Update on preload indexes: More volume than pressure

  • G. Della Rocca
  • M. G. Costa
  • L. Spagnesi
Conference paper


Hemodynamic assessment is of primary importance in guiding volume therapy and vasoactive drug administration to optimize organ perfusion and to avoid fluid overload with lung edema in critically ill patients [1, 2]. Clinical examination has been shown to be of minimal value in detecting inadequate cardiac preload [3]. Several methods for preload determination, such as central venous pressure (CVP) and pulmonary artery occlusion pressure (PAOP), have been widely used [4]. Cardiac filling pressures are not always accurate indicators of ventricular preload because of erroneous readings of pressure tracings, discrepancy between measured and transmural pressures, and changes in ventricular compliance [5]. In recent years, right ventricular end-diastolic volume (RVEDV) evaluated by fast response pulmonary artery catheters (PACs), left ventricular end-diastolic area (LVEDA) measured by echocardiography, and the intrathoracic blood volume (ITBV) evaluated by the transpulmonary indicator dilution technique, have been proposed to assess cardiac preload at the bedside [6, 7, 8].


Central Venous Pressure Stroke Volume Index Extravascular Lung Water Cardiac Preload Intrathoracic Blood Volume 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Slinger PD (1995) Perioperative fluid management for thoracic surgery: the puzzle of postpneumonectomy pulmonary edema. J Cardiothorac Vasc Anesth 9: 442–451CrossRefPubMedGoogle Scholar
  2. 2.
    Connors AF, Mc Caffee DR, Gray RA (1983) Evaluation of right heart catheterization in the critically ill patient without myocardial infarction. N Engl J Med 308: 263–267PubMedGoogle Scholar
  3. 3.
    Shippy CR, Appel PL, Shoemaker WC (1984) Reliability of clinical monitoring to assess blood volume in critically ill patients. Crit Care Med 12: 107–112CrossRefPubMedGoogle Scholar
  4. 4.
    Teboul JL, Pinsky MR, Mercat A, et al (2000) Estimating cardiac filling pressure in mechanically ventilated patients with hyperinflation. Crit Care Med 28: 3631–3636CrossRefPubMedGoogle Scholar
  5. 5.
    Marik PE, Baram M, Vahid B (2008) Does central venous pressure predict fluid responsiveness? A systematic review of the literature and the tale of seven mares. Chest 134: 172–178CrossRefPubMedGoogle Scholar
  6. 6.
    Reuse C, Vincent JL, Pinsky MR (1990) Measurements of right ventricular volumes during fluid challenge. Chest 98: 1450–1454CrossRefPubMedGoogle Scholar
  7. 7.
    Tousignant CP, Walsh F, Mazer CD (2000) The use of transesophageal echocardiography for preload assessment in critically ill patients. Anesth Analg 90: 351–355CrossRefPubMedGoogle Scholar
  8. 8.
    Lichtwarck-Aschoff M, Zeravik J, Pfeiffer UJ (1992) Intrathoracic blood volume accurately reflects circulatory volume status in critically ill patients with mechanical ventilation. Intensive Care Med 18: 142–147CrossRefPubMedGoogle Scholar
  9. 9.
    Gelman S (2008) Venous function and central venous pressure. A physiologic story. Anesthesiology 108: 735–748CrossRefPubMedGoogle Scholar
  10. 10.
    Urbanowicz JH, Shaaban MJ, Cohen NH, et al (1990) Comparison of transesophageal echocardiographic and scintigraphic estimates of left ventricular end-diastolic volume index and ejection fraction in patients following coronary artery bypass grafting. Anesthesiology 72: 607–612PubMedCrossRefGoogle Scholar
  11. 11.
    Magder S, De Varennes B (1998) Clinical death and the measurement of stressed vascular volume. Crit Care Med 26: 1061–1064CrossRefPubMedGoogle Scholar
  12. 12.
    Boldt J, Lenz M, Kumle B, et al (1998) Volume replacement strategies on intensive care units: results from a postal survey. Intensive Care Med 24: 147–151CrossRefPubMedGoogle Scholar
  13. 13.
    Magder S (2006) Central venous pressure monitoring. Curr Opin Crit Care 12: 219–227CrossRefPubMedGoogle Scholar
  14. 14.
    Dellinger RP, Carlet JM, Masur H, et al (2004) Surviving Sepsis Campaign guidelines for management of severe sepsis and septic shock. Crit Care Med 32: 858–873CrossRefPubMedGoogle Scholar
  15. 15.
    Robin E, Costecalde M, Lebuffe G, Vallet B (2006) Clinical relevance of data from the pulmonary artery catherer. Crit Care 10 (suppl 3):S3CrossRefGoogle Scholar
  16. 16.
