Endotoxin Tolerance: Mechanisms and Clinical Applicability

  • A. Draisma
  • J. G. van der Hoeven
  • P. Pickkers


Lipopolysaccharide (LPS) is a glycolipid that constitutes the major portion of the outermost membrane of Gram-negative bacteria. LPS is considered one of the most powerful microbial stimulants of immune and non-immune cells. The immune system responds to LPS with a systemic production of pro- and anti-inflammatory cytokines, such as tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-10, primarily aimed to eliminate invading pathogens and subsequently curtail the immune response. Although pro-inflammatory cytokines are indispensable for the control of the growth and dissemination of the pathogen, excessive release of these cytokines, together with LPS-induced effects on endothelial cells, results in the clinical syndrome of septic shock and multiple organ failure.


Endotoxin Tolerance Microcirculatory Alteration Outermost Membrane Forearm Blood Flow Measurement Septic Shock Survivor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Favorite GO, Morgan HR (1942) Effects produced by the intravenous injection in man of a toxic antigenic material derived from eberhtella typhosa: clinical, hematological, chemical and serological studies. J Clin Invest 21: 589–599CrossRefPubMedGoogle Scholar
  2. 2.
    Sato S, Nomura F, Kawai T, et al (2000) Synergy and cross-tolerance between toll-like receptor (TLR) 2-and TLR4-mediated signaling pathways. J Immunol 165: 7096–7101PubMedGoogle Scholar
  3. 3.
    Lehner MD, Morath S, Michelsen KS, Schumann RR, Hartung T (2001) Induction of cross-tolerance by lipopolysaccharide and highly purified lipoteichoic acid via different Toll-like receptors independent of paracrine mediators. J Immunol 166: 5161–5167PubMedGoogle Scholar
  4. 4.
    Jiang W, Sun R, Wei H, Tian Z (2005) Toll-like receptor 3 ligand attenuates LPS-induced liver injury by down-regulation of toll-like receptor 4 expression on macrophages. Proc Natl Acad Sci U S A 102: 17077–17082CrossRefPubMedGoogle Scholar
  5. 5.
    Mizel SB, Snipes JA (2002) Gram-negative flagellin-induced self-tolerance is associated with a block in interleukin-1 receptor-associated kinase release from toll-like receptor 5. J Biol Chem 277: 22414–22420CrossRefPubMedGoogle Scholar
  6. 6.
    Draisma A, Dorresteijn M, Pickkers P, van der Hoeven JG (2008) The effect of systemic iNOS inhibition during human endotoxemia on the development of tolerance to different TLR-stimuli. Innate Immun 14: 153–159CrossRefPubMedGoogle Scholar
  7. 7.
    Shimauchi H, Ogawa T, Okuda K, Kusumoto Y, Okada H (1999) Autoregulatory effect of interleukin-10 on proinflammatory cytokine production by Porphyromonas gingivalis lipo-polysaccharide-tolerant human monocytes. Infect Immun 67: 2153–2159PubMedGoogle Scholar
  8. 8.
    Frankenberger M, Pechumer H, Ziegler-Heitbrock HW (1995) Interleukin-10 is upregulated in LPS tolerance. J Inflamm 45: 56–63PubMedGoogle Scholar
  9. 9.
    Randow F, Syrbe U, Meisel C, et al (1995) Mechanism of endotoxin desensitization: involvement of interleukin 10 and transforming growth factor beta. J Exp Med 181: 1887–1892CrossRefPubMedGoogle Scholar
  10. 10.
    Sly LM, Rauh MJ, Kalesnikoff J, Song CH, Krystal G (2004) LPS-induced upregulation of SHIP is essential for endotoxin tolerance. Immunity 21: 227–239CrossRefPubMedGoogle Scholar
  11. 11.
