Skip to main content

Synthesis of Polychiral Natural Products from Carbohydrates

  • Chapter
  • First Online:
Carbohydrates
  • 2900 Accesses

Abstract

Stereoselective synthesis of polychiral natural products is the most challenging problem for a synthetic organic chemist. The stereoselective synthesis of macrolide antibiotics represents one such difficult problem. They consist of macrocyclic lactone rings with many hydroxylated and methylated chiral carbons. In addition to that the macrocyclic lactones (macrolides) are usually glycosylated with amino sugars.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    There are a couple of review articles dealing with this subject [1, 2].

References

  1. Inch, T. D., “Formation of convenient chiral intermediates from carbohydrates and their use in synthesis”, Tetrahedron (1984) 40, 3161–3213

    Article  CAS  Google Scholar 

  2. Nakata, M., “Formation of Complex Natural Compounds from Monosaccharides”, in Glycoscience, Chemistry and Chemical Biology, Fraser-Reid, B.; Tat suta, K.; Thiem, J., Eds, Vol. II, Springer Verlag, New York, 2001, pp. 1175–1213

    Google Scholar 

  3. Woodward, R. B., “Struktur und Biogenese der Makrolide”, Angew. Chem. (1957) 69, 50–58

    Article  CAS  Google Scholar 

  4. Miljkovic, M.; Gligorijevic, M.; Satoh, T.; Miljkovic, D., “Synthesis of macrolide antibiotics. I. Stereospecific addition of methyllithium and methylmagnesium iodide to methyl α -D-xylo-hexopyranosid-4-ulose derivatives. Determination of the configuration at the branching carbon atom by carbon-13 nuclear magnetic resonance spectroscopy”, J. Org. Chem. (1973) 39,1379–1384

    Article  Google Scholar 

  5. Miljkovic, M.; Gligorijevic, M.; Satoh, T.; Glisin, Dj.; Pitcher, R. G., “Carbon-13 nuclear magnetic resonance spectra of branched-chain sugars. Configurational assignment of the branching carbon atom of methyl branched-chain sugars”, J. Org. Chem. (1974) 39, 3847–3850

    Article  CAS  Google Scholar 

  6. Miljkovic, M.; Glisin, Dj., “Synthesis of macrolide antibiotics. II. Stereoselective synthesis of methyl 4,6-O-benzylidene-2-deoxy-2-C,3-O-dimethyl- α -D-glucopyranoside. Hydrogenation of the C-2 methylene group of methyl 4,6-O-benzylidene-2-deoxy-2-C-methylene-3-O-methyl- α -and - β -D-arabinohexopyranoside”, J. Org. Chem. (1975) 40, 3357–3359

    Article  CAS  Google Scholar 

  7. Miljkovic, M.; Glisin, Dj., “Synthesis of macrolide antibiotics. III. Stereoselective synthesis of methyl-2,6-dideoxy-2-C,3-O,4-C,6-C-tetramethyl- α -D-glucopyranoside representing the 11-O-methyl derivative of the C-9-C-15-segment of erythronolide A”, Bull Soc. Chim. Beograd (1977) 42, 659–661

    CAS  Google Scholar 

  8. Miljkovic, M.; Choong, T. C.; Glisin, Dj., “Synthesis of macrolide antibiotics. IV. Stereoselective syntheses of the 3-O-methyl and the 11-O-methyl derivatives of the C(1)-C(6) segment of erythronolides A and B and the C(9)-C(15) segment of erythronolide A, respectively”, Croat. Chim. Acta (1985) 58, 681–698

    CAS  Google Scholar 

  9. Dalling, D. K.; Grant, D. M., “Carbon-13 magnetic resonance. IX. Methylcyclohexanes”, J. Am. Chem. Soc. (1967) 89, 6612–6622

    Article  CAS  Google Scholar 

  10. Anet, F. A. L.; Bradley, C. H.; Buchanan, G. W., “Direct detection of the axial con former of methylcyclohexane by 63.1 MHz carbon-13 nuclear magnetic resonance at low temperatures”, J. Am. Chem. Soc. (1971) 93, 258–259

