Technologies for Use in Indirect Distraction Procedures

  • Hansen A. YuanEmail author
  • Adam K. MacMillan
  • Edward S. Ahn


Osteoporosis results in the thinning of the cortical shell and trabecular struts of the bones such that the loads of normal daily activities can result in fractures.In the case of osteoporosis of the vertebrae, vertebral compression fractures (VCF) can occur spontaneously or as the result of a low-energy trauma, resulting in chronic pain and reduced mobility [1]. If left untreated, multiple VCFs can result in chronic pain, loss of height, and spinal deformity.More importantly, VCF incidence has been increasing with the associated aging of the demographic.Furthermore, there are approximately 440,000 VCFs per year in Europe, resulting in a direct annual cost of $440 MM, and 700,000 VCFs per year in the United States, resulting in a direct annual cost of $750 MM [2–5].


Vertebral Fracture Vertebral Body Calcium Phosphate Vertebral Compression Fracture Composite Cement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ferguson SJ, Steffen T. Biomechanics of the aging spine, Eur Spine J. 2003;12(Suppl 2):S97–S103.CrossRefPubMedGoogle Scholar
  2. 2.
    Akesson K, Adami S, Woolf AS. The Year in Osteoporosis: 2004. Boca Raton, FL: CRC Press; 2004.Google Scholar
  3. 3.
    European Prospective Osteoporosis Study Working Group. Incidence of vertebral fracture in Europe: results for the European Prospective Osteoporosis Study (EPOS). J Bone Miner Res. 2002;17:716–724.Google Scholar
  4. 4.
    Johnell O. Economic implication of osteoporotic spine disease: cost to society. Eur Spine J. 2003;12(Suppl 2):S168–S169.CrossRefPubMedGoogle Scholar
  5. 5.
    Melton III LJ. Epidemiology of spinal osteoporosis. Spine. 1997;22:2S–11S.CrossRefGoogle Scholar
  6. 6.
    Galibert P, Deramond H, Rosat P, Le Gars D. Preliminary note on the treatment of vertebral angioma by percutaneous acrylic vertebroplasty. Neurochirurgie. 1987;33:166–168.PubMedGoogle Scholar
  7. 7.
    Cotten A, Dewatre F, Cortet B, et al. Percutaneous vertebroplasty for osteolytic metastases and myeloma: effects of the percentage of lesion filling and leakage of methyl methacrylate at clinical follow-up. Radiology. 1996;200:525–530.PubMedGoogle Scholar
  8. 8.
    Jensen ME, Avery JE, Mathis JM, Kallmes DF, Cloft HJ, Dio JE. Percutaneous polymethylmethacrylate vertebroplasty in the treatment of osteoporotic vertebral compression fractures: technical aspects. AJNR Am J Neuroradiol. 1997;18:1897–1904.PubMedGoogle Scholar
  9. 9.
    Weill A, Chiras J, Simon JM, Rose M, Sola-Martinez T, Enkaoua E. Spinal metastases: indications for and results of percutaneous injection of acrylic surgical cement. Radiology. 1996;199(1):241–247.PubMedGoogle Scholar
  10. 10.
    Laredo JD, Hamze B. Complications of percutaneous vertebroplasty and their prevention. Semin Ultrasound CT MR. 2005;26:65–80.CrossRefPubMedGoogle Scholar
  11. 11.
    Bernhard J, Heini PF, Villiger PM. Asymptomatic diffuse pulmonary embolism caused by acrylic cement: an unusual complication of percutaneous vertebroplasty. Ann Rheum Dis. 2003;62:85–86.CrossRefPubMedGoogle Scholar
  12. 12.
    Monticelli F, Meyer HJ, Tutsch-Bauer E. Fatal pulmonary cement embolism following percutaneous vertebroplasty (PVP). Forensic Sci Int. 2005;149:35–38.CrossRefPubMedGoogle Scholar
  13. 13.
    Burton AW, Rhines LD, Mendel E. Vertebroplasty and kyphoplasty: a comprehensive review. Neurosurg Focus. 2005;18(3):1–9.CrossRefGoogle Scholar
  14. 14.