    Takala J (2003) Pulmonary capillary pressure. Intensive Carte Med 29: 890–893Google Scholar
  17. 17.
    Pinsky MR (2003) Clinical significance of pulmonary artery occlusion pressure. Intensive Care Med 29: 175–178PubMedGoogle Scholar
  18. 18.
    Kumar A, Anel R, Bunnell E et al (2004) Pulmonary artery occlusion pressure and central venous pressure fail to predict ventricular filling volume, cardiac performance, or the response to volume infusion in normal subjects. Crit Care Med 32: 691–699CrossRefPubMedGoogle Scholar
  19. 19.
    Diebel LN, Wilson RF, Tagett MG, Kline RA (1992) End-diastolic volume: a better indicator of preload in the critically ill. Arch Surg 127: 817–822PubMedGoogle Scholar
  20. 20.
    Diebel L, Wilson RF, Heins J, Larky H, Warsow K, Wilson S (1994) End-diastolic volume versus pulmonary artery wedge pressure in evaluating cardiac preload in trauma patients. J Trauma 37: 950–955CrossRefPubMedGoogle Scholar
  21. 21.
    Michard F, Alaya S, Zarka V, Bahoul M, Richard C, Teboul JL (2005) Global end-diastolic volume as an indicator of cardiac preload in patients with septic shock. Chest 124: 1900–1908CrossRefGoogle Scholar
  22. 22.
    Hofer CK, Furrer L, Matter-Ensner S, et al (2005) Volumetric preload measurement by thermodilution: a comparison with transoesophageal echocardiography. Br J Anaesthesia 94: 748–755CrossRefGoogle Scholar
  23. 23.
    De Simone R, Wolf I, Mottl-Link S et al (2005) Intraoperative assessment of right ventricular volume and function. Eur J Cardiothorac Surg 27: 988–933CrossRefPubMedGoogle Scholar
  24. 24.
    Wiesenack C, Fiegl C, Keyser A, Laule S, Prasse C, Keyl C (2005) Continuously assessed right ventricular end-diastolic volume as a marker of cardiac preload and fluid responsiveness in mechanically ventilated cardiac surgical patients. Crit Care 9: R226–R233CrossRefPubMedGoogle Scholar
  25. 25.
    Della Rocca G, Costa MG, Feltracco P, et al (2008) Continuous right ventricular end diastolic volume and right ventricular ejection fraction during liver transplantation: A multicentre study. Liver Transplantation 14: 327–332CrossRefPubMedGoogle Scholar
  26. 26.
    Chang MC, Black CS, Meredith JW (1996) Volumetric assessment of preload in trauma patients: addressing the problem of the mathematical coupling. Shock 6: 326–329PubMedCrossRefGoogle Scholar
  27. 27.
    Nelson LD, Safcsak K, Cheatham ML, Block EF (2001) Mathematical coupling does not explain the relationship between right ventricular end-diastolic volume and cardiac output. Crit Care Med 29: 940–943CrossRefPubMedGoogle Scholar
  28. 28.
    Wesseling KH, de Wit B, Weber JAP, et al (1983) A simple device for the continuous measurement of cardiac output. Adv Cardiovasc Physiol 5: 16–52Google Scholar
  29. 29.
    Sakka SG, Rühl CC, Pfeiffer UJ, et al (2000) Assessment of cardiac preload and extravascular lung water by single transpulmonary thermodilution. Intensive Care Med 26: 180–187CrossRefPubMedGoogle Scholar
  30. 30.
    Neumann P (1999) Extravascular lung water and intrathoracic blood volume: double versus single indicator dilution technique. Intensive Care Med 25: 216–219CrossRefPubMedGoogle Scholar
  31. 31.
    Sakka SG, Bredle DL, Reinhart K, Meier-Hellmann A (1999) Comparison between intrathoracic blood volume and cardiac filling pressures in the early phase of hemodynamic instability of patients with sepsis and septic shock. J Crit Care 14: 78–83CrossRefPubMedGoogle Scholar
  32. 32.
    Huber W, Umgelter A, Reindl W, et al (2008) Volume assessment in patients with necrotizing pancreatitis: A comparison of intrathoracic blood volume index, central venous pressure, and hematocrit, and their correlation to cardiac index and extravascular lung eater index. Crit Care Med 36: 2348–2354CrossRefPubMedGoogle Scholar
  33. 33.
    Della Rocca G, Costa MG, Coccia C, Pompei L, Di Marco P, Pietropaoli P (2002) Preload index: pulmonary artery occlusion pressare versus intrathoracic blood volume monitoring during lung transplantation. Anesth Analg 95: 835–43CrossRefPubMedGoogle Scholar
  34. 34.
