadherins are expressed in the central nervous system (CNS), where they have been implicated in a wide variety of processes. The ∼20 classical cadherins have 5 characteristic cadherin repeats and an intracellular domain that contains binding sites for members of the catenin family. The classical cadherins are important for a number of processes integral to the synapse, including axon targeting, dendrite and dendritic spine maturation, and synapse function and plasticity. The more than 70 protocadherins (Pcdhs) make up the largest subgroup of the cadherin superfamily, which includes the clustered α-, β-, and γ-Pcdhs, the δ-Pcdhs, the seven-transmembrane (7-TM) Pcdhs, and the giant fat Pcdhs. These diverse molecules, all of which contain a varying number of cadherin repeats, play a multitude of roles in synapse development and function. Of the clustered Pcdhs, the γ-Pcdhs are required for synapse development and interneuron survival in the spinal cord, while the α-Pcdhs influence axon targeting, as do the 7-TM Pcdhs. Several of the δ-Pcdhs and fat Pcdhs have demonstrated and/or suggested functions at the synapse. This chapter reviews the vast extant literature on the cadherin superfamily, summarizing key findings regarding its diverse members and their functions at central synapses. Particular attention is paid to the most recent results, including the fascinating demonstration of cooperation between synaptic classical cadherins and Pcdhs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe K, Chisaka O, Van Roy F et al. (2004) Stability of dendritic spines and synaptic contacts is controlled by alpha N-catenin. Nat Neurosci 7:357–363

    Article  PubMed  CAS  Google Scholar 

  • Aberle H, Butz S, Stappert J et al. (1994) Assembly of the cadherin-catenin complex in vitro with recombinant proteins. J Cell Sci 107 (Pt 12):3655–3663

    PubMed  CAS  Google Scholar 

  • Abou Jamra R, Becker T, Georgi A et al. (2008) Genetic variation of the FAT gene at 4q35 is associated with bipolar affective disorder. Mol Psychiatry 13:277–284

    Article  PubMed  CAS  Google Scholar 

  • Anderson TR and Benson DL (2006) Cadherin-mediated adhesion and signaling during vertebrate central synapse formation. In: Dityatev A and El-Husseini A. (eds) Molecular Mechanisms of Synaptogenesis, Springer Science, New York

    Google Scholar 

  • Arikkath J and Reichardt LF (2008) Cadherins and catenins at synapses: roles in synaptogenesis and synaptic plasticity. Trends Neurosci 31:487–494

    Google Scholar 

  • Bamji SX, Shimazu K, Kimes N et al. (2003) Role of beta-catenin in synaptic vesicle localization and presynaptic assembly. Neuron 40:719–731

    Article  PubMed  CAS  Google Scholar 

  • Bao H, Berlanga ML, Xue M et al. (2007) The atypical cadherin flamingo regulates synaptogenesis and helps prevent axonal and synaptic degeneration in Drosophila. Mol Cell Neurosci 34:662–678

    Article  PubMed  CAS  Google Scholar 

  • Bennett FC and Harvey KF (2006) Fat cadherin modulates organ size in Drosophila via the Salvador/Warts/Hippo signaling pathway. Curr Biol 16:2101–2110

    Article  PubMed  CAS  Google Scholar 

  • Benson DL and Tanaka H (1998) N-cadherin redistribution during synaptogenesis in hippocampal neurons. J Neurosci 18:6892–6904

    PubMed  CAS  Google Scholar 

  • Biederer T, Sara Y, Mozhayeva M et al. (2002) SynCAM, a synaptic adhesion molecule that drives synapse assembly. Science 297:1525–1531

    Article  PubMed  CAS  Google Scholar 

  • Blank M, Triana-Baltzer GB, Richards CS et al. (2004) Alpha-protocadherins are presynaptic and axonal in nicotinic pathways. Mol Cell Neurosci 26:530–543

    Article  PubMed  CAS  Google Scholar 

  • Bozdagi O, Shan W, Tanaka H et al. (2000) Increasing numbers of synaptic puncta during late-phase LTP: N-cadherin is synthesized, recruited to synaptic sites, and required for potentiation. Neuron 28:245–259

