Abstract
How are rats, people, and many other omnivores able to regulate food intake both within a meal and over days and weeks? We introduce a homeostatic computational theory for eating regulation whose components can be readily interpreted in terms of neuronal circuits. We propose that the long-term set point (over months and years) is located in the hypothalamus and is modulated both by signals for adiposity as well as some signals from the gut, and also by psychological factors such as learning and arousal (emotion). Hypothalamic efferents are inputs to the hindbrain (principally the nucleus tractus solitarius: NTS) providing the set point for short-term eating regulation. Satiety signals (SSs) and delayed gustatory and gastrointestinal aftereffects of eating act via the NTS as neural feedback governing short-term regulation (within a meal or a day). The model hypothesizes that the NTS acts as a comparator in a feedback control system. When the delayed sequelae of eating (SSs) fall below the short-term set point, eating begins, in on–off fashion. The ingestion of food increments the SSs after a delay; the increasing SSs eventually turn eating off. The model forges real links between a functioning feedback mechanism, neuro–hormonal data, and both short-term (meals) and long-term (eating-rate regulation) behavioral data. The model can explain relevant data from behavioral experiments and has implications for diet and nutrition.
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in via an institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsNotes
- 1.
Cascaded INTegrator
- 2.
That is, where rats must get all their food via the operant schedule.
Abbreviations
- NTS:
-
Nucleus tractus solitarius
- SSs:
-
Satiety signals
- CCK:
-
Cholecystokinin
- PYY:
-
Peptide YY
- Set PointST :
-
Set point for short-term regulation
- Set PointLT :
-
Set point for long-term regulation
- PVN:
-
Paraventricular nucleus
- LHA:
-
Lateral hypothalamic
- x(t):
-
The satiation value
- Φ:
-
Satiation value of a specific food
- θ:
-
Threshold value equal to Set PointST
- SS:
-
Output of a cascaded series of leaky integrators
- i :
-
Number of integrator
- V i :
-
State of integrator i
- a i :
-
Time parameter of integrator i (0 < a i < 1)
- b i :
-
Input weight
- PIM:
-
Post-interruption meal
- IMI:
-
Intermeal interval
- CINT:
-
Cascaded INTegrator
References
Ahren B, Mansson S, Gingerich RL, Havel PJ. Am J Physiol Regul Integr Comp Physiol. 1997;273:R113–20.
Bagdade JD, Bierman EL, Porte D Jr. J Clin Invest. 1967;46:1549–57.
Batterham RL, Heffron H, Kapoor S, Chivers JE, Chandarana K, et al. Cell Metab. 2006;4:223–33.
Batterham RL, Ffytche DH, Miranda Rosenthal J, Zelaya FO, Gareth J, Barker GJ, Dominic J, Withers DF, Williams SCR. Nature. 2007;450:106–9.
Bray GA, Fisler J, York DA. Front Neuroendocrinol. 1990;11:128–81.
Bruning JC, et al. Science. 2000;289:2122–5.
Campfield LA, Smith FJ. Physiol Rev. 2003;83:25–58.
Campfield LA, Smith FJ, Guisez Y, Devos R, Burn P. Science. 1995;269:546–9.
Chance WT, Balasubramaniam A, Zhang FS, Wimalawansa SJ, Fischer JE. Brain Res. 1991;539:352–4.
Chelikani PK, Haver AC, Reeve JR Jr, Keire DA, Reidelberger RD. Am J Physiol. 2006;290:R298–305.
Collier G, Johnson DF. Physiol Behav. 1990;48:771–7.
Collier G, Hirsch E, Hamlin P. Physiol Behav. 1972;9:705–16.
Cone RD. Nature Neurosci. 2005;8:571–8.
Ellacott KLJ, Halatchev IG, Cone RD. Peptides. 2006;27:340–9.
Elmquist JK, Flier JS. Science. 2004;304:63–4.
Elmquist J, Maratos-Flier E, Saper C, Flier J. Nature Neurosci. 1998;1:445–50.
