Cardiac Filling Volumes and Pressures in Assessing Preload Responsiveness during Fluid Challenges

  • R.-M. B. G. E. Breukers
  • R. J. Trof
  • A. B. J. Groeneveld


Heart-lung interactions, loss of circulating blood volume and fluid loading are accompanied by changes in cardiac output, mainly as a consequence of changes in cardiac preload. However, hypotension and oliguria do not necessarily indicate hypovolemia, for instance during cardiogenic shock. During increased airway pressures, i.e., positive end-expiratory pressure (PEEP), thereby decreasing venous return, cardiac preload may fall, at an unchanged blood volume. Nevertheless, fluid loading for treatment of circulatory insufficiency, irrespective of its cause, is probably the earliest and most common step in the treatment of critically ill patients, and perhaps also the most controversial one. Controversies include the reasons, types, and amounts of fluid to be given and the end-points of resuscitation during shock, hypotension, oliguria, or combinations. The importance of prediction and careful monitoring of fluid therapy is the prevention of under- and overfilling [1]. Tailored therapy is more likely to be adequate in individual patients than the use of fixed volumes, for instance given peri-operatively, in clinical trials of ‘liberal’ versus ‘restrictive’ fluid regimens in surgical patients.


Cardiac Output Stroke Volume Filling Pressure Fluid Responsiveness Pulse Pressure Variation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Goepfert MS, Reuter DA, Akyol D, Lamm P, Kilger E, Goetz AE (2007) Goal-directed fluid management reduces vasopressor and catecholamine use in cardiac surgery patients. Intensive Care Med 33: 96–103CrossRefPubMedGoogle Scholar
  2. 2.
    Brock H, Gabriel C, Bibi D, Necek S (2002) Monitoring intravascular volumes for postoperative volume therapy. Eur J Anaesthesiol 19: 288–294PubMedGoogle Scholar
  3. 3.
    Bendjelid K, Romand JA (2003) Fluid responsiveness in mechanically ventilated patients: a review of indices used in intensive care. Intensive Care Med 29: 352–360CrossRefPubMedGoogle Scholar
  4. 4.
    Michard F, Alaya S, Zarka V, Bahloul M, Richard C, Teboul JL (2003) Global end-diastolic volume as an indicator of cardiac preload in patients with septic shock. Chest 124: 1900–1908CrossRefPubMedGoogle Scholar
  5. 5.
    Reuter DA, Felbinger TW, Schmidt C, et al (2002) Stroke volume variations for assessment of cardiac responsiveness to volume loading in mechanically ventilated patients after cardiac surgery. Intensive Care Med 28: 392–398CrossRefPubMedGoogle Scholar
  6. 6.
    Marx G, Cope T, McCrossan L, et al (2004) Assessing fluid responsiveness by stroke volume variation in mechanically ventilated patients with severe sepsis. Eur J Anaesthesiol 21: 132–138PubMedGoogle Scholar
  7. 7.
    De Backer D, Heenen S, Piagnerelli M, Koch M, Vincent JL (2005) Pulse pressure variations to predict fluid responsiveness: influence of tidal volume. Intensive Care Med 31: 517–523CrossRefPubMedGoogle Scholar
  8. 8.
    Hofer CK, Müller SM, Furrer L, Klaghofer R, Genoni M, Zollinger A (2005) Stroke volume and pulse pressure variation for prediction of fluid responsiveness in patients undergoing off-pump coronary artery bypass grafting. Chest 128: 848–854CrossRefPubMedGoogle Scholar
  9. 9.
    Preisman S, Kogan S, Berkenstadt H, Perel A (2005) Predicting fluid responsiveness in patients undergoing cardiac surgery: functional haemodynamic parameters including the respiratory systolic variation test and static preload indicators. Br J Anaesth 95: 746–755CrossRefPubMedGoogle Scholar
  10. 10.
    Reuter DA, Goepfert MS, Goresch T, Schmoeckel M, Kilger E, Goetz AE (2005) Assessing fluid responsiveness during open chest conditions. Br J Anaesth 94: 318–323CrossRefPubMedGoogle Scholar
  11. 11.
    Wiesenack C, Fiegl C, Keyser A, Prasser C, Keyl C (2005) Assessment of fluid responsiveness in mechanically ventilated cardiac surgical patients. Eur J Anaesthesiol 22: 658–665CrossRefPubMedGoogle Scholar
  12. 12.
    Axler O, Tousignant C, Thompson CR, et al (1997) Small hemodynamic effect of typical rapid volume infusion in critically ill patients. Crit Care Med 25: 965–970CrossRefPubMedGoogle Scholar
  13. 13.
    Verheij J, van Lingen A, Beishuizen A, et al (2006) Cardiac response is greater for colloid than saline fluid loading after cardiac or vascular surgery. Intensive Care Med 32: 1030–1038CrossRefPubMedGoogle Scholar
  14. 14.