    Heini PF, Berlemann U. Bone substitutes in vertebroplasty. Eur Spine J. 2001;10:S205–S213.CrossRefPubMedGoogle Scholar
  15. 15.
    Lieberman IH, Togawa D, Kayanja MM. Vertebroplasty and kyphoplasty: filler materials. Spine J. 2005;5(6 Suppl):305S–316S.CrossRefPubMedGoogle Scholar
  16. 16.
    Lewis G. Injectable bone cements for use in vertebroplasty and kyphoplasty: state of the art review. J Biomed Mater Res B Appl Biomater. 2006;76B:456–468.CrossRefGoogle Scholar
  17. 17.
    Deramond H, Depriester C, Toussaint P, Galibert P. Percutaneous vertebroplasty. Semin Musculoskeletal Radiol. 1997;1(2):285–296.CrossRefGoogle Scholar
  18. 18.
    Jasper LE, Deramond H, Mathis JM, Belkoff SM. The effect of monomer to powder ratio on the material properties of cranioplastic. Bone. 1999;25:27S–29S.CrossRefPubMedGoogle Scholar
  19. 19.
    Belkoff SM, Sanders JC, Jasper LE. The effect of the monomer to powder ratio on the material properties of acrylic cement. J Biomed Mater Res. 2002;63:369–399.CrossRefGoogle Scholar
  20. 20.
    Philips FM. Minimally invasive treatments of osteoporotic compression fractures. Spine. 2003;28:S45–S53.CrossRefGoogle Scholar
  21. 21.
    Chung SE, Lee SH, Kim TH, Yoo KH, Jo BJ. Renal cement embolism during percutaneous vertebroplasty. Eur Spine J. 2006 October;15(Suppl 17):590–594.CrossRefPubMedGoogle Scholar
  22. 22.
    Nussbaum DA, Gailloud P, Murphy K. A review of complications associated with vertebroplasty and kyphoplasty as reported to the Food and Drug Administration medical device related web site. J Vasc Interv Radiol. 2005;15(11):1185–1192.Google Scholar
  23. 23.
    Liebschner MA, Rosenberg WS, Keaveny TM. Effects of bone cement volume and distribution on vertebral stiffness and vertebroplasty. Spine. 2001;26(14):1547–1554.CrossRefPubMedGoogle Scholar
  24. 24.
    Belkoff SM, Mathis JM, Jasper LE, Deramond H. The biomechanics of vertebroplasty. The effect of cement volume on mechanical behaviour. Spine. 2001 July 15;26(14):1537–1541.CrossRefPubMedGoogle Scholar
  25. 25.
    Ryu KS, Park CK, Kim MC, Kang JK. Dose-dependent epidural leakage of polymethylmethacrylate after percutaneous vertebroplasty in patients with osteoporotic vertebral compression fractures. J Neurosurg. 2002;96(1 Suppl):56–61.PubMedGoogle Scholar
  26. 26.
    Chiras J, Depriester C, Weill A, Sola-Martinez MT, Deramond H. Percutaneous vertebral surgery: techniques and indications. J Neuroradiol. 1997;24:45–59.PubMedGoogle Scholar
  27. 27.
    Vasconcelos C, Gailloud P, Beauchamp NJ, Heck DV, Murphy KJ. Is percutaneous vertebroplasty without pretreatment venography safe? Evaluation of 205 consecutive procedures. Am J Neuroradiol. 2002;23:913–917.PubMedGoogle Scholar
  28. 28.
    Carrodeguas RG, Lasa BV, del Barrio JSN. Injectable acrylic bone cements for vertebroplasty with improved properties. J Biomed Mater Res B Appl Biomater. 2004;68:B94–B104.CrossRefGoogle Scholar
  29. 29.
    Fessl R, Roemer FW, Bohndorf K. Percutaneous vertebroplasty for osteoporotic vertebral compression fractures: experiences and prospective clinical outcomes in 26 consecutive patients with 50 vertebral fractures. Rofo. 2005;177(6):884–892.PubMedGoogle Scholar
  30. 30.