    Article  PubMed  CAS  Google Scholar 

  • Bozdagi O, Valcin M, Poskanzer K et al. (2004) Temporally distinct demands for classic cadherins in synapse formation and maturation. Mol Cell Neurosci 27:509–521

    Article  PubMed  CAS  Google Scholar 

  • Brock JH, Elste A and Huntley GW (2004) Distribution and injury-induced plasticity of cadherins in relationship to identified synaptic circuitry in adult rat spinal cord. J Neurosci 24:8806–8817

    Article  PubMed  CAS  Google Scholar 

  • Bruses JL (2006) N-cadherin signaling in synapse formation and neuronal physiology. Mol Neurobiol 33:237–252

    Article  PubMed  CAS  Google Scholar 

  • Chen PL and Clandinin TR (2008) The cadherin Flamingo mediates level-dependent interactions that guide photoreceptor target choice in Drosophila. Neuron 58:26–33

    Article  PubMed  CAS  Google Scholar 

  • Chen X and Gumbiner BM (2006) Paraxial protocadherin mediates cell sorting and tissue morphogenesis by regulating C-cadherin adhesion activity. J Cell Biol 174:301–313

    Article  PubMed  CAS  Google Scholar 

  • Ciani L, Patel A, Allen ND et al. (2003) Mice lacking the giant protocadherin mFAT1 exhibit renal slit junction abnormalities and a partially penetrant cyclopia and anophthalmia phenotype. Mol Cell Biol 23:3575–3582

    Article  PubMed  CAS  Google Scholar 

  • Curtin JA, Quint E, Tsipouri V et al. (2003) Mutation of Celsr1 disrupts planar polarity of inner ear hair cells and causes severe neural tube defects in the mouse. Curr Biol 13:1129–1133

    Article  PubMed  CAS  Google Scholar 

  • D’Alterio C, Tran DD, Yeung MW et al. (2005) Drosophila melanogaster Cad99C, the orthologue of human Usher cadherin PCDH15, regulates the length of microvilli. J Cell Biol 171:549–558

    Article  PubMed  CAS  Google Scholar 

  • Deckwerth TL, Elliott JL, Knudson CM et al. (1996) BAX is required for neuronal death after trophic factor deprivation and during development. Neuron 17:401–411

    Article  PubMed  CAS  Google Scholar 

  • Dibbens LM, Tarpey PS, Hynes K et al. (2008) X-linked protocadherin 19 mutations cause female-limited epilepsy and cognitive impairment. Nat Genet 40:776–781

    Article  PubMed  CAS  Google Scholar 

  • Elia LP, Yamamoto M, Zang K et al. (2006) p120 catenin regulates dendritic spine and synapse development through Rho-family GTPases and cadherins. Neuron 51:43–56

    Article  PubMed  CAS  Google Scholar 

  • Erdmann B, Kirsch FP, Rathjen FG et al. (2003) N-cadherin is essential for retinal lamination in the zebrafish. Dev Dyn 226:570–577

    Article  PubMed  CAS  Google Scholar 

  • Esumi S, Kakazu N, Taguchi Y et al. (2005) Monoallelic yet combinatorial expression of variable exons of the protocadherin-alpha gene cluster in single neurons. Nat Genet 37:171–176

    Article  PubMed  CAS  Google Scholar 

  • Frank M, Ebert M, Shan W et al. (2005) Differential expression of individual gamma-protocadherins during mouse brain development. Mol Cell Neurosci 29:603–616

    Article  PubMed  CAS  Google Scholar 

  • Frank M and Kemler R (2002) Protocadherins. Curr Opin Cell Biol 14:557–562

    Article  PubMed  CAS  Google Scholar 

  • Fung S, Wang F, Chase M et al. (2008) Expression profile of the cadherin family in the developing Drosophila brain. J Comp Neurol 506:469–488

    Article  PubMed  CAS  Google Scholar 

  • Gayet O, Labella V, Henderson CE et al. (2004) The b1 isoform of protocadherin-gamma (Pcdhgamma) interacts with the microtubule-destabilizing protein SCG10. FEBS Lett 578:175–179