    Article  CAS  Google Scholar 

  11. Stothers, J. B., Carbon-13 NMR Spectroscopy, Academic Press, New York, NY, 1972, pp. 404, 426

    Google Scholar 

  12. Inch, T. D., “The Use of Carbohydrates in the Synthesis and Configurational Assignments of Optically Active, Non-Carbohydrate Compounds”, Advan. Carbohydr. Chem. Biochem. (1972) 27, 191–225

    Article  CAS  Google Scholar 

  13. Burton, J. S.; Overend, W. G.; Williams, N. R., “Branched-chain sugars. Part III. The introduction of branching into methyl 3,4-O-isopropylidene- β -L-arabinoside and the synthesis of L-hamamelose”, J. Chem. Soc. (1965) 3433–3445

    Google Scholar 

  14. Feast, A. A. J.; Overend, W. G.; Williams, N. R., “Branched-chain sugars. Part VI. The reaction of methyl 3,4-O-isopropylidene- β -L-erythro-pentopyranosidulose with organolithium reagents”, J. Chem. Soc. C (1966) 303–306

    Google Scholar 

  15. Flaherty, B.; Overend, W. G.; Williams, N. R., “Branched-chain sugars. Part VII. The synthesis of D-mycarose and D-cladinose”, J. Chem. Soc. C (1966) 398–403

    Google Scholar 

  16. Inch, T. D.; Lewis, G. J.; Williams, N. E., “A stereochemical comparison of some ad dition reactions to methyl 4,6-O-benzylidene-3-deoxy-3-C-ethyl-α-D-hexopyranosid-2-uloses”, Carbohydr. Res. (1971) 19, 17–27

    Article  CAS  Google Scholar 

  17. Inch, T. D., “Asymmetric synthesis: Part I. A stereoselective synthesis of benzylic centres. Derivatives of 5-C-phenyl-D-gluco-pentose and 5-C-phenyl-L-ido-pentose” Carbohydr. Res. (1967) 5, 45–52

    Article  CAS  Google Scholar 

  18. Guillerm-dron, D.; Capmau, M.-L.; Chodkiewicz, W., “Assistance du groupe m- thoxyle en α d'un carbonyle dans le cours stérique de l'addition d'organométalliques insaturés”, Tetrahedron Lett. (1972) 13, 37–40

    Google Scholar 

  19. Miljkovic, M.; Gligorijevic, M.; Miljkovic, D., “Steric and Electrostatic Interactions in Reactions of Carbohydrates. II. Stereochemistry of Addition Reactions to the Carbonyl Group of Glycopyranosiduloses. Synthesis of Methyl 4, 6-O-Benzylidene-3-O- methyl- β -D-mannopyranoside”, J. Org. Chem. (1974) 39, 2118–2120

    Article  CAS  Google Scholar 

  20. Hanessian, S.; Rancourt, G., “Carbohydrates as chiral intermediates in organic synthesis. Two functionalized chemical precursors comprising eight of the ten chiral centers of erythronolide A”, Can. J. Chem. (1976) 55, 1111–1113

    Article  Google Scholar 

  21. Hanessian, S.; Rancourt, G., “Approaches to the total synthesis of natural products from carbohydrates”, Pure Appl. Chem. (1977) 49, 1201–1214

    Article  CAS  Google Scholar 

  22. Hanessian, S.; Rancourt, G.; Guindon, Y., “Assembly of the carbon skeletal frame work of erythronolide A”, Can. J. Chem. (1978) 56, 1843–1846

    Article  CAS  Google Scholar 

  23. Kochetkov, N. K.; Sviridov, A. F.; Ermolenko, M. S.; Zelinsky, N. D., “Synthesis of macrolide antibiotics. 1. Synthesis of the C1–C6 segment of 14-membered macrolide antibiotics”, Tetrahedron Lett. (1981) 22, 4315–4318