    Martin JB, Jean B, Sugiu K. Vertebroplasty: clinical experience and follow-up results. Bone. 1999 August;25(2 Suppl):11S–15S.CrossRefPubMedGoogle Scholar
  31. 31.
    Monma H, Kanazawa T. The hydration of α-tricalcium phosphate. Yogyo Kyokai Shi. 1976;84:209.Google Scholar
  32. 32.
    Brown WE, Chow LC. In: Brown PW, editor. Cement’s Research Progress. Westerville, OH: American Ceramic Society; 1986. p. 352.Google Scholar
  33. 33.
    Otsuka M, Matsuda Y, Suwa Y, Fox JL, Higuchi WI. Effect of particle size of metastable calcium phosphates on mechanical strength of a novel self-setting bioactive calcium phosphate cement. J Biomed Mater Res. 1995;29:25–32.CrossRefPubMedGoogle Scholar
  34. 34.
    Miyamoto Y, Ishikawa K, Takechi M. Histological and compositional evaluations of three types of calcium phosphate cements when implanted in subcutaneous tissue immediately after mixing. J Biomed Mater Res Appl Biomater Res. 1998;40:139–144.CrossRefGoogle Scholar
  35. 35.
    Flautre B, Delecourt C, Blary M, van Landuyt P, Lemaitre J, Hardouin P. Volume effect of biological properties of a calcium phosphate hydraulic cement: experimental study on sheep. Bone. 1999;25:S35–S39.CrossRefGoogle Scholar
  36. 36.
    Ikenaga M, Hardouin P, Lemaitre J, Andrianjatovo H, Flautre B. Biomechanical characterization of a biodegradable calcium phosphate hydraulic cement: a comparison with porous biphasic calcium phosphate ceramics. J Biomed Mater Res. 1998;40:139–144.CrossRefPubMedGoogle Scholar
  37. 37.
    Mattsson P, Larsson S. Calcium phosphate cement for augmentation did not improve results after internal fixation of displaced femoral neck fractures: a randomized study of 118 patients. Acta Orthop. 2006 April;77(2):251–256.CrossRefPubMedGoogle Scholar
  38. 38.
    Lim TH, Brebach G, Renner S, Kim WJ, Kim J, Lee R, Andersson G, An H. Biomechanical evaluation of an injectable calcium phosphate cement for vertebroplasty. Spine. 2002;27:1297–1302.CrossRefPubMedGoogle Scholar
  39. 39.
    Tomita S, Kin A, Yazu M, Abe M. Biomechanical evaluation of kyphoplasty and vertebroplasty with calcium phosphate cement in a simulated osteoporotic compression fracture. J Orthop Sci. 2003;8(2):192–197.CrossRefPubMedGoogle Scholar
  40. 40.
    Belkoff SM, Mathis JM, Jasper LE, Deramond H. An ex vivo biomechanical evaluation of a hydroxyapatite cement for use with vertebroplasty. Spine. 2001;26(14):1542–1546.CrossRefPubMedGoogle Scholar
  41. 41.
    Belkoff SM, Mathis JM, Jasper LE. Ex vivo biomechanical comparison of hydroxyapatite and polymethylmethacrylate cements for use with vertebroplasty. AJNR Am J Neuroradiol. 2002;23(10):1647–1651.PubMedGoogle Scholar
  42. 42.
    Tomita S, Molloy S, Jasper LE, Abe M, Belkoff SM. Biomechanical comparison of kyphoplasty with different bone cements. Spine. 2004;29(11):1203–1207.CrossRefPubMedGoogle Scholar
  43. 43.
    Bai B, Jazrawi LM, Kummer FJ, Spivak JM. The use of an injectable, biodegradable calcium phosphate bone substitute for the prophylactic augmentation of osteoporotic vertebrae and the management of vertebral compression fractures. Spine. 1999;24(15):1521–1526.CrossRefPubMedGoogle Scholar
  44. 44.