    Article  PubMed  CAS  Google Scholar 

  • Goldberg M, Wei M, Tycko B et al. (2002) Identification and expression analysis of the human mu-protocadherin gene in fetal and adult kidneys. Am J Physiol Renal Physiol 283:F454–F463

    PubMed  CAS  Google Scholar 

  • Haas IG, Frank M, Veron N et al. (2005) Presenilin-dependent processing and nuclear function of gamma-protocadherins. J Biol Chem 280:9313–9319

    Article  PubMed  CAS  Google Scholar 

  • Halbleib JM and Nelson WJ (2006) Cadherins in development: cell adhesion, sorting, and tissue morphogenesis. Genes Dev 20:3199–3214

    Article  PubMed  CAS  Google Scholar 

  • Hambsch B, Grinevich V, Seeburg PH et al. (2005) gamma -protocadherins: Presenilin-mediated release of C-terminal fragment promotes locus expression. J Biol Chem 280:15888–15897

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa S, Hamada S, Kumode Y et al. (2008) The protocadherin-alpha family is involved in axonal coalescence of olfactory sensory neurons into glomeruli of the olfactory bulb in mouse. Mol Cell Neurosci 38:66–79

    Google Scholar 

  • Huntley GW and Benson DL (1999) Neural (N)-cadherin at developing thalamocortical synapses provides an adhesion mechanism for the formation of somatopically organized connections. J Comp Neurol 407:453–471

    Article  PubMed  CAS  Google Scholar 

  • Inoue A and Sanes JR (1997) Lamina-specific connectivity in the brain: regulation by N-cadherin, neurotrophins, and glycoconjugates. Science 276:1428–1431

    Article  PubMed  CAS  Google Scholar 

  • Iwai Y, Hirota Y, Ozaki K et al. (2002) DN-cadherin is required for spatial arrangement of nerve terminals and ultrastructural organization of synapses. Mol Cell Neurosci 19:375–388

    Article  PubMed  CAS  Google Scholar 

  • Jontes JD, Emond MR, Smith SJ (2004) In vivo trafficking and targeting of N-cadherin to nascent presynaptic terminals. J Neurosci 24:9027–9034

    Article  PubMed  CAS  Google Scholar 

  • Jontes JD and Phillips GR (2006) Selective stabilization and synaptic specificity: a new cell-biological model. Trends Neurosci 29:186–191

    Article  PubMed  CAS  Google Scholar 

  • Junghans D, Haas IG and Kemler R (2005) Mammalian cadherins and protocadherins: about cell death, synapses and processing. Curr Opin Cell Biol 17:446–452

    Article  PubMed  CAS  Google Scholar 

  • Junghans D, Heidenreich M, Hack I et al. (2008) Postsynaptic and differential localization to neuronal subtypes of protocadherin beta16 in the mammalian central nervous system. Eur J Neurosci 27:559–571

    Article  PubMed  Google Scholar 

  • Jungling K, Eulenburg V, Moore R et al. (2006) N-cadherin transsynaptically regulates short-term plasticity at glutamatergic synapses in embryonic stem cell-derived neurons. J Neurosci 26:6968–6978

    Article  PubMed  CAS  Google Scholar 

  • Kadowaki M, Nakamura S, Machon O et al. (2007) N-cadherin mediates cortical organization in the mouse brain. Dev Biol 304:22–33

    Article  PubMed  CAS  Google Scholar 

  • Kaneko R, Kato H, Kawamura Y et al. (2006) Allelic gene regulation of Pcdh-alpha and Pcdh-gamma clusters involving both monoallelic and biallelic expression in single Purkinje cells. J Biol Chem 281:30551–30560

    Article  PubMed  CAS  Google Scholar 

  • Kemler R (1993) From cadherins to catenins: cytoplasmic protein interactions and regulation of cell adhesion. Trends Genet 9:317–321

    Article  PubMed  CAS  Google Scholar 

  • Kohmura N, Senzaki K, Hamada S et al. (1998) Diversity revealed by a novel family of cadherins expressed in neurons at a synaptic complex. Neuron 20:1137–1151