    Della Rocca G, Costa MG, Coccia C, Pompei L, Pietropaoli P (2002) Preload and haemodynamic assessment during liver transplantation. A comparison between pulmonary artery catheter and transpulmonary indicator dilution technique. Eur J Anaesthesiol 19: 868–875CrossRefPubMedGoogle Scholar
  35. 35.
    Gödje O, Peyerl M, Seebauer T, Lamm P, Mair H, Reichart B (1998) Central venous pressure, pulmonary capillary wedge pressure and intrathoracic blood volumes as preload indicators in cardiac surgery patients. Eur J Cardiothoracic Surg 13: 533–539CrossRefGoogle Scholar
  36. 36.
    Gödje O, Peyerl M, Seebauer T, Dewald O, Reichart B (2000) Hemodynamic monitoring by double-indicator dilution technique in patients after orthotopic heart transplantation. Chest 118: 775–781CrossRefGoogle Scholar
  37. 37.
    Reuter DA, Felbinger TW, Moerstedt K, et al (2002) Intrathoracic blood volume index mea-sured by thermodilution for preload monitoring after cardiac surgery. J Cardiothorac Vasc Anesth 16: 191–195CrossRefPubMedGoogle Scholar
  38. 38.
    Goepfert MSG, Reuter DA, Akyol D, Lamm P, Kilger E, Goetz AE (2007) Goal directed fluid management reduces vasopressor and catecholamine use in surgery patients. Intensive Care Med 33: 96–103CrossRefPubMedGoogle Scholar
  39. 39.
    Buhre W, Weyland A, Bhure K, et al (2000) Effects of the sitting position on the distribution of the blood volume in patients undergoing neurosurgical procedures. Br J Anaesth 84: 354–357PubMedGoogle Scholar
  40. 40.
    Hofer CK, Zalunardo MP, Klaghofer R, Spahr T, Pasch T, Zollinger A (2002) Changes in intrathoracic blood volume associated with pneumoperitoneum and positioning. Acta Anaesthesiol Scand 46: 303–308CrossRefPubMedGoogle Scholar
  41. 41.
    Bindels AJGH, van der Hoeven JG, Graafland AD, de Konig J, Meinders AE (2000) Relationships between volume and pressure measurements and stroke volume in critically ill patients. Crit Care 4: 193–199CrossRefPubMedGoogle Scholar
  42. 42.
    Reuter DA, Felbinger TW, Schmidt C, et al (2003) Trendelenburg positioning after cardiac surgery: effects on intrathoracic blood volume index and cardiac performance. Eur J Anaesthesiol 2003 20: 17–20CrossRefPubMedGoogle Scholar
  43. 43.
    Schiffmann H, Erdlenbruch B, Singer D, et al (2002) Assessment of cardiac output, intravascular volume status, and extravascular lung water by transpulmonary indicator dilution in critically ill neonates and infants. J Cardiothorac Vasc Anesth 16: 592–559CrossRefPubMedGoogle Scholar
  44. 44.
    Cecchetti C, Lubrano R, Cristaldi S, et al (2008) Relationship between global end diastolic volume and cardiac output in critically ill infants and children. Crit Care Med 36: 928–932PubMedGoogle Scholar
  45. 45.
    Holm C, Melcer B, Horbrand F, et al (2000) Intrathoracic blood volume as an end point in resuscitation of the severely burned: an observational study of 24 patients. J Trauma 48: 728–734CrossRefPubMedGoogle Scholar
  46. 46.
    Kuntscher MV, Czermak C, Blome-Eberwein S, Dacho A, Germann G (2003) Transcardiopulmonary thermal dye versus single thermodilution methods for assessment of intrathoracic blood volume and extravascular lung water in major burn resuscitation. J Burn Care Rehabil 24: 142–147CrossRefPubMedGoogle Scholar
  47. 47.
    Hofer CK, Ganter MT, Matter-Enser S, et al (2006) Volumetric assessment of left heart preload by thermodilution: comparing the PiCCO-VoLEF system with transoesophageal echocardiography. Anaesthesia 61: 316–321CrossRefPubMedGoogle Scholar
  48. 48.
    Neumann P, Schubert A, Heuer J, Hinz J, Quintel M, Klockgether-Radke A (2005) Hemodynamic effects of spontaneous breathing in the postoperative period. Acta Anaesthesiol Scand 49: 1443–1448CrossRefPubMedGoogle Scholar
  49. 49.
    Uchino S, Bellomo R, Morimatsu H, et al (2006) Pulmonary artery catheter versus pulse contour analysis: a prospective epidemiological study. Crit Care 10:R174CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • G. Della Rocca
    • 1
  • M. G. Costa
    • 1
  • L. Spagnesi
    • 1
  1. 1.Department of Anesthesia and Intensive CareAzienda Ospedaliero-Universitaria S.M. della MisericordiaUdineItaly

Personalised recommendations