Refining the Tools for Early Goal-directed Therapy in Septic Shock

  • E. Kipnis
  • E. Robin
  • B. Vallet


The cornerstone of septic shock treatment is initial therapy in the first hours to the extent that part of the therapy, response to fluid loading, is a diagnostic criterion for septic shock. Furthermore, owing to the lack of specificity of key clinical features in the classification of hypotension, diagnosis and treatment should be considered simultaneously since a good response to treatment confirms the working diagnosis. Immediate management includes ensuring oxygen supply, fluid therapy, assessment of the need for vasopressor or inotrope therapy, and specific treatments to control and treat the source of infection. In life-threatening situations, empirical treatment should not be delayed while monitoring devices are being inserted. Basic cardiorespiratory monitoring includes measurement of heart rate and blood pressure, and pulse oximetry. However, the new millenium has witnessed the emergence of a new paradigm in the resuscitation of septic shock: Early goal-directed therapy. Early goal-directed therapy is a therapeutic strategy integrating all the standard aspects of septic shock treatment such as fluid loading, vasopressor and inotrope use among others, into an algorithmic process in which each component has specific targets, and all are targeted to restored tissue perfusion. This strategy in itself has proved more successful in reducing mortality due to septic shock than any single pharmacologic treatment specifically targeting sepsis. However, there may be room for refining the steps, specific endpoints, and goals used in early goal-directed therapy in order to further reduce mortality in septic shock.