    Article  PubMed  CAS  Google Scholar 

  • Kwiatkowski AV, Weis WI and Nelson WJ (2007) Catenins: playing both sides of the synapse. Curr Opin Cell Biol 19:551–556

    Article  PubMed  CAS  Google Scholar 

  • Lee CH, Herman T, Clandinin TR et al. (2001) N-cadherin regulates target specificity in the Drosophila visual system. Neuron 30:437–450

    Article  PubMed  CAS  Google Scholar 

  • Lee RC, Clandinin TR, Lee CH et al. (2003) The protocadherin Flamingo is required for axon target selection in the Drosophila visual system. Nat Neurosci 6:557–563

    Article  PubMed  CAS  Google Scholar 

  • Lilien J and Balsamo J (2005) The regulation of cadherin-mediated adhesion by tyrosine phosphorylation/dephosphorylation of beta-catenin. Curr Opin Cell Biol 17:459–465

    Article  CAS  Google Scholar 

  • Lu B, Usui T, Uemura T et al. (1999) Flamingo controls the planar polarity of sensory bristles and asymmetric division of sensory organ precursors in Drosophila. Curr Biol 9:1247–1250

    Article  PubMed  CAS  Google Scholar 

  • Manabe T, Togashi H, Uchida N et al. (2000) Loss of cadherin-11 adhesion receptor enhances plastic changes in hippocampal synapses and modifies behavioral responses. Mol Cell Neurosci 15:534–546

    Article  PubMed  CAS  Google Scholar 

  • Marrs GS, Honda T, Fuller L et al. (2006) Dendritic arbors of developing retinal ganglion cells are stabilized by beta 1-integrins. Mol Cell Neurosci 32:230–241

    Article  PubMed  CAS  Google Scholar 

  • Mast JD, Prakash S, Chen PL et al. (2006) The mechanisms and molecules that connect photoreceptor axons to their targets in Drosophila. Semin Cell Dev Biol 17:42–49

    Article  PubMed  CAS  Google Scholar 

  • Moeller MJ, Soofi A, Braun GS et al. (2004) Protocadherin FAT1 binds Ena/VASP proteins and is necessary for actin dynamics and cell polarization. Embo J 23:3769–3779

    Article  PubMed  CAS  Google Scholar 

  • Morishita H, Kawaguchi M, Murata Y et al. (2004) Myelination triggers local loss of axonal CNR/protocadherin alpha family protein expression. Eur J Neurosci 20:2843–2847

    Article  PubMed  Google Scholar 

  • Morishita H and Yagi T (2007) Protocadherin family: diversity, structure, and function. Curr Opin Cell Biol 19:584–592

    Article  PubMed  CAS  Google Scholar 

  • Murase S, Mosser E and Schuman EM (2002) Depolarization drives beta-Catenin into neuronal spines promoting changes in synaptic structure and function. Neuron 35:91–105

    Article  PubMed  CAS  Google Scholar 

  • Murata Y, Hamada S, Morishita H et al. (2004) Interaction with protocadherin-gamma regulates the cell surface expression of protocadherin-alpha. J Biol Chem 279:49508–49516

    Article  PubMed  CAS  Google Scholar 

  • Mutoh T, Hamada S, Senzaki K et al. (2004) Cadherin-related neuronal receptor 1 (CNR1) has cell adhesion activity with beta1 integrin mediated through the RGD site of CNR1. Exp Cell Res 294:494–508

    Article  PubMed  CAS  Google Scholar 

  • Nagae S, Tanoue T and Takeichi M (2007) Temporal and spatial expression profiles of the Fat3 protein, a giant cadherin molecule, during mouse development. Dev Dyn 236:534–543

    Article  PubMed  CAS  Google Scholar 

  • Nakayama M, Nakajima D, Yoshimura R et al. (2002) MEGF1/fat2 proteins containing extraordinarily large extracellular domains are localized to thin parallel fibers of cerebellar granule cells. Mol Cell Neurosci 20:563–578