    Article  CAS  Google Scholar 

  24. Kochetkov, N. K.; Sviridov, A. F.; Ermolenko, M. S.; Zelinsky, N. D., “Synthesis of macrolide antibiotics. 2. Synthesis of the C9–C13 segments of erythronolides A, B and oleandonolide”, Tetrahedron Lett. (1981) 22, 4319–4322

    Article  CAS  Google Scholar 

  25. Kochetkov, N. K.; Sviridov, A. F.; Ermolenko, M. S.; Yashunskii, D. V., “Synthesis of macrolide antibiotics. 3. Revised synthesis of C9–C13 segment of erythronolide A”, Tetrahedron Lett. (1984) 25, 1605–1608

    Article  CAS  Google Scholar 

  26. Kochetkov, N. K.; Sviridov, A. F.; Ermolenko, M. S.; Yashunskii, D. V.; Borodkin, V. S., “Stereocontrolled synthesis of erythronolides A and B from 1,6-anhydro- β -D- glucopyranose (levoglucosan). Skeleton assembly in (C9–C13) + (C7–C8) + (C1–C6) sequence”, Tetrahedron (1989) 45(16), 5109–5136

    Article  CAS  Google Scholar 

  27. Sviridov, A. F.; Yashunskii, D. V.; Ermolenko, M. S.; Kochetkov, N. K., “New method for the synthesis of 2,4-dideoxy-2,4-di-C-methyl-D-glucopyranose derivatives”, Izv. Akad. Nauk. SSSR, Ser. Khim. (1984) 723–725

    Google Scholar 

  28. Kochetkov, N. K.; Sviridov, A. F.; Yashunskii, D. V.; Ermolenko, M. S.; Borodkin, V. S., “Synthesis of C-methyldeoxysugars: deoxygenation of xanthates of tertiary alcohols and hydrozirconation of exomethylene derivatives of carbohydrates”, Izv. Akad. Nauk SSSR, Ser. Khim. (1986) 441–445

    Google Scholar 

  29. Omura, K.; Swern, D., “Oxidation of alcohols by “activated” dimethyl sulfoxide. A preparative, steric and mechanistic study”, Tetrahedron (1978) 34, 1651–1660

    Article  CAS  Google Scholar 

  30. Kelly, A. G.; Roberts, J. S., “A simple, stereocontrolled synthesis of a thromboxane B2 synthon”, J. Chem. Soc. Chem. Commun. (1980) 228–229

    Google Scholar 

  31. Cha, J. K.; Christ, W. J.; Kishi, Y., “On stereochemistry of osmium tetraoxide oxidation of allylic alcohol systems. Empirical rule”, Tetrahedron (1984) 40, 2247–2255

    Article  CAS  Google Scholar 

  32. Ashby, E. C.; Lin, J. J., “Selective reduction of alkenes and alkynes by the reagent lithium aluminum hydride-transition-metal halide”, J. Org. Chem. (1978) 43, 2567– 2572

    Article  CAS  Google Scholar 

  33. Gigg, R.; Warren, C. D., “The allyl ether as a protecting group in carbohydrate chemistry. Part II”, J. Chem. Soc. C (1968) 1903–1911

    Google Scholar 

  34. Oikawa, Y.; Yoshioka, T.; Yonemitsu, O., “Protection of hydroxy groups by intramolecular oxidative formation of methoxybenzylidene acetals with DDQ”, Tetrahedron Lett. (1982) 23, 889–892

    Article  CAS  Google Scholar 

  35. Seebach, D.; Ertasogon, M.; Locher, R.; Schweizer, W. B., “Tritylketone und Tritylenone. Beiträge zur sterisch erzwungenen Michael-Addition und zur diastereoselektiven Aldol-Addition”, Helv. Chim. Acta (1985) 68, 264–282

    Article  CAS  Google Scholar 

  36. Nakagawa, I.; Hata, T., “A convenient method for the synthesis of 5'-S-alkylthio-5'- deoxyribonucleosides”, Tetrahedron Lett. (1975) 16, 1409–1412