    Berg DJ, Kuhn R, Rajewsky K, et al (1995) Interleukin-10 is a central regulator of the response to LPS in murine models of endotoxic shock and the Shwartzman reaction but not endotoxin tolerance. J Clin Invest 96: 2339–2347CrossRefPubMedGoogle Scholar
  12. 12.
    Draisma A, Pickkers P, Bouw M, van der Hoeven J (2008) Development of endotoxin tolerance in humans in vivo. Crit Care Med (in press)Google Scholar
  13. 13.
    Zhang X, Morrison DC (1993) Lipopolysaccharide structure-function relationship in activation versus reprogramming of mouse peritoneal macrophages. J Leukoc Biol 54: 444–450PubMedGoogle Scholar
  14. 14.
    Cavaillon JM, Adib-Conquy M (2006) Bench-to-bedside review: endotoxin tolerance as a model of leukocyte reprogramming in sepsis. Crit Care 10: 233–240CrossRefPubMedGoogle Scholar
  15. 15.
    Wang P, Ba ZF, Chaudry IH (1994) Administration of tumor necrosis factor-alpha in vivo depresses endothelium-dependent relaxation. Am J Physiol 266: H2535–H2541PubMedGoogle Scholar
  16. 16.
    Clapp BR, Hingorani AD, Kharbanda RK, et al (2004) Inflammation-induced endothelial dysfunction involves reduced nitric oxide bioavailability and increased oxidant stress. Cardiovasc Res 64: 172–178CrossRefPubMedGoogle Scholar
  17. 17.
    Bhagat K, Vallance P (1997) Inflammatory cytokines impair endothelium-dependent dilatation in human veins in vivo. Circulation 96: 3042–3047PubMedGoogle Scholar
  18. 18.
    Wang P, Ba ZF, Chaudry IH (1995) Endothelium-dependent relaxation is depressed at the macro-and microcirculatory levels during sepsis. Am J Physiol 269: R988–R994PubMedGoogle Scholar
  19. 19.
    Pleiner J, Mittermayer F, Schaller G, MacAllister RJ, Wolzt M (2002) High doses of vitamin C reverse Escherichia coli endotoxin-induced hyporeactivity to acetylcholine in the human forearm. Circulation 106: 1460–1464CrossRefPubMedGoogle Scholar
  20. 20.
    Heitzer T, Schlinzig T, Krohn K, Meinertz T, Munzel T (2001) Endothelial dysfunction, oxidative stress, and risk of cardiovascular events in patients with coronary artery disease. Circulation 104: 2673–2678CrossRefPubMedGoogle Scholar
  21. 21.
    Faure E, Thomas L, Xu H, Medvedev A, Equils O, Arditi M (2001) Bacterial lipopolysaccharide and IFN-gamma induce Toll-like receptor 2 and Toll-like receptor 4 expression in human endothelial cells: role of NF-kappa B activation. J Immunol 166: 2018–2024PubMedGoogle Scholar
  22. 22.
    Hingorani AD, Cross J, Kharbanda RK, et al (2000) Acute systemic inflammation impairs endothelium-dependent dilatation in humans. Circulation 102: 994–999PubMedGoogle Scholar
  23. 23.
    Pickkers P, Dorresteijn MJ, Bouw MP, van der Hoeven JG, Smits P (2006) In vivo evidence for nitric oxide-mediated calcium-activated potassium-channel activation during human endotoxemia. Circulation 114: 414–421CrossRefPubMedGoogle Scholar
  24. 24.
    van Deventer SJ, Buller HR, ten Cate JW, Aarden LA, Hack CE, Sturk A (1990) Experimental endotoxemia in humans: analysis of cytokine release and coagulation, fibrinolytic, and complement pathways. Blood 76: 2520–2526PubMedGoogle Scholar
  25. 25.
    Sakr Y, Dubois MJ, De Backer D, Creteur J, Vincent JL (2004) Persistent microcirculatory alterations are associated with organ failure and death in patients with septic shock. Crit Care Med 32: 1825–1831CrossRefPubMedGoogle Scholar
  26. 26.
