Hyperchloremic Metabolic Acidosis: More than Just a Simple Dilutional Effect

  • S. S. Abdel-Razeq
  • L. J. Kaplan


Fluid resuscitation lies at the heart of acute care medicine. Despite the central role occupied by plasma volume expansion therapeutics, there remains little consensus regarding the ideal fluid for plasma volume expansion. However, the unintended consequences of excessive plasma volume expansion as well as those untoward events directly ascribed to the prescribed fluids have come to the fore. Anasarca, pulmonary edema, myocardial stress, acute lung injury (ALI), acute kidney injury, as well as the secondary abdominal compartment syndrome have all been described as unintended consequences of plasma volume expansion following critical illness or injury [1, 2, 3]. It is important to note that these events occur with both crystalloid and colloid therapy, although at different rates.


Acute Lung Injury Metabolic Acidosis Microvascular Flow Unmeasured Anion Standard Base Excess 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Maerz L, Kaplan LJ (2008) Abdominal compartment syndrome. Crit Care Med 36 (Suppl 4): S212–215CrossRefPubMedGoogle Scholar
  2. 2.
    Cope DK, Grimbert F, Downey JM, Taylor AE (1992) Pulmonary capillary pressure: a review. Crit Care Med 20: 1043–1056CrossRefPubMedGoogle Scholar
  3. 3.
    Kalra PR, Anagnostopoulos C, Bolger AP, Coats AJ, Anker SD (2002) The regulation and measurement of plasma volume in heart failure. J Am Coll Cardiol 39: 1901–1908CrossRefPubMedGoogle Scholar
  4. 4.
    Scheingraber S, Rehm M, Sehmisch C, Finsterer U (1999) Rapid saline infusion produces hyperchloremic acidosis in patients undergoing gynecologic surgery. Anesthesiology 90: 1265–1270CrossRefPubMedGoogle Scholar
  5. 5.
    Healey MA, Davis RE, Liu FC, Loomis WH, Hoyt DB (1998) Lactated ringer’s is superior to normal saline in a model of massive hemorrhage and resuscitation. J Trauma 45: 894–899CrossRefPubMedGoogle Scholar
  6. 6.
    Kaplan LJ, Bailey H, Kellum JA (1999) The etiology and significance of metabolic acidosis in trauma patients. Curr Opin Crit Care 5: 458–463CrossRefGoogle Scholar
  7. 7.
    Stewart PA (1981) How to Understand Acid-base. A Quantitative Acid-base Primer for Biology and Medicine. Elsevier, New YorkGoogle Scholar
  8. 8.
    Stewart PA (1983) Modern quantitative acid-base chemistry. Can J Physiol Pharmacol 61: 1444–1461PubMedGoogle Scholar
  9. 9.
    Kellum JA (2000) Determinants of blood pH in health and disease. Crit Care 4: 6–14CrossRefPubMedGoogle Scholar
  10. 10.
    Wooten EW (2004) Science review: Quantitative acid-base physiology using the Stewart model. Crit Care 8: 448–452CrossRefPubMedGoogle Scholar
  11. 11.
    Morgan TJ (2005) Clinical review: The meaning of acid-base abnormalities in the intensive care unit — effects of fluid administration. Crit Care 9: 204–211CrossRefPubMedGoogle Scholar
  12. 12.
    Kaplan LJ, Kellum JA (2008) Comparison of acid-base models for prediction of hospital mortality after trauma. Shock 29: 662–666CrossRefPubMedGoogle Scholar
  13. 13.
    Kellum JA, Pinsky MR (2002) Use of vasopressor agents in critically ill patients. Curr Opin Crit Care 8: 236–241CrossRefPubMedGoogle Scholar
  14. 14.
    Kaplan LJ, Philbin N, Arnaud F, Rice J, Dong F, Freilich D (2006) Resuscitation from hemorrhagic shock: fluid selection and infusion strategy drives unmeasured ion genesis. J Trauma 61: 90–97CrossRefPubMedGoogle Scholar
  15. 15.
    Kellum JA (2003) Closing the gap on unmeasured anions. Crit Care 7: 219–220CrossRefPubMedGoogle Scholar
  16. 16.
    Moviat M, van Haren F, van der Hoeven H (2003) Conventional or pysiochemical approach in intensive care unit patients with meatabolic acidosis. Crit Care 7:R41–R45CrossRefPubMedGoogle Scholar
  17. 17.
    Kellum JA, Kramer DJ, Pinsky MR (1995) Strong ion gap: a methodology for exploring unexplained anions. J Crit Care 10: 51–55CrossRefPubMedGoogle Scholar
  18. 18.