    Google Scholar 

  37. Andersen, K. K.; Gaffield, W.; Papanikolaou, N. E.; Foley, J. W.; Perkins, P. I., “Optically Active Sulfoxides. The Synthesis and Rotatory Dispersion of Some Diaryl Sulfoxides”, J. Am. Chem. Soc. (1964) 86, 5637–5646

    Article  CAS  Google Scholar 

  38. Drabowicz, J.; Oae, S., “Mild Reductions of Sulfoxides with Trifluoroacetic Anhydride/Sodium Iodide System”, Synthesis (1977) 404–404

    Google Scholar 

  39. Corey, E. J.; Shibasaki, M.; Knolle, J., “Simple, stereocontrolled synthesis of thromboxane B2 from D-glucose”, Tetrahedron Lett. (1977) 19, 1625–1626

    Article  Google Scholar 

  40. Hanessian, S.; Lavallee, P., “A stereospecific, total synthesis of thromboxane B2”, Can. J. Chem. (1977) 55, 562–565

    Article  CAS  Google Scholar 

  41. Hanessian, S.; Lavallee, P., “Total synthesis of (+)-thromboxane B2 from D-glucose. A detailed account”, Can. J. Chem. (1981) 59, 870–877

    Article  CAS  Google Scholar 

  42. Wick, A. E.; Felix, D.; Steen, K.; Eschenmoser, A., “CLAISEN'sche Umlagerungen bei Allyl- und Benzylalkoholen mit Hilfe von Acetalen des N, N-Dimethylacetamids. Vorläufige Mitteilung”, Helv. Chim. Acta (1964) 47, 2425–2429

    Article  CAS  Google Scholar 

  43. Felix, D.; Gschwend-Steen, K.; Wick, A. E.; Eschenmoser, A., ”CLAISEN'sche Umlagerungen bei Allyl- und Benzylalkoholen mit 1-Dimethylamino-1-methoxyäthen“, Hel. Chim. Acta (1969) 52, 1030–1042

    Article  CAS  Google Scholar 

  44. Corey, E. J.; Schaaf, T. K.; Huber, W.; Koelliker, U.; Weinschenker, N. M., ”Total Synthesis of Prostaglandins F2α and E2 as the Naturally Occurring Forms“, J. Am. Chem. Soc. (1970) 92, 397–398

    Article  CAS  Google Scholar 

  45. Colegate, S. M.; Dorling, P. R.; Huxtable, C. R., ”A Spectroscopic Investigation of Swainsonine: An α-Mannosidase Inhibitor Isolated from Swainsona canescens“, Aust. J. Chem. (1979) 32, 2257–2264

    Article  CAS  Google Scholar 

  46. Molyneux, R. J.; James, L. F., ”Loco intoxication: indolizidine alkaloids of spotted locoweed (Astragalus lentiginosus)“, Science (1982) 216, 190–191

    Article  CAS  Google Scholar 

  47. Schneider, M. J.; Ungemach, F. S.; Broquist, H. P.; Harris, T. M., ”(1S,2R,8R,8aR)- 1,2,8-trihydroxyoctahydroindolizine (swainsonine), an α-mannosidase inhibitor from Rhizoctonia leguminicola“, Tetrahedron (1983) 39, 29–32

    Article  CAS  Google Scholar 

  48. Hohenschutz, L. D.; Bell, E. A.; Jewess, P. J.; Leworthy, D. P.; Pryce, R. J.; Arnold, E.; Clardy, J.,“Castanospermine, A 1,6,7,8-tetrahydroxyoctahydroindolizine alkaloid, from seeds of Castanospermum australe”, Phytochemistry (1981) 20, 811–814

    Article  CAS  Google Scholar 

  49. Freer, A. A.; Gardner, D.; Greatbanks, D.; Poyser, J. P.; Sim, G. A., “Structure of cyclizidine (antibiotic M146791): x-ray crystal structure of an indolizidinediol metabolite bearing a unique cyclopropyl side chain”, J. Chem. Soc. Chem. Commun. (1982) 1160–1162