    Article  PubMed  CAS  Google Scholar 

  • Nern A, Zhu Y and Zipursky SL (2008) Local N-cadherin interactions mediate distinct steps in the targeting of lamina neurons. Neuron 58:34–41

    Article  PubMed  CAS  Google Scholar 

  • Nollet F, Kools P and van Roy F (2000) Phylogenetic analysis of the cadherin superfamily allows identification of six major subfamilies besides several solitary members. J Mol Biol 299:551–572

    Article  PubMed  CAS  Google Scholar 

  • Noonan JP, Grimwood J, Danke J et al. (2004) Coelacanth genome sequence reveals the evolutionary history of vertebrate genes. Genome Res 14:2397–2405

    Article  PubMed  CAS  Google Scholar 

  • Obata S, Sago H, Mori N et al. (1995) Protocadherin Pcdh2 shows properties similar to, but distinct from, those of classical cadherins. J Cell Sci 108 (Pt 12):3765–3773

    PubMed  CAS  Google Scholar 

  • Okuda T, Yu LM, Cingolani LA et al. (2007) beta-Catenin regulates excitatory postsynaptic strength at hippocampal synapses. Proc Natl Acad Sci USA 104:13479–13484

    Article  PubMed  CAS  Google Scholar 

  • Paradis S, Harrar DB, Lin Y et al. (2007) An RNAi-based approach identifies molecules required for glutamatergic and GABAergic synapse development. Neuron 53:217–232

    Article  PubMed  CAS  Google Scholar 

  • Phillips GR, Tanaka H, Frank M et al. (2003) Gamma-protocadherins are targeted to subsets of synapses and intracellular organelles in neurons. J Neurosci 23:5096–5104

    PubMed  CAS  Google Scholar 

  • Poskanzer K, Needleman LA, Bozdagi O et al. (2003) N-cadherin regulates ingrowth and laminar targeting of thalamocortical axons. J Neurosci 23:2294–2305

    PubMed  CAS  Google Scholar 

  • Prakash S, Caldwell JC, Eberl DF et al. (2005) Drosophila N-cadherin mediates an attractive interaction between photoreceptor axons and their targets. Nat Neurosci 8:443–450

    PubMed  CAS  Google Scholar 

  • Prasad T, Wang X, Gray PA et al. (2008) A differential developmental pattern of spinal interneuron apoptosis during synaptogenesis: insights from genetic analyses of the protocadherin-© gene cluster. Development 135:4153–4164

    Google Scholar 

  • Redies C, Treubert-Zimmermann U and Luo J (2003) Cadherins as regulators for the emergence of neural nets from embryonic divisions. J Physiol Paris 97:5–15

    Article  PubMed  CAS  Google Scholar 

  • Redies C, Vanhalst K and Roy F (2005) delta-Protocadherins: unique structures and functions. Cell Mol. Life Sci 62:2840–2852

    Article  PubMed  CAS  Google Scholar 

  • Reiss K, Maretzky T, Haas IG et al. (2006) Regulated ADAM10-dependent ectodomain shedding of gamma-protocadherin C3 modulates cell-cell adhesion. J Biol Chem 281:21735–21744

    Article  PubMed  CAS  Google Scholar 

  • Rock R, Schrauth S and Gessler M (2005) Expression of mouse dchs1, fjx1, and fat-j suggests conservation of the planar cell polarity pathway identified in Drosophila. Dev Dyn 234:747–755

    Article  PubMed  CAS  Google Scholar 

  • Rubio ME, Curcio C, Chauvet N et al. (2005) Assembly of the N-cadherin complex during synapse formation involves uncoupling of p120-catenin and association with presenilin 1. Mol Cell Neurosci 30:611–623

    Article  PubMed  CAS  Google Scholar 

  • Saburi S and McNeill H (2005) Organising cells into tissues: new roles for cell adhesion molecules in planar cell polarity. Curr Opin Cell Biol 17:482–488

    Article  PubMed  CAS  Google Scholar 

  • Saglietti L, Dequidt C, Kamieniarz K et al. (2007) Extracellular interactions between GluR2 and N-cadherin in spine regulation. Neuron 54:461–477