Septic Shock Severe Sepsis Mean Arterial Pressure Fluid Responsiveness Septic Shock Patient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rivers E, Nguyen B, Havstad S, et al (2001) Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345: 1368–1377CrossRefPubMedGoogle Scholar
  2. 2.
    Dellinger RP, Levy MM, Carlet JM, et al (2008) Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2008. Crit Care Med 36: 296–327CrossRefPubMedGoogle Scholar
  3. 3.
    Marik PE, Baram M, Vahid B (2008) Does central venous pressure predict fluid responsiveness? A systematic review of the literature and the tale of seven mares. Chest 134: 172–178CrossRefPubMedGoogle Scholar
  4. 4.
    Robin E, Costecalde M, Lebuffe G, Vallet B (2006) Clinical relevance of data from the pulmonary artery catheter. Crit Care 10 (Suppl 3): S3CrossRefGoogle Scholar
  5. 5.
    Price S, Nicol E, Gibson DG, Evans TW (2006) Echocardiography in the critically ill: current and potential roles. Intensive Care Med 32: 48–59CrossRefPubMedGoogle Scholar
  6. 6.
    Vieillard-Baron A, Prin S, Chergui K, Dubourg O, Jardin F (2003) Hemodynamic instability in sepsis: bedside assessment by Doppler echocardiography. Am J Respir Crit Care Med 168: 1270–1276CrossRefPubMedGoogle Scholar
  7. 7.
    Pinsky MR, Teboul JL (2005) Assessment of indices of preload and volume responsiveness. Curr Opin Crit Care 11: 235–239CrossRefPubMedGoogle Scholar
  8. 8.
    Vieillard-Baron A, Charron C, Chergui K, Peyrouset O, Jardin F (2006) Bedside echocardiographic evaluation of hemodynamics in sepsis: is a qualitative evaluation sufficient? Intensive Care Med 32: 1547–1552CrossRefPubMedGoogle Scholar
  9. 9.
    Michard F, Teboul JL (2002) Predicting fluid responsiveness in ICU patients: a critical analysis of the evidence. Chest 121: 2000–2008CrossRefPubMedGoogle Scholar
  10. 10.
    Pinsky MR, Brophy P, Padilla J, Paganini E, Pannu N (2008) Fluid and volume monitoring. Int J Artif Organs 31: 111–126PubMedGoogle Scholar
  11. 11.
    Michard F (2005) Changes in arterial pressure during mechanical ventilation. Anesthesiology 103: 419–428; quiz 449–415CrossRefPubMedGoogle Scholar
  12. 12.
    Lamia B, Ochagavia A, Monnet X, Chemla D, Richard C, Teboul JL (2007) Echocardiographic prediction of volume responsiveness in critically ill patients with spontaneously breathing activity. Intensive Care Med 33: 1125–1132CrossRefPubMedGoogle Scholar
  13. 13.
    Teboul JL, Monnet X (2008) Prediction of volume responsiveness in critically ill patients with spontaneous breathing activity. Curr Opin Crit Care 14: 334–339CrossRefPubMedGoogle Scholar
  14. 14.
    Sharma VK, Dellinger RP (2003) The International Sepsis Forum’s frontiers in sepsis: High cardiac output should not be maintained in severe sepsis. Crit Care 7: 272–275CrossRefPubMedGoogle Scholar
  15. 15.
    Dellinger RP, Carlet JM, Masur H, et al (2004) Surviving Sepsis Campaign guidelines for management of severe sepsis and septic shock. Crit Care Med 32: 858–873CrossRefPubMedGoogle Scholar
  16. 16.
    Abraham E, Matthay MA, Dinarello CA, et al (2000) Consensus conference definitions for sepsis, septic shock, acute lung injury, and acute respiratory distress syndrome: time for a reevaluation. Crit Care Med 28: 232–235CrossRefPubMedGoogle Scholar
  17. 17.
    Alberti C, Brun-Buisson C, Chevret S, et al (2005) Systemic inflammatory response and progression to severe sepsis in critically ill infected patients. Am J Respir Crit Care Med 171: 461–468CrossRefPubMedGoogle Scholar
  18. 18.
    Eastridge BJ, Salinas J, McManus JG, et al (2007) Hypotension begins at 110 mm Hg: redefining “hypotension” with data. J Trauma 63: 291–297CrossRefPubMedGoogle Scholar
  19. 19.
    LeDoux D, Astiz ME, Carpati CM, Rackow EC (2000) Effects of perfusion pressure on tissue perfusion in septic shock. Crit Care Med 28: 2729–2732CrossRefPubMedGoogle Scholar
  20. 20.
    Bourgoin A, Leone M, Delmas A, Garnier F, Albanese J, Martin C (2005) Increasing mean arterial pressure in patients with septic shock: effects on oxygen variables and renal function. Crit Care Med 33: 780–786CrossRefPubMedGoogle Scholar
  21. 21.
    Lopez A, Lorente JA, Steingrub J, et al (2004) Multiple-center, randomized, placebo-controlled, double-blind study of the nitric oxide synthase inhibitor 546C88: effect on survival in patients with septic shock. Crit Care Med 32: 21–30CrossRefPubMedGoogle Scholar
  22. 22.
    Varpula M, Tallgren M, Saukkonen K, Voipio-Pulkki LM, Pettila V (2005) Hemodynamic variables related to outcome in septic shock. Intensive Care Med 31: 1066–1071CrossRefPubMedGoogle Scholar
  23. 23.
    Nouira S, Elatrous S, Dimassi S, et al (2005) Effects of norepinephrine on static and dynamic preload indicators in experimental hemorrhagic shock. Crit Care Med 33: 2339–2343CrossRefPubMedGoogle Scholar
  24. 24.
    Rasanen J (1990) Mixed venous oximetry may detect critical oxygen delivery. Anesth Analg 71: 567–568CrossRefPubMedGoogle Scholar
  25. 25.
    Trzeciak S, Cinel I, Phillip Dellinger R, et al (2008) Resuscitating the microcirculation in sepsis: the central role of nitric oxide, emerging concepts for novel therapies, and challenges for clinical trials. Acad Emerg Med 15: 399–413CrossRefPubMedGoogle Scholar
  26. 26.
    Englehart MS, Schreiber MA (2006) Measurement of acid-base resuscitation endpoints: lactate, base deficit, bicarbonate or what? Curr Opin Crit Care 12: 569–574CrossRefPubMedGoogle Scholar
  27. 27.
    Levy B (2006) Lactate and shock state: the metabolic view. Curr Opin Crit Care 12: 315–321CrossRefPubMedGoogle Scholar
  28. 28.
    Levy B, Gawalkiewicz P, Vallet B, Briancon S, Nace L, Bollaert PE (2003) Gastric capnometry with air-automated tonometry predicts outcome in critically ill patients. Crit Care Med 31: 474–480CrossRefPubMedGoogle Scholar
  29. 29.
    Mekontso-Dessap A, Castelain V, Anguel N, et al (2002) Combination of venoarterial PCO2 difference with arteriovenous O2 content difference to detect anaerobic metabolism in patients. Intensive Care Med 28: 272–277CrossRefPubMedGoogle Scholar
  30. 30.
    Vallee F, Vallet B, Mathe O, et al (2008) Central venous-to-arterial carbon dioxide difference: an additional target for goal-directed therapy in septic shock? Intensive Care Med 34: 2218–2225CrossRefPubMedGoogle Scholar
  31. 31.
    Vallet B, Adamczyk S, Barreau O, Lebuffe G (2007) Physiologic transfusion triggers. Best Pract Res Clin Anaesthesiol 21: 173–181CrossRefPubMedGoogle Scholar
  32. 32.
    Rivers EP, McIntyre L, Morro DC, Rivers KK (2005) Early and innovative interventions for severe sepsis and septic shock: taking advantage of a window of opportunity. CMAJ 173: 1054–1065PubMedGoogle Scholar
  33. 33.
    Sebat F, Musthafa AA, Johnson D, et al (2007) Effect of a rapid response system for patients in shock on time to treatment and mortality during 5 years. Crit Care Med 35: 2568–2575CrossRefPubMedGoogle Scholar
  34. 34.
    Groupe Transversal Sepsis (2007) Prise en charge initiale des états septiques graves de l’adulte et de l’enfant. Réanimation 16: S1–S21CrossRefGoogle Scholar
  35. 35.
    Kumar A, Roberts D, Wood KE, et al (2006) Duration of hypotension before initiation of effective antimic0robial therapy is the critical determinant of survival in human septic shock. Crit Care Med 34: 1589–1596CrossRefPubMedGoogle Scholar
  36. 36.
    Abraham E, Laterre PF, Garg R, et al (2005) Drotrecogin alfa (activated) for adults with severe sepsis and a low risk of death. N Engl J Med 353: 1332–1341CrossRefPubMedGoogle Scholar
  37. 37.
    Annane D, Sebille V, Charpentier C, et al (2002) Effect of treatment with low doses of hydrocortisone and fludrocortisone on mortality in patients with septic shock. JAMA 288: 862–871CrossRefPubMedGoogle Scholar
  38. 38.
    Mallat J, Pironkov A, Destandou MS, Tavernier B (2003) Systolic pressure variation (Deltadown) can guide fluid therapy during pheochromocytoma surgery. Can J Anaesth 50: 998–1003CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • E. Kipnis
    • 1
  • E. Robin
    • 1
  • B. Vallet
    • 1
  1. 1.Department of Surgical Intensive Care Hôpital Huriez Centre Hospitalier RégionalUniversitaire de LilleLilleFrance

Personalised recommendations