    Google Scholar 

  50. 50, Ali, M. H.; Hough, L.; Richardson, A. C., “A chiral synthesis of swainsonine from D-glucose”, J. Chem. Soc. Chem. Commun. (1984) 447–448

    Google Scholar 

  51. Richardson, A. C., “Improved preparation of methyl 3-amino-3-deoxy- α -D-mannopyranoside hydrochloride”, J. Chem. Soc. (1962) 373–374

    Google Scholar 

  52. Fleet, G. W. J.; Gough, M. J.; Smith, P. W., “Enantiospecific Synthesis of Swain sonine, (1S, 2R, 8R, 8aR)-1,2,8-trihydroxyoctahydroindolizine, from D-mannose”, Tetrahedron Lett. (1984) 25, 1853–1856

    Article  CAS  Google Scholar 

  53. Ohrui, H.; Emoto, S., “Stereospecific synthesis of (+)-biotin”, Tetrahedron Lett. (1975) 16, 2765–2766

    Google Scholar 

  54. Ogawa, T.; Kawano, T.; Matsui, M., “A biomimetic synthesis of (+)-biotin from D-glucose”, Carbohydr. Res. (1977) 57, C31-C35

    Article  CAS  Google Scholar 

  55. Corey, E. J.; Nicolaou, K. C.; Balanson, R. D.; Machida, Y., “A Useful Method for the Conversion of Azides to Amines”, Synthesis (1975) 590–591

    Google Scholar 

  56. Buchta, E.; Andree, F., “Eine Partialsynthese des ”all“-trans-Methyl-bixins und des ”all“-trans-4.4'-Desdimethyl-methyl-bixins”, Chem. Berichte (1959) 92, 3111–3116

    Article  CAS  Google Scholar 

  57. Alexander, R. G.; Clayton, J. P.; Luk, K.; Rogers, N. H.; King, T. J., “The chemistry of pseudomonic acid. Part 1. The absolute configuration of pseudomonic acid A”, J. Chem. Soc. Perkin Trans. I (1978) 561–565

    Article  Google Scholar 

  58. Chain, E. B.; Mellows, G., “Pseudomonic acid. Part 3. Structure of pseudomonic acid B”, J. Chem. Soc. Perkin Trans. I (1977) 318–322

    Article  Google Scholar 

  59. Clayton, J. P.; O’Hanlon, P. J.; Rogers, N. H., “The structure and configuration of pseudomonic acid C”, Tetrahedron Lett. (1980) 21, 881–884

    Article  CAS  Google Scholar 

  60. Beau, J.-M.; Abyraki, S.; Pougny, J.-R.; Sinaÿ, P., “Total synthesis of methyl (+)-pseudomonate C from carbohydrates”, J. Am. Chem. Soc. (1983) 105, 621–622

    Article  CAS  Google Scholar 

  61. Helferich, B.; Ost, W., “Synthese einiger  -D-Xylopyranoside”, Chem. Berichte (1962) 95, 2612–2615

    Article  CAS  Google Scholar 

  62. Pougny, J.-R.; Sinaÿ, P. “(3S,4S)-4-Methylheptan-3-ol, a pheromone component of the smaller European elm bark beetle. Synthesis from D-glucose”, J. Chem. Res. Synop Ses. (1982) 1 1

    Google Scholar 

  63. Bernet, B.; Vasella, A., “Carbocyclische Verbindungen aus Monosacchariden. I. Um setzungen in der Glucosereihe”, Helv. Chim. Acta (1979) 62, 1990–2016

    Article  CAS  Google Scholar 

  64. Nakane, M.; Hutchinson, C. R.; Gollman, H., “A convenient and general synthesis of 5-vinylhexofuranosides from 6-halo-6-deoxypyranosides”, Tetrahedron. Lett. ((1980) 21, 1213–1216

    Article  CAS  Google Scholar 

  65. Huynh, C.; Derguini-Boumechal, F.; Linstrumelle, G.,“ Copper-catalysed reactions of Grignard reagents with epoxides and oxetane”, Tetrahedron Lett. ((1979) 20,1503–1506