    Article  PubMed  CAS  Google Scholar 

  • Sago H, Kitagawa M, Obata S et al. (1995) Cloning, expression, and chromosomal localization of a novel cadherin-related protein, protocadherin-3. Genomics 29:631–640

    Article  PubMed  CAS  Google Scholar 

  • Salinas PC and Price SR (2005) Cadherins and catenins in synapse development. Curr Opin Neurobiol 15:73–80

    Article  PubMed  CAS  Google Scholar 

  • Sano K, Tanihara H, Heimark RL et al. (1993) Protocadherins: a large family of cadherin-related molecules in central nervous system. Embo J 12:2249–2256

    PubMed  CAS  Google Scholar 

  • Scheiffele P, Fan J, Choih J et al. (2000) Neuroligin expressed in nonneuronal cells triggers presynaptic development in contacting axons. Cell 101:657–669

    Article  PubMed  CAS  Google Scholar 

  • Schlichting K, Wilsch-Brauninger M, Demontis F et al. (2006) Cadherin Cad99C is required for normal microvilli morphology in Drosophila follicle cells. J Cell Sci 119:1184–1195

    Article  PubMed  CAS  Google Scholar 

  • Schmitz C, Wacker I and Hutter H (2008) The Fat-like cadherin CDH-4 controls axon fasciculation, cell migration and hypodermis and pharynx development in Caenorhabditis elegans. Dev Biol 316:249–259

    Article  PubMed  CAS  Google Scholar 

  • Schreiner D, Muller K and Hofer HW (2006) The intracellular domain of the human protocadherin hFat1 interacts with Homer signalling scaffolding proteins. FEBS Lett 580:5295–5300

    Article  PubMed  CAS  Google Scholar 

  • Shen K and Bargmann CI (2003) The immunoglobulin superfamily protein SYG-1 determines the location of specific synapses in C. elegans. Cell 112:619–630

    Article  PubMed  CAS  Google Scholar 

  • Shen K, Fetter RD and Bargmann CI (2004) Synaptic specificity is generated by the synaptic guidepost protein SYG-2 and its receptor, SYG-1. Cell 116:869–881

    Article  PubMed  CAS  Google Scholar 

  • Shimoyama Y, Tsujimoto G, Kitajima M et al. (2000) Identification of three human type-II classic cadherins and frequent heterophilic interactions between different subclasses of type-II classic cadherins. Biochem J 349:159–167

    Article  PubMed  CAS  Google Scholar 

  • Silva E, Tsatskis Y, Gardano L et al. (2006) The tumor-suppressor gene fat controls tissue growth upstream of expanded in the hippo signaling pathway. Curr Biol 16:2081–2089

    Article  PubMed  CAS  Google Scholar 

  • Sperry RW (1963) Chemoaffinity in the orderly growth of nerve fiber patterns and connections. Proc Natl Acad Sci USA 50:703–710

    Article  PubMed  CAS  Google Scholar 

  • Sugino H, Yanase H, Hamada S et al. (2004) Distinct genomic sequence of the CNR/Pcdhalpha genes in chicken. Biochem Biophys Res Commun 316:437–445

    Article  PubMed  CAS  Google Scholar 

  • Suzuki SC, Furue H, Koga K et al. (2007) Cadherin-8 is required for the first relay synapses to receive functional inputs from primary sensory afferents for cold sensation. J Neurosci 27:3466–3476

    Article  PubMed  CAS  Google Scholar 

  • Suzuki SC and Takeichi M (2008) Cadherins in neuronal morphogenesis and function. Dev Growth Differ 50 Suppl 1:S119–S130

    Google Scholar 

  • Tada MN, Senzaki K, Tai Y et al. (2004) Genomic organization and transcripts of the zebrafish Protocadherin genes. Gene 340:197–211

    Article  PubMed  CAS  Google Scholar 

  • Tai CY, Kim SA and Schuman EM (2008) Cadherins and synaptic plasticity. Curr Opin Cell Biol 20:567–575

