Mitochondrial Genetics and Sepsis

  • A. Pyle
  • P. Chinnery
  • S. Baudouin


Mitochondria are intracellular organelles that generate the principal source of cellular energy in the form of adenosine triphosphate (ATP). In a highly efficient process, mitochondria convert both carbohydrate and fat into high-energy phosphate compounds by a series of intermediate steps involving electron transfer. Emerging data implicate mitochondrial damage and dysfunction as critical factors in the pathogenesis of sepsis.


Sperm Motility Mitochondrial Biogenesis Mitochondrial Uncouple Protein Oxidative Phosphorylation System Mitochondrial Genetic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Echtay KS (2007) Mitochondrial uncoupling proteins—what is their physiological role? Free Radic Biol Med 43: 1351–1371CrossRefPubMedGoogle Scholar
  2. 2.
    Sohal RS, Ku HH, Agarwal S, Forster MJ, Lal H (1994) Oxidative damage, mitochondrial oxidant generation and antioxidant defenses during aging and in response to food restriction in the mouse. Mech Ageing Dev 74: 121–133CrossRefPubMedGoogle Scholar
  3. 3.
    Echtay KS, Roussel D, St-Pierre J, et al (2002) Superoxide activates mitochondrial uncoupling proteins. Nature 415: 96–99CrossRefPubMedGoogle Scholar
  4. 4.
    Chandel NS, Maltepe E, Goldwasser E, Mathieu CE, Simon MC, Schumacker PT (1998) Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc Natl Acad Sci USA 95: 11715–11720CrossRefPubMedGoogle Scholar
  5. 5.
    Lee HC and Wei YH (2007) Oxidative stress, mitochondrial DNA mutation, and apoptosis in aging. Exp Biol Med (Maywood) 232: 592–606Google Scholar
  6. 6.
    Kroemer G, Dallaporta B, Resche-Rigon M (1998) The mitochondrial death/life regulator in apoptosis and necrosis. Annu Rev Physiol 60: 619–642CrossRefPubMedGoogle Scholar
  7. 7.
    Bayir H, Kagan VE (2008) Bench-to-bedside review: Mitochondrial injury, oxidative stress and apoptosis—there is nothing more practical than a good theory. Crit Care 12: 206CrossRefPubMedGoogle Scholar
  8. 8.
    Geng Y, Hansson GK, Holme E (1992) Interferon-gamma and tumor necrosis factor synergize to induce nitric oxide production and inhibit mitochondrial respiration in vascular smooth muscle cells. Circ Res 71: 1268–1276PubMedGoogle Scholar
  9. 9.
    Simonson SG, Welty-Wolf K, Huang YT, et al (1994) Altered mitochondrial redox responses in gram negative septic shock in primates. Circ Shock 43: 34–43PubMedGoogle Scholar
  10. 10.
    Vanhorebeek I, De Vos R, Mesotten D, Wouters PJ, De Wolf-Peeters C, Van den Berghe G (2005) Protection of hepatocyte mitochondrial ultrastructure and function by strict blood glucose control with insulin in critically ill patients. Lancet 365: 53–59CrossRefPubMedGoogle Scholar
  11. 11.
    Brealey D, Brand M, Hargreaves I, et al (2002) Association between mitochondrial dysfunction and severity and outcome of septic shock. Lancet 360: 219–223CrossRefPubMedGoogle Scholar
  12. 12.
    Protti A, Singer M (2006) Bench-to-bedside review: potential strategies to protect or reverse mitochondrial dysfunction in sepsis-induced organ failure. Crit Care 10: 228CrossRefPubMedGoogle Scholar
  13. 13.
    Nisoli E, Clementi E, Paolucci C, et al (2003) Mitochondrial biogenesis in mammals: the role of endogenous nitric oxide. Science 299: 896–899CrossRefPubMedGoogle Scholar
  14. 14.
    Margulis L (1971) Symbiosis and evolution. Sci Am 225: 48–57CrossRefPubMedGoogle Scholar
  15. 15.
    Anderson S, Bankier AT, Barrell BG, et al (1981) Sequence and organization of the human mitochondrial genome. Nature 290: 457–465CrossRefPubMedGoogle Scholar
  16. 16.
    Wallace DC (1994) Mitochondrial DNA sequence variation in human evolution and disease. Proc Natl Acad Sci USA 91: 8739–8746CrossRefPubMedGoogle Scholar
  17. 17.
    Miyata T, Hayashida H, Kikuno R, Hasegawa M, Kobayashi M, Koike K (1982) Molecular clock of silent substitution: at least six-fold preponderance of silent changes in mitochondrial genes over those in nuclear genes. J Mol Evol 19: 28–35CrossRefPubMedGoogle Scholar
  18. 18.
    Torroni A, Schurr TG, Cabell MF, et al (1993) Asian affinities and continental radiation of the four founding Native American mtDNAs. Am J Hum Genet 53: 563–590PubMedGoogle Scholar
  19. 19.
    Quintana-Murci L, Semino O, Bandelt HJ, Passarino G, McElreavey K, Santachiara-Benerecetti AS (1999) Genetic evidence of an early exit of Homo sapiens sapiens from Africa through eastern Africa. Nat Genet 23: 437–441CrossRefPubMedGoogle Scholar
  20. 20.
    Torroni A, Huoponen K, Francalacci P, et al (1996) Classification of European mtDNAs from an analysis of three European populations. Genetics 144: 1835–1850PubMedGoogle Scholar
  21. 21.