    Perry A, Mahar A, Massie J, Arrieta N, Garfin S, Kim C. Biomechanical evaluation of kyphoplasty with calcium sulfate cement in a cadaveric osteoporotic vertebral compression fracture model. Spine J. 2005;5(5):489–493.CrossRefPubMedGoogle Scholar
  45. 45.
    Wilke HJ, Mehnert U, Claes LE, Bierschneider MM, Jaksche H, Boszczyk BM. Biomechanical evaluation of vertebroplasty and kyphoplasty with polymethylmethacrylate or calcium phosphate cement under cyclic loading. Spine. 2006;31(25):2934–2941.CrossRefPubMedGoogle Scholar
  46. 46.
    Young SW, Holde M, Gunasekarun S, Poser RD, Constantz BR. The correlation of radiographic, MRI and histological evaluation over two years of a carbonated apatite cement in a rabbit model. In: Andersson GBJ, editor. Transactions of the 44th Annual Meeting of the Orthopaedic Research Society. 1998; 23(2):846.Google Scholar
  47. 47.
    Chow LC, Takagi S. A natural bone cement—a laboratory novelty led to the development of revolutionary new biomaterials. J Res Natl Inst Stand Technol. 2001;106:1029–1033.Google Scholar
  48. 48.
    Gisep A, Wieling R, Bohner M, Matter S, Schneider E, Rahn B. Resorption patterns of calcium-phosphate cements in bone. J Biomed Mater Res A. 2003;66(3):532–540.CrossRefPubMedGoogle Scholar
  49. 49.
    Nakano M, Hirano N, Ishihara H, Kawaguchi Y, Matsuura K. Calcium phosphate cement leakage after percutaneous vertebroplasty for osteoporotic vertebral fractures: risk factor analysis for cement leakage. J Neurosurg Spine. 2005;2(1):27–33.CrossRefPubMedGoogle Scholar
  50. 50.
    Hillmeier J, Meeder PJ, Nöldge G, Kock HJ, Da Fonseca K, Kasperk HC. Balloon kyphoplasty of vertebral compression fractures with a new calcium phosphate cement. Orthopade. 2004;33(1):31–39.CrossRefPubMedGoogle Scholar
  51. 51.
    Maestretti G, Cremer C, Otten P, Jakob RP. Prospective study of standalone balloon kyphoplasty with calcium phosphate cement augmentation in traumatic fractures. Eur Spine J. 2007 May;16(5):601–610.CrossRefPubMedGoogle Scholar
  52. 52.
    Libicher M, Hillmeier J, Liegibel U, et al. Osseous integration of calcium phosphate in osteoporotic vertebral fractures after kyphoplasty: initial results from a clinical and experimental pilot study. Osteoporos Int. 2006;17(8):1208–1215.CrossRefPubMedGoogle Scholar
  53. 53.
    Ulatowski TA, Warning Letter to Maria L. Maccecchini, Ph.D. (President, Synthes Biomaterials), Department of Health and Human Services, Food and Drug Administration, Center for Devices and Radiological Health, Rockville, MD, November 5, 2004.Google Scholar
  54. 54.
    Bernards CM, Chapman J, Mirza S. Lethality of embolized Norian bone cement varies with the time between mixing and embolization. In: Proceedings of the 50th Annual Meeting of the Orthopedic Research Society; 2004; San Francisco.Google Scholar
  55. 55.
    Krebs J, Aebli N, Goss BG, Sugiyama S, Bardyn T, Boecken I, Leamy PJ, Ferguson SJ. Cardiovascular changes after pulmonary embolism from injecting calcium phosphate cement. J Biomed Mater Res B Appl Biomater. 2007;82(2):526–532.PubMedGoogle Scholar
  56. 56.
    Orthovita, Inc. Cortoss. Intimate bone bonding. Company brochure. Malvern, PA: Orthovita, Inc.; 2003.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Hansen A. Yuan
    • 1
    Email author
  • Adam K. MacMillan
    • 2
  • Edward S. Ahn
    • 2
  1. 1.Department of Orthopaedic and Neurologic SurgeryState University of New York-Syracuse Medical CenterSyracuseUSA
  2. 2.Angstrom Medica, Inc.WoburnUSA

Personalised recommendations