Measurement of Carbon Monoxide: From Bench to Bedside

  • F. Corrêa
  • F. E. Nacul
  • Y. Sakr


Carbon monoxide is produced endogenously by the class of enzymes known collectively as heme oxygenase (HO) [1]. The inducible form of HO, HO-1, has been reported to have cytoprotective and anti-oxidant activities [1]. In addition, other studies have suggested that endogenously generated carbon monoxide has protective and beneficial effects on a vast array of responses against multiple organ injury, inflammation, apoptosis, cell proliferation, vasoconstriction and systemic and pulmonary hypertension [2, 3, 4, 5]. The initial evidence supporting a beneficial action of carbon monoxide originated from studies on lung injury in animals [6] and was reproduced later in other tissues, including the heart, liver, kidney, intestine and the reticulo-endothelial system [2, 7].


Carbon Monoxide Cystic Fibrosis Idiopathic Pulmonary Fibrosis Respir Crit Carbon Monoxide Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Maines MD (1997) The heme oxygenase system: a regulator of second messenger gases. Annu Rev Pharmacol Toxicol 37: 517–554CrossRefPubMedGoogle Scholar
  2. 2.
    Kim HP, Ryter SW, Choi AM (2006) CO as a cellular signaling molecule. Annu Rev Pharmacol Toxicol 46: 411–449CrossRefPubMedGoogle Scholar
  3. 3.
    Ryter SW, Morse D, Choi AM (2004) Carbon monoxide: to boldly go where NO has gone before. Sci STKE 2004: RE6CrossRefPubMedGoogle Scholar
  4. 4.
    Otterbein LE, Bach FH, Alam J, et al (2000) Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway. Nat Med 6: 422–428CrossRefPubMedGoogle Scholar
  5. 5.
    Zuckerbraun BS, Chin BY, Wegiel B, et al (2006) Carbon monoxide reverses established pulmonary hypertension. J Exp Med 203: 2109–2119CrossRefPubMedGoogle Scholar
  6. 6.
    Otterbein LE, Mantell LL, Choi AM (1999) Carbon monoxide provides protection against hyperoxic lung injury. Am J Physiol 276: L688–L694PubMedGoogle Scholar
  7. 7.
    Ryter SW, Alam J, Choi AM (2006) Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications. Physiol Rev 86: 583–650CrossRefPubMedGoogle Scholar
  8. 8.
    Vreman HJ, Baxter LM, Stone RT, Stevenson DK (1996) Evaluation of a fully automated end-tidal carbon monoxide instrument for breath analysis. Clin Chem 42: 50–56PubMedGoogle Scholar
  9. 9.
    Horvath I, Donnelly LE, Kiss A, Paredi P, Kharitonov SA, Barnes PJ (1998) Raised levels of exhaled carbon monoxide are associated with an increased expression of heme oxygenase-1 in airway macrophages in asthma: a new marker of oxidative stress. Thorax 53: 668–672CrossRefPubMedGoogle Scholar
  10. 10.
    Ramirez M, Garcia-Rio F, Vinas A, Prados C, Pino JM, Villamor J (2004) Relationship between exhaled carbon monoxide and airway hyperresponsiveness in asthmatic patients. J Asthma 41: 109–116CrossRefPubMedGoogle Scholar
  11. 11.
    Zegdi R, Caid R, Van De Louw A, et al (2000) Exhaled carbon monoxide in mechanically ventilated critically ill patients: influence of inspired oxygen fraction. Intensive Care Med 26: 1228–1231CrossRefPubMedGoogle Scholar
  12. 12.
    Togores B, Bosch M, Agusti AG (2000) The measurement of exhaled carbon monoxide is influenced by airflow obstruction. Eur Respir J 15: 177–180CrossRefPubMedGoogle Scholar
  13. 13.
    Yamaya M, Sekizawa K, Ishizuka S, Monma M, Mizuta K, Sasaki H (1998) Increased carbon monoxide in exhaled air of subjects with upper respiratory tract infections. Am J Respir Crit Care Med 158: 311–314PubMedGoogle Scholar
  14. 14.