    Kumar A, Anel R, Bunnell E, et al (2004) Pulmonary artery occlusion pressure and central venous pressure fail to predict ventricular filling volume, cardiac performance, or the response to volume infusion in normal subjects. Crit Care Med 32: 691–699CrossRefPubMedGoogle Scholar
  15. 15.
    Calvin JE, Driedger AA, Sibbald WJ (1981) The hemodynamic effect of rapid fluid infusion in critically ill patients. Surgery 90: 61–76PubMedGoogle Scholar
  16. 16.
    Reuse C, Vincent JL, Pinsky MR (1990) Measurements of right ventricular volumes during fluid challenges Chest 98: 1450–1454CrossRefPubMedGoogle Scholar
  17. 17.
    Vincent JL, Weil MH (2006) Fluid challenge revisited. Crit Care Med 34: 1333–1337CrossRefPubMedGoogle Scholar
  18. 18.
    Weil MH, Henning RJ (1979) New concepts in the diagnosis and fluid treatment of circulatory shock._Thirteenth annual Becton, Dickinson and Company Oscar Schwidetsky memorial lecture. Anesth Analg 58: 124–132CrossRefPubMedGoogle Scholar
  19. 19.
    Hinder F, Poelaert JL, Schmidt C, et al (1998) Assessment of cardiovascular volume status by transoesophageal echocardiography and dye dilution during cardiac surgery. Eur J Anaesthesiol 15: 633–640CrossRefPubMedGoogle Scholar
  20. 20.
    Wagner JG, Leatherman JW (1998) Right ventricular end-diastolic volume as a predictor of the hemodynamic response to a fluid challenge. Chest 113: 1048–1054CrossRefPubMedGoogle Scholar
  21. 21.
    Wiesenack C, Prasser C, Keyl C, Rödig G (2001) Assessment of intrathoracic blood volume as an indicator of cardiac preload: single transpulmonary thermodilution technique versus assessment of pressure preload parameters derived from a pulmonary artery catheter. J Cardiothorac Vasc Anesth 15: 584–588CrossRefPubMedGoogle Scholar
  22. 22.
    Reuter DA, Felbinger TW, Moerstedt K, et al (2002) Intrathoracic blood volume index measured by thermodilution for preload monitoring after cardiac surgery. J Cardiothorac Vasc Anesth 16: 191–195CrossRefPubMedGoogle Scholar
  23. 23.
    Hofer CK, Furrer L, Matter-Ensner S, et al (2005) Volumetric preload measurement by thermodilution: a comparison with transoesophageal echocardiography. Br J Anaesth 94: 748–755CrossRefPubMedGoogle Scholar
  24. 24.
    Wiesenack C, Fiegl C, Keyser A, Laule S, Prasser C, Keyl C (2005) Continuously assessed right ventricular end-diastolic volume as a marker of cardiac preload and fluid responsiveness in mechanically ventilated cardiac surgical patients. Crit Care 9:R226–R233CrossRefPubMedGoogle Scholar
  25. 25.
    Osman D, Ridel C, Ray P, et al (2007) Cardiac filling pressures are not appropriate to predict hemodynamic response to volume challenge. Crit Care Med 35: 64–68CrossRefPubMedGoogle Scholar
  26. 26.
    Marik PE, Baram M, Vahid B (2008) Does central venous pressure predict fluid responsiveness? A systematic review of the literature and the tale of seven mares. Chest 134: 172–178CrossRefPubMedGoogle Scholar
  27. 27.
    Magder S, Bafaqeeh F (2007) The clinical role of central venous pressure measurements. J Intensive Care Med 22: 44–51CrossRefPubMedGoogle Scholar
  28. 28.
    Nixon JV, Murray RG, Leonard PD, Mitchell JH, Blomqvist CG (1982) Effect of large variations in preload on left ventricular performance characteristics in normal subjects. Circulation 65: 698–703PubMedGoogle Scholar
  29. 29.
    Lichtwarck-Aschoff M, Zeravik J, Pfeiffer UJ (1992) Intrathoracic blood volume accurately reflects circulatory volume status in critically ill patients with mechanical ventilation. Intensive Care Med 18: 142–147CrossRefPubMedGoogle Scholar
  30. 30.
    Swenson JD, Bull D, Stringham J (2001) Subjective assessment of left ventricular preload using transesophageal echocardiography: corresponding pulmonary artery occlusion pressures. J Cardiothorac Vasc Anesth 15: 580–583CrossRefPubMedGoogle Scholar
  31. 31.
    Bouchard MJ, Denault A, Couture P, et al (2004) Poor correlation between hemodynamic and echocardiographic indexes of left ventricular performance in the operating room and intensive care unit. Crit Care Med 32: 644–648CrossRefPubMedGoogle Scholar
  32. 32.
    Veillard-Baron A, Charron C, Chergui K, Peyrouset O, Jardin F (2006) Bedside echocardiographic evalation of hemodynamics in sepsis: is a qualitative evaluation sufficient? Intensive Care Med 32: 1547–1552CrossRefGoogle Scholar
  33. 33.