    Kaplan LK, Kellum JA (2007) Acid-base disorders. In: Wilson W, Grande CM, Hoyt DB. Anesthesia, Trauma, and Intensive Care, 1st Edition. Informa Healthcare, New York, pp 793–810Google Scholar
  19. 19.
    Siggaard-Andersen O (1977) The Van Slyke equation. Scand J Clin Lab Invest Suppl 146: 15–20CrossRefGoogle Scholar
  20. 20.
    Siggaard-Andersen O, Fogh-Andersen N (1995) Base excess or buffer base (strong ion difference) as measure of a non-respiratory acid-base disturbance. Acta Anesth Scand Suppl 107: 123–128CrossRefGoogle Scholar
  21. 21.
    Brill SA, Stewart TR, Brundage SI, Schreiber MA (2002) Base deficit does not predict mortality when secondary to hyperchloremic acidosis. Shock 17: 459–462CrossRefPubMedGoogle Scholar
  22. 22.
    Rivers E, Nguyen B, Havstad S, et al (2001) Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345: 1368–1377CrossRefPubMedGoogle Scholar
  23. 23.
    Eberhard LW, Morabito DJ, Matthay MA, et al (2000) Initial severity of metabolic acidosis predicts the development of acute lung injury in severely traumatized patients. Crit Care Med 28: 125–131CrossRefPubMedGoogle Scholar
  24. 24.
    dos Santos CC, Slutsky AS (2006) The contribution of biophysical lung injury to the development of biotrauma. Annu Rev Physiol 68: 585–618CrossRefPubMedGoogle Scholar
  25. 25.
    Habashi NM (2005) Other approaches to open-lung ventilation: airway pressure release ventilation. Crit Care Med 33 (Suppl 3):S228–240CrossRefPubMedGoogle Scholar
  26. 26.
    Haque IU, Huang CJ, Scumpia PO, Nasiroglu O, Skimming JW (2003) Intravascular infusion of acid promotes intrapulmonary inducible nitric oxide synthase activity and impairs blood oxygenation in rats. Crit Care Med 31: 1454–1460CrossRefPubMedGoogle Scholar
  27. 27.
    Eddy VA, Morris JA Jr, Cullinane DC (2000) Hypothermia, coagulopathy, and acidosis. Surg Clin North Am 80: 845–854CrossRefPubMedGoogle Scholar
  28. 28.
    Schreiber MA (2005) Coagulopathy in the trauma patient. Curr Opin Crit Care 11: 590–597CrossRefPubMedGoogle Scholar
  29. 29.
    Martini WZ, Pusateri AE, Uscilowicz JM, Delgado AV, Holcomb JB (2005) Independent contributions of hypothermia and acidosis to coagulopathy in swine. J Trauma 58: 1002–1009CrossRefPubMedGoogle Scholar
  30. 30.
    Holcomb JB, Jenkins D, Rhee P, et al (2007) Damage control resuscitation: directly addressing the early coagulopathy of trauma. J Trauma 62: 307–310CrossRefPubMedGoogle Scholar
  31. 31.
    Johnston TD, Chen Y, Reed RL 2nd (1994) Functional equivalence of hypothermia to specific clotting factor deficiencies. J Trauma 37: 413–417CrossRefPubMedGoogle Scholar
  32. 32.
    Waters JH, Gottlieb A, Schoenwald P, Popovich MJ, Sprung J, Nelson DR (2001) Normal saline versus lactated Ringer’s solution for intraoperative fluid management in patients undergoing abdominal aortic aneurysm repair: an outcome study. Anesth Analg 93: 817–822CrossRefPubMedGoogle Scholar
  33. 33.
    Cammarata GA, Weil MH, Castillo CJ, et al (2009) Buccal capnometry for quantitating the severity of hemorrhagic shock. Shock (in press)Google Scholar
  34. 34.
    Povoas HP, Weil MH, Tang W, Moran B, Kamohara T, Bisera J (2000) Comparisons between sublingual and gastric tonometry during hemorrhagic shock. Chest 118: 1127–1132CrossRefPubMedGoogle Scholar
  35. 35.
    Weil MH, Nakagawa Y, Tang W, et al (1999) Sublingual capnometry: a new noninvasive measurement for diagnosis and quantitation of severity of circulatory shock. Crit Care Med 27: 1225–1229CrossRefPubMedGoogle Scholar
  36. 36.
    Lang K, Boldt J, Suttner S, Haisch G (2001) Colloids versus crystalloids and tissue oxygen tension in patients undergoing major abdominal surgery. Anesth Analg 93: 405–409CrossRefPubMedGoogle Scholar
  37. 37.
    Reinhart WH, Gaudenz R, Walter R (2002) Acidosis induced by lactate, pyruvate, or HCl increases blood viscosity. J Crit Care 17: 68–73CrossRefPubMedGoogle Scholar
  38. 38.