    Yasuda H, Yamaya M, Yanai M, Ohrui T, Sasaki H (2002) Increased blood carboxyhaemoglobin concentrations in inflammatory pulmonary diseases. Thorax 57: 779–783CrossRefPubMedGoogle Scholar
  15. 15.
    Westphal M, Eletr D, Bone HG, et al (2002) Arteriovenous carboxyhemoglobin difference in critical illness: fiction or fact? Biochem Biophys Res Commun 299: 479–482CrossRefPubMedGoogle Scholar
  16. 16.
    Singer P, Hansen H (1988) Suppression of fetal hemoglobin and bilirubin on oximetry measurement. Blood Gas News 8: 12–17Google Scholar
  17. 17.
    Maines MD, Gibbs PE (2005) 30 some years of heme oxygenase: from a “molecular wrecking Ball” to a “mesmerizing” trigger of cellular events. Biochem Biophys Res Commun 338: 568–577CrossRefPubMedGoogle Scholar
  18. 18.
    Vincent JL, Sakr Y, Sprung CL, et al (2006) Sepsis in European intensive care units: results of the SOAP study. Crit Care Med 34: 344–353CrossRefPubMedGoogle Scholar
  19. 19.
    Salvemini D, Cuzzocrea S (2002) Oxidative stress in septic shock and disseminated intravascular coagulation. Free Radic Biol Med 33: 1173–1185CrossRefPubMedGoogle Scholar
  20. 20.
    Fujii H, Takahashi T, Nakahira K, et al (2003) Protective role of heme oxygenase-1 in the intestinal tissue injury in an experimental model of sepsis. Crit Care Med 31: 893–902CrossRefPubMedGoogle Scholar
  21. 21.
    Morimatsu H, Takahashi T, Maeshima K, et al (2006) Increased heme catabolism in critically ill patients: correlation among exhaled carbon monoxide, arterial carboxyhemoglobin, and serum bilirubin IXalpha concentrations. Am J Physiol Lung Cell Mol Physiol 290: L114–L119CrossRefPubMedGoogle Scholar
  22. 22.
    Wiesel P, Patel AP, DiFonzo N, et al (2000) Endotoxin-induced mortality is related to increased oxidative stress and end-organ dysfunction, not refractory hypotension, in heme oxygenase-1-deficient mice. Circulation 102: 3015–3022PubMedGoogle Scholar
  23. 23.
    Ryter SW, Otterbein LE (2004) Carbon monoxide in biology and medicine. Bioessays 26: 270–280CrossRefPubMedGoogle Scholar
  24. 24.
    Wu L, Cao K, Lu Y, Wang R (2002) Different mechanisms underlying the stimulation of K(Ca) channels by nitric oxide and carbon monoxide. J Clin Invest 110: 691–700PubMedGoogle Scholar
  25. 25.
    Dubuis E, Potier M, Wang R, Vandier C (2005) Continuous inhalation of carbon monoxide attenuates hypoxic pulmonary hypertension development presumably through activation of BKCa channels. Cardiovasc Res 65: 751–761CrossRefPubMedGoogle Scholar
  26. 26.
    Scharte M, von Ostrowski TA, Daudel F, Freise H, Van Aken H, Bone HG (2006) Endogenous carbon monoxide production correlates weakly with severity of acute illness. Eur J Anaesthesiol 23: 117–122CrossRefPubMedGoogle Scholar
  27. 27.
    Scharte M, Bone HG, Van Aken H, Meyer J (2000) Increased carbon monoxide in exhaled air of critically ill patients. Biochem Biophys Res Commun 267: 423–426CrossRefPubMedGoogle Scholar
  28. 28.
    Zegdi R, Perrin D, Burdin M, Boiteau R, Tenaillon A (2002) Increased endogenous carbon monoxide production in severe sepsis. Intensive Care Med 28: 793–796CrossRefPubMedGoogle Scholar
  29. 29.
    Meyer J, Prien T, Van Aken H, et al (1998) Arterio-venous carboxyhemoglobin difference suggests carbon monoxide production by human lungs. Biochem Biophys Res Commun 244: 230–232CrossRefPubMedGoogle Scholar
  30. 30.