    Article  Google Scholar 

  66. Felkin, H.; Frajerman, C.; Roussi, G., “Stereochemistry of epoxide ring opening by allylic Grignard reagents”, Bull. Soc. Chim. Fr. (1970) 3704–3710

    Google Scholar 

  67. Glaze, W. H.; Duncan, D. P.; Berry, D. J., “Neopentylallyllithium. 5. Stereochemistry of nonrearrangement reactions with epoxides”, J. Org. Chem. (1977) 42, 694–697

    Article  CAS  Google Scholar 

  68. Linstrumelle, G.; Lorne, R.; Dang, H. P., “Copper-catalysed reactions of allylic Grignard reagents with epoxides”, Tetrahedron Lett. (1978) 19, 4069–4072

    Google Scholar 

  69. Schlosser, M.; Stähle, M., “Allylic Compounds of Magnesium, Lithium, and Potassium: σ - or π -Structures?”, Angew. Chem., Int. Ed. Engl. (1980) 19, 487–489

    Article  Google Scholar 

  70. Bagnell, L.; Jeffery, E. A.; Meisters, A.; Mole, T., “A new conversion of nitriles into acetyl compounds: Nickel-catalysed methylation by trimethylaluminium”, Aust. J. Chem. (1974) 27, 2577–2582

    CAS  Google Scholar 

  71. Kozikowski, A. P.; Schmiesing, R. J.; Sorgi, K. L., “Total synthesis of pseudomonic acid C: application of the alkoxyselenation reaction in organic synthesis”, J. Am. Chem. Soc. (1980) 102, 6577–6580

    Article  CAS  Google Scholar 

  72. Clayton, J. P.; Luk, K.; Rogers, N. H., “The chemistry of pseudomonic acid. Part 2. The conversion of pseudomonic acid A into monic acid A and its esters”, J. Chem. Soc. Perkin Trans. I (1979) 308–313

    Article  Google Scholar 

  73. Keck, G. E.; Kachensky, D. F.; Enholm, E. J., “Pseudomonic acid C from L-lyxose”, J. Org. Chem. (1985) 50, 4317–4325

    Article  CAS  Google Scholar 

  74. Keck, G. E.; Yates, J. B., “Carbon-carbon bond formation via the reaction of trialkylallylstannanes with organic halides”, J. Am. Chem. Soc. (1982) 104, 5829–5831

    Article  CAS  Google Scholar 

  75. Schaffer, R., “2,3-O-Isopropylidene- α -D-lyxofuranose, the monoacetone-D-lyxose of Levene and Tipson”, J. Res. Natl. Bur. Std. (1961) 65A, 507–512

    CAS  Google Scholar 

  76. Fráter, G., “Über die Stereospezifität der alpha-Alkylierung von-Hydroxycarbon säureestern. Vorläufige Mitteilung”, Helv. Chim. Acta (1979) 62, 2825–2828

    Article  Google Scholar 

  77. Fráter, G., “Stereospezifische Synthese von (+)-(3R, 4R)-4-Methyl-3-heptanol, das Enantiomere eines Pheromons des kleinen Ulmensplintkäfers (Scolytus multistria tus)”, Helv. Chim. Acta (1979) 62, 2829–2832

    Article  Google Scholar 

  78. Ohrui, H.; Jones, G. H.; Moffatt, J. G.; Maddox, M. L.; Christensen, A. T.; Byram, S. K., “C-Glycosyl nucleosides. V. Unexpected observations on the relative stabilities of compounds containing fused five-membered rings with epimerizable substituents”, J. Am. Chem. Soc. (1974) 97, 4602–4613

    Article  Google Scholar 

  79. Horner, L.; Hoffman, H.; Wippel, H. G., “Phosphororganische Verbindungen, XII. Phosphinoxyde als Olefinierungsreagenzien”, Chem. Berichte (1958) 91 , 61–63

    Article  CAS  Google Scholar 

  80. Horner, L.; Hoffman, H.; Wippel, H. G.; Klahre, G., “Phosphororganische Verbindungen, XX. Phosphinoxyde als Olefinierungsreagenzien”, Chem. Berichte (1959) 92, 2499–2505