    Yu M, Takiguchi S, Takanishi D, Myers S, McNamara JJ (1995) Evaluation of the clinical usefulness of thermodilution volumetric catheters. Crit Care Med 23: 681–686CrossRefPubMedGoogle Scholar
  34. 34.
    Chang MC, Blinman TA, Rutherford EJ, Nelson LD, Morris JA Jr (1996) Preload assessment in trauma patients during large-volume shock resuscitation. Arch Surg 131: 728–731PubMedGoogle Scholar
  35. 35.
    Kraut EJ, Owings JT, Anderson JT, Hanowell L, Moore P (1997) Right ventricular volumes overestimate left ventricular preload in critically ill patients. J Trauma 42: 839–846CrossRefPubMedGoogle Scholar
  36. 36.
    Squara P, Journois D, Estagnasié P, et al (1997) Elastic energy as an index of right ventricular filling. Chest 111: 351–358CrossRefPubMedGoogle Scholar
  37. 37.
    Cheatham ML, Nelson LD, Chang MC, Safcsak K (1998) Right ventricular end-diastolic volume index as a predictor of preload status in patients on positive end-expiratory pressure. Crit Care Med 26: 1801–1806CrossRefPubMedGoogle Scholar
  38. 38.
    Spöhr F, Hettrich E, Bauer H, Haas U, Martin E, Böttiger BW (2007) Comparison of two methods for enhanced continuous circulatory monitoring in patients with septic shock. Intensive Care Med 33: 1805–1810CrossRefPubMedGoogle Scholar
  39. 39.
    De Simone R, Wolf I, Mottl-Link S, et al (2005) Intraoperative assessment of right ventricular volume and function. Eur J Cardiothorac Surg 27: 988–993CrossRefPubMedGoogle Scholar
  40. 40.
    Gödje O, Peyerl M, Seebauer T, Lamm P, Mair H, Reichart B (1998) Central venous pressure, pulmonary capillary wedge pressure and intrathoracic blood volumes as preload indicators in cardiac surgery patients. Eur J Cardiothorac Surg 13: 533–540CrossRefPubMedGoogle Scholar
  41. 41.
    Gödje O, Peyerl M, Seebauer T, Dewald O, Reichart B (1998) Reproducibility of double indicator dilution measurements of intrathoracic blood volume compartments, extravascular lung water and liver function. Chest 113: 1070–1077CrossRefPubMedGoogle Scholar
  42. 42.
    Holm C, Melcer B, Hörbrand F, Wörl HH, Henckel von Donnersmarck G, Mühlbauer W (2000) Intrathoracic blood volume as an end point in resuscitation of the severely burned: an observational study of 24 patients. J Trauma 48: 728–734CrossRefPubMedGoogle Scholar
  43. 43.
    Combes A, Berneau JB, Luyt CE, Trouillet JL (2004) Estimation of left ventricular systolic function by single transpulmonary thermodilution. Intensive Care Med 30: 1377–1383PubMedGoogle Scholar
  44. 44.
    Calvin JE, Driedger AA, Sibbald WJ (1981) Does the pulmonary capillary wedge pressure predict left ventricular preload in critically ill patients? Crit Care Med 9: 437–443CrossRefPubMedGoogle Scholar
  45. 45.
    Hansen RM, Viquerat CE, Matthay MA, et al (1986) Poor correlation between pulmonary arterial wedge pressure and left ventricular end-diastolic volume after coronary artery bypass graft surgery. Anesthesiology 64: 764–770CrossRefPubMedGoogle Scholar
  46. 46.
    Schneider AJ, Teule GJ, Groeneveld AB, Nauta J, Heidendal GA, Thijs LG (1988) Biventricular performance during volume loading in patients with early septic shock, with emphasis on the right ventricle: a combined hemodynamic and radionuclide study. Am Heart J 116: 103–112CrossRefPubMedGoogle Scholar
  47. 47.
    Norton JM (2001) Toward consistent definitions for preload and afterload. Adv Physiol Educ 25: 53–61PubMedGoogle Scholar
  48. 48.
    Cheung AT, Savino JS, Weiss SJ, Aukburg SJ, Berlin JA (1994) Echocardiographic and hemodynamic indexes of left ventricular preload in patients with normal and abnormal ventricular function. Anesthesiology 81: 376–387CrossRefPubMedGoogle Scholar
  49. 49.
    Mundigler G, Heinze G, Zehetgruber M, Gabriel H, Siostrzonek P (2000) Limitations of the transpulmonary indicator dilution method for assessment of preload changes in critically ill patients with reduced left ventriuclar function. Crit Care Med 28: 2231–2237CrossRefPubMedGoogle Scholar
  50. 50.
    Breukers RMBGE, Trof RJ, de Wilde RBP, et al (2009) Relative value of pressures and volumes in assessing fluid responsiveness after valvular and coronary artery surgery. Eur J Cardiothorac Surg 35: 62–68CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • R.-M. B. G. E. Breukers
    • 1
  • R. J. Trof
    • 1
  • A. B. J. Groeneveld
    • 1
  1. 1.Department of Intensive CareVU University Medical CenterAmsterdamNetherlands

Personalised recommendations