    Moncure M, Brathwaite CE, Samaha E, Marburger R, Ross SE (1999) Carboxyhemoglobin elevation in trauma victims. J Trauma 46: 424–427CrossRefPubMedGoogle Scholar
  31. 31.
    Shi Y, Pan F, Li H, et al (2000) Plasma carbon monoxide levels in term newborn infants with sepsis. Biol Neonate 78: 230–232CrossRefPubMedGoogle Scholar
  32. 32.
    Shi Y, Pan F, Li H, et al (2003) Carbon monoxide concentrations in paediatric sepsis syndrome. Arch Dis Child 88: 889–890CrossRefPubMedGoogle Scholar
  33. 33.
    Melley DD, Finney SJ, Elia A, Lagan AL, Quinlan GJ, Evans TW (2007) Arterial carboxyhemoglobin level and outcome in critically ill patients. Crit Care Med 35: 1882–1887CrossRefPubMedGoogle Scholar
  34. 34.
    Hunter K, Mascia M, Eudaric P, Simpkins C (1994) Evidence that carbon monoxide is a mediator of critical illness. Cell Mol Biol (Noisy-le-grand) 40: 507–510Google Scholar
  35. 35.
    Sedlacek M, Halpern NA, Uribarri J (1999) Carboxyhemoglobin and lactate levels do not correlate in critically ill patients. Am J Ther 6: 241–244CrossRefPubMedGoogle Scholar
  36. 36.
    Eletr D, Reich A, Stubbe HD, et al (2004) Arteriovenous carboxyhemoglobin difference is not correlated to TNF-alpha, IL-6, PCT, CRP and leukocytes in critically ill patients. Clin Chim Acta 349: 75–80CrossRefPubMedGoogle Scholar
  37. 37.
    Camhi SL, Alam J, Otterbein L, Sylvester SL, Choi AM (1995) Induction of heme oxygenase-1 gene expression by lipopolysaccharide is mediated by AP-1 activation. Am J Respir Cell Mol Biol 13: 387–398PubMedGoogle Scholar
  38. 38.
    Kim YM, Bergonia HA, Muller C, Pitt BR, Watkins WD, Lancaster JR, Jr. (1995) Loss and degradation of enzyme-bound heme induced by cellular nitric oxide synthesis. J Biol Chem 270: 5710–5713CrossRefPubMedGoogle Scholar
  39. 39.
    Lavrovsky Y, Drummond GS, Abraham NG (1996) Downregulation of the human heme oxygenase gene by glucocorticoids and identification of 56b regulatory elements. Biochem Biophys Res Commun 218: 759–765CrossRefPubMedGoogle Scholar
  40. 40.
    Stockley RA (1995) Role of inflammation in respiratory tract infections. Am J Med 99: 8S–13SCrossRefPubMedGoogle Scholar
  41. 41.
    Chabot F, Mitchell JA, Gutteridge JM, Evans TW (1998) Reactive oxygen species in acute lung injury. Eur Respir J 11: 745–757PubMedGoogle Scholar
  42. 42.
    Kovacs EJ, DiPietro LA (1994) Fibrogenic cytokines and connective tissue production. FASEB J 8: 854–861PubMedGoogle Scholar
  43. 43.
    Goldstein RH, Fine A (1995) Potential therapeutic initiatives for fibrogenic lung diseases. Chest 108: 848–855CrossRefPubMedGoogle Scholar
  44. 44.
    Paredi P, Kharitonov SA, Loukides S, Pantelidis P, du Bois RM, Barnes PJ (1999) Exhaled nitric oxide is increased in active fibrosing alveolitis. Chest 115: 1352–1356CrossRefPubMedGoogle Scholar
  45. 45.
    Yamada N, Yamaya M, Okinaga S, et al (2000) Microsatellite polymorphism in the heme oxygenase-1 gene promoter is associated with susceptibility to emphysema. Am J Hum Genet 66: 187–195CrossRefPubMedGoogle Scholar
  46. 46.
