Dynamics of Feeding Behavior: Role of Hypothalamic and Satiety Signals



How are rats, people, and many other omnivores able to regulate food intake both within a meal and over days and weeks? We introduce a homeostatic computational theory for eating regulation whose components can be readily interpreted in terms of neuronal circuits. We propose that the long-term set point (over months and years) is located in the hypothalamus and is modulated both by signals for adiposity as well as some signals from the gut, and also by psychological factors such as learning and arousal (emotion). Hypothalamic efferents are inputs to the hindbrain (principally the nucleus tractus solitarius: NTS) providing the set point for short-term eating regulation. Satiety signals (SSs) and delayed gustatory and gastrointestinal aftereffects of eating act via the NTS as neural feedback governing short-term regulation (within a meal or a day). The model hypothesizes that the NTS acts as a comparator in a feedback control system. When the delayed sequelae of eating (SSs) fall below the short-term set point, eating begins, in on–off fashion. The ingestion of food increments the SSs after a delay; the increasing SSs eventually turn eating off. The model forges real links between a functioning feedback mechanism, neuro–hormonal data, and both short-term (meals) and long-term (eating-rate regulation) behavioral data. The model can explain relevant data from behavioral experiments and has implications for diet and nutrition.


Arcuate Nucleus Nucleus Tractus Solitarius Meal Size Meal Frequency Meal Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Nucleus tractus solitarius


Satiety signals




Peptide YY

Set PointST

Set point for short-term regulation

Set PointLT

Set point for long-term regulation


Paraventricular nucleus


Lateral hypothalamic


The satiation value


Satiation value of a specific food


Threshold value equal to Set PointST


Output of a cascaded series of leaky integrators


Number of integrator


State of integrator i


Time parameter of integrator i (0 < a i < 1)


Input weight


Post-interruption meal


Intermeal interval


Cascaded INTegrator



Supported by grants from Agencia Nacional de Promoción Científica y Tecnológica (PICT 2485), University of Buenos Aires (UBACYT I027), CONICET (PIP 5876) and from Duke University.