    Creteur J, Carollo T, Soldati G, Buchele G, De Backer D, Vincent JL (2007) The prognostic value of muscle StO2 in septic patients. Intensive Care Med 33: 1549–1556CrossRefPubMedGoogle Scholar
  27. 27.
    Colletti LM, Remick DG, Campbell DA Jr (1994) LPS pretreatment protects from hepatic ischemia/reperfusion. J Surg Res 57: 337–343CrossRefPubMedGoogle Scholar
  28. 28.
    Dominguez FE, Siemers F, Flohe S, Nau M, Schade FU (2002) Effects of endotoxin tolerance on liver function after hepatic ischemia/reperfusion injury in the rat. Crit Care Med 30: 165–170CrossRefPubMedGoogle Scholar
  29. 29.
    Fernandez ED, Flohe S, Siemers F, et al (2000) Endotoxin tolerance protects against local hepatic ischemia/reperfusion injury in the rat. J Endotoxin Res 6: 321–328CrossRefPubMedGoogle Scholar
  30. 30.
    Yoshidome H, Kato A, Edwards MJ, Lentsch AB (1999) Interleukin-10 suppresses hepatic ischemia/reperfusion injury in mice: implications of a central role for nuclear factor kappaB. Hepatology 30: 203–208CrossRefPubMedGoogle Scholar
  31. 31.
    Obermaier R, Drognitz O, Grub A, et al (2003) Endotoxin preconditioning in pancreatic ischemia/reperfusion injury. Pancreas 27: e51–e56CrossRefPubMedGoogle Scholar
  32. 32.
    Friedrich I, Spillner J, Lu EX, et al (2003) Induction of endotoxin tolerance improves lung function after warm ischemia in dogs. Am J Physiol Lung Cell Mol Physiol 284: L224–L231PubMedGoogle Scholar
  33. 33.
    Markart P, Schmidt R, Ruppert C, et al (2005) Ischemic and endotoxin pre-conditioning reduce lung reperfusion injury-induced surfactant alterations. J Heart Lung Transplant 24: 1680–1689CrossRefPubMedGoogle Scholar
  34. 34.
    Godet C, Goujon JM, Petit I, et al (2006) Endotoxin tolerance enhances interleukin-10 renal expression and decreases ischemia-reperfusion renal injury in rats. Shock 25: 384–388CrossRefPubMedGoogle Scholar
  35. 35.
    Heemann U, Szabo A, Hamar P, et al (2000) Lipopolysaccharide pretreatment protects from renal ischemia/reperfusion injury: possible connection to an interleukin-6-dependent pathway. Am J Pathol 156: 287–293PubMedGoogle Scholar
  36. 36.
    Rongen GA, Oyen WJ, Ramakers BP, et al (2005) Annexin A5 scintigraphy of forearm as a novel in vivo model of skeletal muscle preconditioning in humans. Circulation 111: 173–178CrossRefPubMedGoogle Scholar
  37. 37.
    Riksen NP, Zhou Z, Oyen WJ, et al (2006) Caffeine prevents protection in two human models of ischemic preconditioning. J Am Coll Cardiol 48: 700–707CrossRefPubMedGoogle Scholar
  38. 38.
    Riksen NP, Oyen WJ, Ramakers BP, et al (2005) Oral therapy with dipyridamole limits ischemia-reperfusion injury in humans. Clin Pharmacol Ther 78: 52–59CrossRefPubMedGoogle Scholar
  39. 39.
    Yellon DM, Hausenloy DJ (2007) Myocardial reperfusion injury. N Engl J Med 357: 1121–1135CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • A. Draisma
    • 1
  • J. G. van der Hoeven
    • 1
  • P. Pickkers
    • 1
  1. 1.Department of Intensive CareRadboud University Nijmegen Medical CenterNijmegenNetherlands

Personalised recommendations