    Nathan C, Xie QW (1994) Regulation of biosynthesis of nitric oxide. J Biol Chem 269: 13725–13728PubMedGoogle Scholar
  47. 47.
    Zayasu K, Sekizawa K, Okinaga S, Yamaya M, Ohrui T, Sasaki H (1997) Increased carbon monoxide in exhaled air of asthmatic patients. Am J Respir Crit Care Med 156: 1140–1143PubMedGoogle Scholar
  48. 48.
    Zanconato S, Scollo M, Zaramella C, Landi L, Zacchello F, Baraldi E (2002) Exhaled carbon monoxide levels after a course of oral prednisone in children with asthma exacerbation. J Allergy Clin Immunol 109: 440–445CrossRefPubMedGoogle Scholar
  49. 49.
    Yamaya M, Sekizawa K, Ishizuka S, Monma M, Sasaki H (1999) Exhaled carbon monoxide levels during treatment of acute asthma. Eur Respir J 13: 757–760CrossRefPubMedGoogle Scholar
  50. 50.
    Yasuda H, Yamaya M, Nakayama K, et al (2005) Increased arterial carboxyhemoglobin concentrations in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 171: 1246–1251CrossRefPubMedGoogle Scholar
  51. 51.
    Horvath I, Loukides S, Wodehouse T, Kharitonov SA, Cole PJ, Barnes PJ (1998) Increased levels of exhaled carbon monoxide in bronchiectasis: a new marker of oxidative stress. Thorax 53: 867–870CrossRefPubMedGoogle Scholar
  52. 52.
    Yasuda H, Ebihara S, Yamaya M, Mashito Y, Nakamura M, Sasaki H (2004) Increased arterial carboxyhemoglobin concentrations in elderly patients with silicosis. J Am Geriatr Soc 52: 1403–1404CrossRefPubMedGoogle Scholar
  53. 53.
    Paredi P, Shah PL, Montuschi P, et al (1999) Increased carbon monoxide in exhaled air of patients with cystic fibrosis. Thorax 54: 917–920CrossRefPubMedGoogle Scholar
  54. 54.
    May C, Patel S, Peacock J, Milner A, Rafferty GF, Greenough A (2007) End-tidal carbon monoxide levels in prematurely born infants developing bronchopulmonary dysplasia. Pediatr Res 61: 474–478CrossRefPubMedGoogle Scholar
  55. 55.
    Yamaya M, Hosoda M, Ishizuka S, et al (2001) Relation between exhaled carbon monoxide levels and clinical severity of asthma. Clin Exp Allergy 31: 417–422CrossRefPubMedGoogle Scholar
  56. 56.
    Kong PM, Chan CC, Lee P, Wang YT (2002) An assessment of the role of exhaled carbon monoxide in acute asthmatic exacerbations in hospitalised patients. Singapore Med J 43: 399–402PubMedGoogle Scholar
  57. 57.
    Biernacki WA, Kharitonov SA, Barnes PJ (2001) Exhaled carbon monoxide in patients with lower respiratory tract infection. Respir Med 95: 1003–1005CrossRefPubMedGoogle Scholar
  58. 58.
    Bartlett JG, Mundy LM (1995) Community-acquired pneumonia. N Engl J Med 333: 1618–1624CrossRefPubMedGoogle Scholar
  59. 59.
    Antuni JD, Kharitonov SA, Hughes D, Hodson ME, Barnes PJ (2000) Increase in exhaled carbon monoxide during exacerbations of cystic fibrosis. Thorax 55: 138–142CrossRefPubMedGoogle Scholar
  60. 60.
    Mayr FB, Spiel A, Leitner J, et al (2005) Effects of carbon monoxide inhalation during experimental endotoxemia in humans. Am J Respir Crit Care Med 171: 354–360CrossRefPubMedGoogle Scholar
  61. 61.
    Sakamoto A, Nakanishi K, Takeda S, Ogawa R (2005) Does carboxy-hemoglobin serve as a stress-induced inflammatory marker reflecting surgical insults? J Nippon Med Sch 72: 19–28CrossRefPubMedGoogle Scholar
  62. 62.