  1. Ahren B, Mansson S, Gingerich RL, Havel PJ. Am J Physiol Regul Integr Comp Physiol. 1997;273:R113–20.Google Scholar
  2. Bagdade JD, Bierman EL, Porte D Jr. J Clin Invest. 1967;46:1549–57.PubMedCrossRefGoogle Scholar
  3. Batterham RL, Heffron H, Kapoor S, Chivers JE, Chandarana K, et al. Cell Metab. 2006;4:223–33.PubMedCrossRefGoogle Scholar
  4. Batterham RL, Ffytche DH, Miranda Rosenthal J, Zelaya FO, Gareth J, Barker GJ, Dominic J, Withers DF, Williams SCR. Nature. 2007;450:106–9.PubMedCrossRefGoogle Scholar
  5. Bray GA, Fisler J, York DA. Front Neuroendocrinol. 1990;11:128–81.Google Scholar
  6. Bruning JC, et al. Science. 2000;289:2122–5.PubMedCrossRefGoogle Scholar
  7. Campfield LA, Smith FJ. Physiol Rev. 2003;83:25–58.PubMedGoogle Scholar
  8. Campfield LA, Smith FJ, Guisez Y, Devos R, Burn P. Science. 1995;269:546–9.PubMedCrossRefGoogle Scholar
  9. Chance WT, Balasubramaniam A, Zhang FS, Wimalawansa SJ, Fischer JE. Brain Res. 1991;539:352–4.PubMedCrossRefGoogle Scholar
  10. Chelikani PK, Haver AC, Reeve JR Jr, Keire DA, Reidelberger RD. Am J Physiol. 2006;290:R298–305.Google Scholar
  11. Collier G, Johnson DF. Physiol Behav. 1990;48:771–7.PubMedCrossRefGoogle Scholar
  12. Collier G, Hirsch E, Hamlin P. Physiol Behav. 1972;9:705–16.PubMedCrossRefGoogle Scholar
  13. Cone RD. Nature Neurosci. 2005;8:571–8.PubMedCrossRefGoogle Scholar
  14. Ellacott KLJ, Halatchev IG, Cone RD. Peptides. 2006;27:340–9.PubMedCrossRefGoogle Scholar
  15. Elmquist JK, Flier JS. Science. 2004;304:63–4.PubMedCrossRefGoogle Scholar
  16. Elmquist J, Maratos-Flier E, Saper C, Flier J. Nature Neurosci. 1998;1:445–50.PubMedCrossRefGoogle Scholar
  17. Fan W, Ellacott KLJ, Halatchev IG, Takahashi K, Yu P, et al. Nature Neurosci. 2004;7:335–6.PubMedCrossRefGoogle Scholar
  18. Geary N. New York: Oxford University Press; 1998. p. 291.Google Scholar
  19. Havel PJ, Kasim Karakas S, Mueller W, Johnson PR, Gingerich RL, et al. J Clin Endocrinol Metab. 1996;81:4406–13.PubMedCrossRefGoogle Scholar
  20. Le Magnen J. Hunger. New York: Cambridge University Press; 1985. p. 157.Google Scholar
  21. Levitsky DA. Physiol Behav. 1974;12:779–87.PubMedCrossRefGoogle Scholar
  22. Levitsky DA, Faust I, Glassman M. Physiol Behav. 1976;17:575–80.PubMedCrossRefGoogle Scholar
  23. Marx J. Science. 2003;299:846–9.PubMedCrossRefGoogle Scholar
  24. Polonsky KS, Given E, Carter V. J Clin Invest. 1988;81:442–8.PubMedCrossRefGoogle Scholar
  25. Ritter S, Dinh T, Friedman M. Brain Res. 1994;646:53–64.PubMedCrossRefGoogle Scholar
  26. Roth CL, Enriori PJ, Harz K, Woelfle J, Cowley MA, et al. J Clin Endocrinol Metab. 2005;90:6386–91.PubMedCrossRefGoogle Scholar
  27. Schwartz MW, Figlewicz DP, Baskin DG, Woods SC, Porte D Jr. Endocr Rev. 1992;13:387–414.PubMedGoogle Scholar
  28. Schwartz MW, Woods SC, Porte DJ, Seeley RJ, Baskin DG. Nature. 2000;404:661–71.PubMedGoogle Scholar
  29. Seeley RJ, van Dijk G, Campfield LA, Smith FJ, Nelligan JA, Bell SM, et al. Horm Metab Res. 1996;28:664–8.PubMedCrossRefGoogle Scholar
  30. Staddon JER. Motivation, III incentive and schedule effects. Adaptive dynamics: The theoretical analysis of behavior. Cambridge: MIT/Bradford; 2001. pp. 423.Google Scholar
  31. Staddon, JER, Zanutto, BS. In: Bouton ME, Fanselow MS, editors. Feeding dynamics: Why rats eat in meals and what this means for foraging and feeding regulation. Washington: American Psychological Association; 1997. pp. 131–62.Google Scholar
  32. Stanley BG, Willett VL III, Donias HW, Ha LH, Spears LC. Brain Res. 1993;630:41–9.PubMedCrossRefGoogle Scholar
  33. Stellar E. Psychol Rev. 1954;61:5.PubMedCrossRefGoogle Scholar
  34. Talisman R, Belinson N, Modan-Moses D, Canti H, Orenstein A, Barzilai Z, Parret G. Aesth Plast Surg. 2001;25:262–5.CrossRefGoogle Scholar
  35. Travers S, Norgren R. Annu Rev Neurosci. 1987;10:595–632.PubMedCrossRefGoogle Scholar
  36. Woods SC. Am J Physiol Gastrointest Liver Physiol. 2004;286:G7–13.PubMedCrossRefGoogle Scholar
  37. Woods SC, Lotter EC, McKay LDm, Porte D Jr. Nature. 1979;282:503–5.PubMedCrossRefGoogle Scholar
  38. Woods SC, Schwartz MW, Baskin DG, Seeley RJ. Ann Rev Psychol. 2000;51:255–77.CrossRefGoogle Scholar
  39. Zanutto BS, Staddon JER. PLoS Comput Biol. 2007;3:e97.doi:10.1371/journal.pcbi.0030097.PubMedCrossRefGoogle Scholar
  40. Zorrilla EP, Inoue K, Fekete EM, Tabarin A, Valdez GR, et al. Am J Physiol Regul Integr Comp Physiol. 2005;288:R1450–67.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.IIBM-Universidad de Buenos Aires, and IBYME-CONICETBuenos AiresArgentina

Personalised recommendations