    Ruiz-Pesini E, Mishmar D, Brandon M, Procaccio V, Wallace DC (2004) Effects of purifying and adaptive selection on regional variation in human mtDNA. Science 303: 223–226CrossRefPubMedGoogle Scholar
  22. 22.
    Amo T, Brand MD (2007) Were inefficient mitochondrial haplogroups selected during migrations of modern humans? A test using modular kinetic analysis of coupling in mitochondria from cybrid cell lines. Biochem J 404: 345–351CrossRefPubMedGoogle Scholar
  23. 23.
    Elson JL, Turnbull DM, Howell N (2004) Comparative genomics and the evolution of human mitochondrial DNA: assessing the effects of selection. Am J Hum Genet 74: 229–238CrossRefPubMedGoogle Scholar
  24. 24.
    Kivisild T, Shen P, Wall DP, et al (2006) The role of selection in the evolution of human mitochondrial genomes. Genetics 172: 373–387CrossRefPubMedGoogle Scholar
  25. 25.
    Amo T, Yadava N, Oh R, Nicholls DG, Brand MD (2008) Experimental assessment of bioenergetic differences caused by the common European mitochondrial DNA haplogroups H and T. Gene 411: 69–76CrossRefPubMedGoogle Scholar
  26. 26.
    Topf AL, Gilbert MT, Fleischer RC, Hoelzel AR (2007) Ancient human mtDNA genotypes from England reveal lost variation over the last millennium. Biol Lett 3: 550–553CrossRefPubMedGoogle Scholar
  27. 27.
    Pyle A, Foltynie T, Tiangyou W, et al (2005) Mitochondrial DNA haplogroup cluster UKJT reduces the risk of PD. Ann Neurol 57: 564–567CrossRefPubMedGoogle Scholar
  28. 28.
    van der Walt JM, Nicodemus KK, Martin ER, et al (2003) Mitochondrial polymorphisms significantly reduce the risk of Parkinson disease. Am J Hum Genet 72: 804–811CrossRefPubMedGoogle Scholar
  29. 29.
    De Benedictis G, Rose G, Carrieri G, et al (1999) Mitochondrial DNA inherited variants are associated with successful aging and longevity in humans. Faseb J 13: 1532–1536PubMedGoogle Scholar
  30. 30.
    Baudouin SV, Saunders D, Tiangyou W, et al (2005) Mitochondrial DNA and survival after sepsis: a prospective study. Lancet 366: 2118–2121CrossRefPubMedGoogle Scholar
  31. 31.
    Yang Y, Shou Z, Zhang P, et al (2008) Mitochondrial DNA haplogroup R predicts survival advantage in severe sepsis in the Han population. Genet Med 10: 187–192CrossRefPubMedGoogle Scholar
  32. 32.
    Torroni A, Petrozzi M, D’Urbano L, et al (1997) Haplotype and phylogenetic analyses suggest that one European-specific mtDNA background plays a role in the expression of Leber hereditary optic neuropathy by increasing the penetrance of the primary mutations 11778 and 14484. Am J Hum Genet 60: 1107–1121PubMedGoogle Scholar
  33. 33.
    Ruiz-Pesini E, Lapena AC, Diez-Sanchez C, et al (2000) Human mtDNA haplogroups associated with high or reduced spermatozoa motility. Am J Hum Genet 67: 682–696CrossRefPubMedGoogle Scholar
  34. 34.
    Montiel-Sosa F, Ruiz-Pesini E, Enriquez JA, et al (2006) Differences of sperm motility in mitochondrial DNA haplogroup U sublineages. Gene 368: 21–27CrossRefPubMedGoogle Scholar
  35. 35.
    Niemi AK, Majamaa K (2005) Mitochondrial DNA and ACTN3 genotypes in Finnish elite endurance and sprint athletes. Eur J Hum Genet 13: 965–969CrossRefPubMedGoogle Scholar
  36. 36.
    Baracca A, Solaini G, Sgarbi G, et al (2005) Severe impairment of complex I-driven adenosine triphosphate synthesis in leber hereditary optic neuropathy cybrids. Arch Neurol 62: 730–736CrossRefPubMedGoogle Scholar
  37. 37.
    Moreno-Loshuertos R, Acin-Perez R, Fernandez-Silva P, et al (2006) Differences in reactive oxygen species production explain the phenotypes associated with common mouse mitochondrial DNA variants. Nat Genet 38: 1261–1268CrossRefPubMedGoogle Scholar
  38. 38.
    Watts JA, Kline JA, Thornton LR, Grattan RM, Brar SS (2004) Metabolic dysfunction and depletion of mitochondria in hearts of septic rats. J Mol Cell Cardiol 36: 141–150CrossRefPubMedGoogle Scholar
  39. 39.
    Crouser ED, Julian MW, Huff JE, Mandich DV, Green-Church KB (2006) A proteomic analysis of liver mitochondria during acute endotoxemia. Intensive Care Med 32: 1252–1262CrossRefPubMedGoogle Scholar
  40. 40.
    Cote HC, Day AG, Heyland DK (2007) Longitudinal increases in mitochondrial DNA levels in blood cells are associated with survival in critically ill patients. Crit Care 11: R88CrossRefPubMedGoogle Scholar
  41. 41.
    Haden DW, Suliman HB, Carraway MS, et al (2007) Mitochondrial biogenesis restores oxidative metabolism during Staphylococcus aureus sepsis. Am J Respir Crit Care Med 176: 768–777CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • A. Pyle
    • 1
  • P. Chinnery
    • 1
  • S. Baudouin
    • 2
  1. 1.Mitochondrial Research Group Institute of Ageing and HealthNewcastle UniversityNewcastle upon TyneUK
  2. 2.Department of AnesthesiaRoyal Victoria InfirmaryNewcastle upon TyneUK

Personalised recommendations