    Leikin JB, Vogel S (1986) Carbon monoxide levels in cardiac patients in an urban emergency department. Am J Emerg Med 4: 126–128CrossRefPubMedGoogle Scholar
  63. 63.
    Ohara Y, Ohrui T, Morikawa T, et al (2006) Exhaled carbon monoxide levels in school-age children with episodic asthma. Pediatr Pulmonol 41: 470–474CrossRefGoogle Scholar
  64. 64.
    Pearson P, Lewis S, Britton J, Fogarty A (2005) Exhaled carbon monoxide levels in atopic asthma: a longitudinal study. Respir Med 99: 1292–1296CrossRefPubMedGoogle Scholar
  65. 65.
    Beck-Ripp J, Latzin P, Griese M (2004) Exhaled carbon monoxide is not flow dependent in children with cystic fibrosis and asthma. Eur J Med Res 9: 518–522PubMedGoogle Scholar
  66. 66.
    Yasuda H, Sasaki T, Yamaya M, et al (2004) Increased arteriovenous carboxyhemoglobin differences in patients with inflammatory pulmonary diseases. Chest 125: 2160–2168CrossRefPubMedGoogle Scholar
  67. 67.
    Zetterquist W, Marteus H, Johannesson M, et al (2002) Exhaled carbon monoxide is not elevated in patients with asthma or cystic fibrosis. Eur Respir J 20: 92–99CrossRefPubMedGoogle Scholar
  68. 68.
    Khatri SB, Ozkan M, McCarthy K, et al (2001) Alterations in exhaled gas profile during allergen-induced asthmatic response. Am J Respir Crit Care Med 164: 1844–1848PubMedGoogle Scholar
  69. 69.
    Uasuf CG, Jatakanon A, James A, Kharitonov SA, Wilson NM, Barnes PJ (1999) Exhaled carbon monoxide in childhood asthma. J Pediatr 135: 569–574CrossRefPubMedGoogle Scholar
  70. 70.
    Hampson NB (2007) Carboxyhemoglobin elevation due to hemolytic anemia. J Emerg Med 33: 17–19CrossRefPubMedGoogle Scholar
  71. 71.
    Sylvester KP, Patey RA, Rafferty GF, Rees D, Thein SL, Greenough A (2005) Exhaled carbon monoxide levels in children with sickle cell disease. Eur J Pediatr 164: 162–165CrossRefPubMedGoogle Scholar
  72. 72.
    Ziemann-Gimmel P, Schwartz DE (2004) Increased carboxyhemoglobin in a patient with a large retroperitoneal hematoma. Anesth Analg 99: 1800–2, tableCrossRefPubMedGoogle Scholar
  73. 73.
    Sears DA, Udden MM, Thomas LJ (2001) Carboxyhemoglobin levels in patients with sickle-cell anemia: relationship to hemolytic and vasoocclusive severity. Am J Med Sci 322: 345–348CrossRefPubMedGoogle Scholar
  74. 74.
    Paredi P, Biernacki W, Invernizzi G, Kharitonov SA, Barnes PJ (1999) Exhaled carbon monoxide levels elevated in diabetes and correlated with glucose concentration in blood: a new test for monitoring the disease? Chest 116: 1007–1011CrossRefPubMedGoogle Scholar
  75. 75.
    Thunedborg P, Nielsen AL, Brinkenfeldt H, Brahm J, Jensen HA (1995) Carbon monoxide in chronic uraemia related to erythropoietin treatment and smoking habits. Scand J Urol Nephrol 29: 21–25CrossRefPubMedGoogle Scholar
  76. 76.
    Coburn RF, Williams WJ, Kahn SB (1966) Endogenous carbon monoxide production in patients with hemolytic anemia. J Clin Invest 45: 460–468CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • F. Corrêa
    • 1
  • F. E. Nacul
    • 1
  • Y. Sakr
    • 1
  1. 1.Department of Anesthesiology and Intensive CareFriedrich-Schiller UniversityGermany

Personalised recommendations