Fan W, Ellacott KLJ, Halatchev IG, Takahashi K, Yu P, et al. Nature Neurosci. 2004;7:335–6.
Geary N. New York: Oxford University Press; 1998. p. 291.
Havel PJ, Kasim Karakas S, Mueller W, Johnson PR, Gingerich RL, et al. J Clin Endocrinol Metab. 1996;81:4406–13.
Le Magnen J. Hunger. New York: Cambridge University Press; 1985. p. 157.
Levitsky DA. Physiol Behav. 1974;12:779–87.
Levitsky DA, Faust I, Glassman M. Physiol Behav. 1976;17:575–80.
Marx J. Science. 2003;299:846–9.
Polonsky KS, Given E, Carter V. J Clin Invest. 1988;81:442–8.
Ritter S, Dinh T, Friedman M. Brain Res. 1994;646:53–64.
Roth CL, Enriori PJ, Harz K, Woelfle J, Cowley MA, et al. J Clin Endocrinol Metab. 2005;90:6386–91.
Schwartz MW, Figlewicz DP, Baskin DG, Woods SC, Porte D Jr. Endocr Rev. 1992;13:387–414.
Schwartz MW, Woods SC, Porte DJ, Seeley RJ, Baskin DG. Nature. 2000;404:661–71.
Seeley RJ, van Dijk G, Campfield LA, Smith FJ, Nelligan JA, Bell SM, et al. Horm Metab Res. 1996;28:664–8.
Staddon JER. Motivation, III incentive and schedule effects. Adaptive dynamics: The theoretical analysis of behavior. Cambridge: MIT/Bradford; 2001. pp. 423.
Staddon, JER, Zanutto, BS. In: Bouton ME, Fanselow MS, editors. Feeding dynamics: Why rats eat in meals and what this means for foraging and feeding regulation. Washington: American Psychological Association; 1997. pp. 131–62.
Stanley BG, Willett VL III, Donias HW, Ha LH, Spears LC. Brain Res. 1993;630:41–9.
Stellar E. Psychol Rev. 1954;61:5.
Talisman R, Belinson N, Modan-Moses D, Canti H, Orenstein A, Barzilai Z, Parret G. Aesth Plast Surg. 2001;25:262–5.
Travers S, Norgren R. Annu Rev Neurosci. 1987;10:595–632.
Woods SC. Am J Physiol Gastrointest Liver Physiol. 2004;286:G7–13.
Woods SC, Lotter EC, McKay LDm, Porte D Jr. Nature. 1979;282:503–5.
Woods SC, Schwartz MW, Baskin DG, Seeley RJ. Ann Rev Psychol. 2000;51:255–77.
Zanutto BS, Staddon JER. PLoS Comput Biol. 2007;3:e97.doi:10.1371/journal.pcbi.0030097.
Zorrilla EP, Inoue K, Fekete EM, Tabarin A, Valdez GR, et al. Am J Physiol Regul Integr Comp Physiol. 2005;288:R1450–67.
Acknowledgments
Supported by grants from Agencia Nacional de Promoción Científica y Tecnológica (PICT 2485), University of Buenos Aires (UBACYT I027), CONICET (PIP 5876) and from Duke University.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer Science+Business Media, LLC
About this chapter
Cite this chapter
Zanutto, B.S., Staddon, J.E.R. (2011). Dynamics of Feeding Behavior: Role of Hypothalamic and Satiety Signals. In: Preedy, V., Watson, R., Martin, C. (eds) Handbook of Behavior, Food and Nutrition. Springer, New York, NY. https://doi.org/10.1007/978-0-387-92271-3_61
Download citation
DOI: https://doi.org/10.1007/978-0-387-92271-3_61
Published:
Publisher Name: Springer, New York, NY
Print ISBN: 978-0-387-92270-6
Online ISBN: 978-0-387-92271-3
eBook Packages: MedicineMedicine (R0)