    Article  PubMed  CAS  Google Scholar 

  • Tai CY, Mysore SP, Chiu C et al. (2007) Activity-regulated N-cadherin endocytosis. Neuron 54:771–785

    Article  PubMed  CAS  Google Scholar 

  • Takeichi M (2007) The cadherin superfamily in neuronal connections and interactions. Nat Rev Neurosci 8:11–20

    Article  PubMed  CAS  Google Scholar 

  • Tanabe K, Takahashi Y, Sato Y et al. (2006) Cadherin is required for dendritic morphogenesis and synaptic terminal organization of retinal horizontal cells. Development 133:4085–4096

    Article  PubMed  CAS  Google Scholar 

  • Tanaka H, Shan W, Phillips GR et al. (2000) Molecular modification of N-cadherin in response to synaptic activity. Neuron 25:93–107

    Article  PubMed  CAS  Google Scholar 

  • Tang L, Hung CP and Schuman EM (1998) A role for the cadherin family of cell adhesion molecules in hippocampal long-term potentiation. Neuron 20:1165–75

    Article  PubMed  CAS  Google Scholar 

  • Tanoue T and Takeichi M (2004) Mammalian Fat1 cadherin regulates actin dynamics and cell-cell contact. J Cell Biol 165:517–528

    Article  PubMed  CAS  Google Scholar 

  • Tasic B, Nabholz CE, Baldwin KK et al. (2002) Promoter choice determines splice site selection in protocadherin alpha and gamma pre-mRNA splicing. Mol Cell 10:21–33

    Article  PubMed  CAS  Google Scholar 

  • Tissir F, Bar I, Jossin Y et al. (2005) Protocadherin Celsr3 is crucial in axonal tract development. Nat Neurosci 8:451–457

    PubMed  CAS  Google Scholar 

  • Tissir F, De-Backer O, Goffinet AM et al. (2002) Developmental expression profiles of Celsr (Flamingo) genes in the mouse. Mech Dev 112:157–160

    Article  PubMed  CAS  Google Scholar 

  • Togashi H, Abe K, Mizoguchi A et al. (2002) Cadherin regulates dendritic spine morphogenesis. Neuron 35:77–89

    Article  PubMed  CAS  Google Scholar 

  • Uchida N, Honjo Y, Johnson KR et al. (1996) The catenin/cadherin adhesion system is localized in synaptic junctions bordering transmitter release zones. J Cell Biol 135:767–779

    Article  PubMed  CAS  Google Scholar 

  • Usui T, Shima Y, Shimada Y et al. (1999) Flamingo, a seven-pass transmembrane cadherin, regulates planar cell polarity under the control of Frizzled. Cell 98:585–595

    Article  PubMed  CAS  Google Scholar 

  • Vanhalst K, Kools P, Vanden Eynde E et al. (2001) The human and murine protocadherin-beta one-exon gene families show high evolutionary conservation, despite the difference in gene number. FEBS Lett 495:120–125

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Su H and Bradley A (2002) Molecular mechanisms governing Pcdh-gamma gene expression: evidence for a multiple promoter and cis-alternative splicing model. Genes Dev 16:1890–1905

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Weiner JA, Levi S et al. (2002) Gamma protocadherins are required for survival of spinal interneurons. Neuron 36:843–854

    Article  PubMed  CAS  Google Scholar 

  • Weiner JA (2006) Protocadherins and Synapse Development. In: Dityatev A and El-Husseini A. (eds) Molecular mechanisms of synaptogenesis, Springer, New York

    Google Scholar 

  • Weiner JA, Wang X, Tapia JC et al. (2005) Gamma protocadherins are required for synaptic development in the spinal cord. Proc Natl Acad Sci USA 102:8–14

    Article  PubMed  CAS  Google Scholar 

  • Willecke M, Hamaratoglu F, Kango-Singh M et al. (2006) The fat cadherin acts through the hippo tumor-suppressor pathway to regulate tissue size. Curr Biol 16:2090–2100

    Article  PubMed  CAS  Google Scholar 

  • Wu Q (2005) Comparative genomics and diversifying selection of the clustered vertebrate protocadherin genes. Genetics 169:2179–2188