    Article  CAS  Google Scholar 

  81. Wadsworth, W. S., Jr.; Emmons, W. D., “The Utility of Phosphonate Carbanions in Olefin Synthesis”, J. Am. Chem. Soc. (1961) 83, 1733–1738

    Article  CAS  Google Scholar 

  82. Wadsworth, W. S., Jr.; Emmons, W. D., Organic Synthesis, Coll. Vol. 5 (1973) 547; ibid. (1965) Vol. 45, 44

    Google Scholar 

  83. Wadsworth, W. S., Jr., Organic reactions (1977) 25, 73–253

    CAS  Google Scholar 

  84. Keck, G. E.; Tafesh, A. M., “Free-radical addition-fragmentation reactions in synthesis: a ”second generation“ synthesis of (+)-pseudomonic acid C”, J. Org. Chem. (1989) 54, 5845–5846

    Article  CAS  Google Scholar 

  85. Takacs, J. M.; Helle, M. A.; Seely, F. L., “An improved procedure for the two carbon homologation of esters to α, β-unsaturated esters”, Tetrahedron Lett. (1986) 27, 1257–1260

    Article  CAS  Google Scholar 

  86. Evans, D. A.; Andrews, G. L., “Allylic sulfoxides. Useful intermediates in organic synthesis”, Acc. Chem. Res. (1974) 7, 147–155

    Article  CAS  Google Scholar 

  87. Trost, B. M.; Curran, D. P., “Chemoselective oxidation of sulfides to sulfones with potassium hydrogen persulfate”, Tetrahedron Lett. (1981) 22, 1287–1290

    Article  CAS  Google Scholar 

  88. Okazaki, T.; Kitahara, T.; Okami, Y., “Studies on marine microorganisms. IV. A new antibiotic SS-228 Y produced by Chainia isolated from shallow sea mud”, J. Antibiot. (1975) 28, 176–184

    CAS  Google Scholar 

  89. Dunitz, J. D.; Hawley, D. M.; Mikloš, D.; White, D. N. J.; Berlin, Y.; Marušič, R.; Prelog, V., “Structure of boromycin”, Helv. Chim. Acta (1971) 54, 1709–1713

    Article  CAS  Google Scholar 

  90. Corey, E. J.; Pan, B. C.; Hua, D. H.; Deardorf, D. R., “Total synthesis of aplas momycin. Stereocontrolled construction of the C(3)-C(17) fragment”, J. Am. Chem. Soc. (1982) 104, 6816–6818

    Article  CAS  Google Scholar 

  91. Corey, E. J.; Hua, D. H.; Pan, B. C.; Seitz, S. P., “Total synthesis of aplasmomycin”, J. Am. Chem. Soc. (1982) 104, 6818–6820

    Article  CAS  Google Scholar 

  92. Corey, E. J.; Cho, H.; Rücker, C.; Hua, D. H., “Studies with trialkylsilyltriflates: new syntheses and applications”, Tetrahedron Lett. (1981) 22, 3455–3458

    Article  CAS  Google Scholar 

  93. Corey, E. J.; Bock, M. G., “Protection of primary hydroxyl groups as methylthio-methyl ether”, Tetrahedron Lett. (1975) 16, 3269–3270

    Google Scholar 

  94. Diago-Mesequer, J.; Palomo-Coll, A. L.; Fernández-Lizarbe, J. R.; Zugaza-Bilbao, A., “A New Reagent for Activating Carboxyl Groups; Preparation and Reactions of N,N-Bis[2-oxo-3-ox-azolidinyl]phosphorodiamidic Chloride”, Synthesis (1980) 547–550

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Momcilo Miljković .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Miljković, M. (2010). Synthesis of Polychiral Natural Products from Carbohydrates. In: Carbohydrates. Springer, New York, NY. https://doi.org/10.1007/978-0-387-92265-2_13

Download citation

Publish with us

Policies and ethics