    Hansen J, Skalak R, Chien S, Hoger A (1997) Spectrin properties and the elasticity of the red blood cell membrane skeleton. Biorheology 34: 327–348CrossRefPubMedGoogle Scholar
  39. 39.
    Li J, Lykotrafitis G, Dao M, Suresh S (2007) Cytoskeletal dynamics of human erythrocyte. Proc Natl Acad Sci USA 104: 4937–4942CrossRefPubMedGoogle Scholar
  40. 40.
    Kaplan LJ, Bellows CF, Blum H, Mitchell M, Whitman GJ (1994) Ischemic preconditioning preserves end-ischemic ATP, enhancing functional recovery and coronary flow during reperfusion. J Surg Res 57: 179–184CrossRefPubMedGoogle Scholar
  41. 41.
    Kaplan LJ, Blum H, Bellows CF, Banerjee A, Whitman GJ (1996) Reversible injury: creatinine kinase recovery restores bioenergetics and function. J Surg Res 62: 103–108CrossRefPubMedGoogle Scholar
  42. 42.
    Seal JB, Gewertz BL (2005) Vascular dysfunction in ischemia-reperfusion injury. Ann Vasc Surg 19: 572–584CrossRefPubMedGoogle Scholar
  43. 43.
    Cicha I, Suzuki Y, Tateishi N, Maeda N (2003) Changes of RBC aggregation in oxygenationdeoxygenation: pH dependency and cell morphology. Am J Physiol Heart Circ Physiol 284: H2335–2342PubMedGoogle Scholar
  44. 44.
    Chiara O, Pelosi P, Segala M, et al (2001) Mesenteric and renal oxygen transport during hemorrhage and reperfusion: evaluation of optimal goals for resuscitation. J Trauma 51: 356–362CrossRefPubMedGoogle Scholar
  45. 45.
    Kaplan LJ, Bellows CF, Carter S, Blum H, Whitman GJ (1995) The phosphocreatine overshoot occurs independent of myocardial work. Biochimie 77: 245–248CrossRefPubMedGoogle Scholar
  46. 46.
    Benesch RE, Rubin H (1975) Interaction of hemoglobin with three ligans: organic phosphates and the Bohr effect. Proc Natl Acad Sci USA 72: 2465–2467CrossRefPubMedGoogle Scholar
  47. 47.
    Giovannini I, Chiarla C, Boldrini G, Terzi R (1999) Quantitative assessment of changes in blood CO(2) tension mediated by the haldane effect. J Appl Physiol 87: 862–866PubMedGoogle Scholar
  48. 48.
    Prange HD, Schumaker Jr JL, Westen EA, Horstkotte DG, Pinshow B (2001) Physiological consequences of oxygen-dependent chloride binding to hemoglobin. J Appl Physiol 91: 33–38PubMedGoogle Scholar
  49. 49.
    Rhee P, Wang D, Ruff P, et al (2000) Human neutrophil activation and increased adhesion by various resuscitation fluids. Crit Care Med 28: 74–78CrossRefPubMedGoogle Scholar
  50. 50.
    Kellum JA, Song M, Venkataraman R (2004) Effects of hyperchloremic acidosis on arterial pressure and circulating inflammatory molecules in experimental sepsis. Chest 125: 243–248CrossRefPubMedGoogle Scholar
  51. 51.
    Kellum JA, Song M, Li J (2004) Lactic and hydrochloric acids induce different patterns of inflammatory response in LPS-stimulated RAW 264.7 cells. Am J Physiol Regul Integr Comp Physiol 286:R686–692PubMedGoogle Scholar
  52. 52.
    Kellum JA (2002) Fluid resuscitation and hyperchloremic acidosis in experimental sepsis: improved short-term survival and acid-base balance with Hextend compared with saline. Crit Care Med 30: 300–305CrossRefPubMedGoogle Scholar
  53. 53.
    Abramson D, Scalea TM, Hitchcock R, Trooskin SZ, Henry SM, Greenspan J (1993) Lactate clearance and survival following injury. J Trauma 35: 584–589CrossRefPubMedGoogle Scholar
  54. 54.
    Gunnerson KJ, Saul M, He S, Kellum JA (2006) Lactate versus non-lactate metabolic acidosis: a retrospective outcome evaluation of critically ill patients. Crit Care 10:R22CrossRefPubMedGoogle Scholar
  55. 55.
    Gunnerson KJ, Kaplan JA (2003) Acid-base and electrolyte analysis in critically ill patients: are we ready for the new millennium? Curr Opin Crit Care 9: 468–473CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • S. S. Abdel-Razeq
    • 1
  • L. J. Kaplan
    • 1
  1. 1.Section of Trauma, Surgical Critical Care, and Surgical EmergenciesYale University School of MedicineNew HavenUSA

Personalised recommendations