    Article  PubMed  CAS  Google Scholar 

  • Wu Q and Maniatis T (1999) A striking organization of a large family of human neural cadherin-like cell adhesion genes. Cell 97:779–790

    Article  PubMed  CAS  Google Scholar 

  • Wu Q, Zhang T, Cheng JF et al. (2001) Comparative DNA sequence analysis of mouse and human protocadherin gene clusters. Genome Res 11:389–404

    Article  PubMed  CAS  Google Scholar 

  • Wu S, Ying G, Wu Q et al. (2007) Toward simpler and faster genome-wide mutagenesis in mice. Nat Genet 39:922–930

    Article  PubMed  CAS  Google Scholar 

  • Yagi T (2008) Clustered protocadherin family. Dev Growth Differ 50 Suppl 1:S131–S140

    Article  PubMed  CAS  Google Scholar 

  • Yamagata K, Andreasson KI, Sugiura H et al. (1999) Arcadlin is a neural activity-regulated cadherin involved in long term potentiation. J Biol Chem 274:19473–19479

    Article  PubMed  CAS  Google Scholar 

  • Yamagata M, Herman JP, Sanes JR (1995) Lamina-specific expression of adhesion molecules in developing chick optic tectum. J Neurosci 15:4556–4571

    PubMed  CAS  Google Scholar 

  • Yamagata M and Sanes JR (2008) Dscam and Sidekick proteins direct lamina-specific synaptic connections in vertebrate retina. Nature 451:465–469

    Article  PubMed  CAS  Google Scholar 

  • Yamagata M, Weiner JA, Dulac C et al. (2006) Labeled lines in the retinotectal system: markers for retinorecipient sublaminae and the retinal ganglion cell subsets that innervate them. Mol Cell Neurosci 33:296–310

    Article  PubMed  CAS  Google Scholar 

  • Yamagata M, Weiner JA and Sanes JR (2002) Sidekicks: synaptic adhesion molecules that promote lamina-specific connectivity in the retina. Cell 110:649–660

    Article  PubMed  CAS  Google Scholar 

  • Yanase H, Sugino H and Yagi T (2004) Genomic sequence and organization of the family of CNR/Pcdhalpha genes in rat. Genomics 83:717–726

    Article  PubMed  CAS  Google Scholar 

  • Yasuda S, Tanaka H, Sugiura H et al. (2007) Activity-induced protocadherin arcadlin regulates dendritic spine number by triggering N-cadherin endocytosis via TAO2beta and p38 MAP kinases. Neuron 56:456–471

    Article  PubMed  CAS  Google Scholar 

  • Yu X and Malenka RC (2003) Beta-catenin is critical for dendritic morphogenesis. Nat Neurosci 6:1169–1177

    Article  PubMed  CAS  Google Scholar 

  • Zhou L, Bar I, Achouri Y et al. (2008) Early forebrain wiring: genetic dissection using conditional Celsr3 mutant mice. Science 320:946–949

    Article  PubMed  CAS  Google Scholar 

  • Zhu N, Lalla R, Eves P et al. (2004) Melanoma cell migration is upregulated by tumour necrosis factor-alpha and suppressed by alpha-melanocyte-stimulating hormone. Br J Cancer 90:1457–1463

    Article  PubMed  CAS  Google Scholar 

  • Zhuo L, Theis M, Alvarez-Maya I et al. (2001) hGFAP-cre transgenic mice for manipulation of glial and neuronal function in vivo. Genesis 31:85–94

    Article  PubMed  CAS  Google Scholar 

  • Zou C, Huang W, Ying G et al. (2007) Sequence analysis and expression mapping of the rat clustered protocadherin gene repertoires. Neuroscience 144:579–603

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua A. Weiner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Garrett, A.M., Schreiner, D., Weiner, J.A. (2009). The Cadherin Superfamily in Synapse Formation and Function. In: Umemori, H., Hortsch, M. (eds) The Sticky Synapse. Springer, New York, NY. https://doi.org/10.1007/978-0-387-92708-4_7

Download citation

Publish with us

Policies and ethics