Skip to main content

Protein Import into Plant Mitochondria

  • Chapter
  • First Online:

Part of the book series: Advances in Plant Biology ((AIPB,volume 1))

Abstract

The presence of plastids in plant cells requires a higher level of precursor recognition by the mitochondrial protein import apparatus than in nonplant organisms. Although the plant presequences display the overall features observed in yeast and mammals, they are generally longer and more hydrophilic. Most of them are highly organelle specific, but some have ambiguous targeting specificity delive-ring a protein to both mitochondria and chloroplasts. Many components of plant protein import apparatus appear different to that in yeast and mammalian systems. The three outer membrane mitochondrial proteins characterized to play role as receptors in plants – Tom20, OM64, and metaxin – are plant specific. However, the channel forming units of the TOM and SAM complexes, Tom40 and Sam50, respectively, are orthologous to these components in yeast. While components of the MIA and TIM complexes also display high levels of orthology, functional studies indicate divergences in function and mechanism. Differences exist also in terms of intraorganellar localization of proteolytic events, e.g., the location of the mitochondrial processing peptidase, MPP, involved in removing targeting signals is different, whereas the function and location of the presequence protease, PreP, degrading targeting peptides, is well conserved. Overall, although the protein import machinery of mitochondria from all organisms appears to have coopted and uses the channel forming subunits from the endosymbiont that gave rise to mitochondria, there is a greater diversity in plant components in comparison to those from nonplant species.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AIP:

Arylhydrocarbon receptor-interacting protein

cTP:

Chloroplast targeting peptide

dTP:

Dual targeting peptide

ERV1:

Essential for respiration and viability

Hot13p:

Helper of small Tms

IDE:

Insulin degrading enzyme

MIA:

Mitochondrial intermembrane assembly machinery

MPP:

Mitochondrial processing peptidase

MSF:

Mitochondrial import stimulating factor

mTP:

mitochondrial targeting peptide

OMP85:

Outer membrane protein 85

Oxa1p:

Cytochrome oxidase assembly

PAM:

Presequence assisted motor

PBF:

Presequence binding factor

PRAT:

Preprotein and amino acid transporter

PreP:

Presequence degrading peptidase

SAM:

Sorting and assembly machinery of the outer membrane

TF:

Targeting Factor

TIM:

Translocase of the inner membrane

TOB:

Topogenesis of β-barrel proteins

TOM:

Translocase of the outer membrane

UCP:

Uncoupling protein

References

  • Abe, Y., Shodai, T., Muto, T., Mihara, K., Torii, H., Nishikawa, S., Endo, T., Kohda, D. 2000. Structural basis of presequence recognition by the mitochondrial protein import receptor tom20. Cell 100(5):551–560.

    Article  PubMed  CAS  Google Scholar 

  • Armstrong, L. C., Komiya, T., Bergman, B. E., Mihara, K., Bornstein, P. 1997. Metaxin is a component of a preprotein import complex in the outer membrane of the mammalian mitochondrion. J. Biol. Chem. 272(10):6510–6518.

    Article  PubMed  CAS  Google Scholar 

  • Backman, H. G., Pessoa, J., Eneqvist, T., Glaser, E. 2009. Binding of divalent cations is essential for the activity of the organellar peptidasome in arabidopsis thaliana, atprep. FEBS Lett. 583(17):2727–2733.

    Article  PubMed  CAS  Google Scholar 

  • Berglund, A. K., Pujol, C., Duchene, A. M., Glaser, E. 2009a. Defining the determinants for dual targeting of amino acyl-trna synthetases to mitochondria and chloroplasts. J. Mol. Biol. 393(4):803–814.

    Article  PubMed  CAS  Google Scholar 

  • Berglund, A. K., Spanning, E., Biverstahl, H., Maddalo, G., Tellgren-Roth, C., Maler, L., Glaser, E. 2009b. Dual targeting to mitochondria and chloroplasts: Characterization of thr-trna synthetase targeting peptide. Mol. Plant 2(6):1298–1309.

    Article  PubMed  CAS  Google Scholar 

  • Bhushan, S., Lefebvre, B., Stahl, A., Wright, S. J., Bruce, B. D., Boutry, M., Glaser, E. 2003. Dual targeting and function of a protease in mitochondria and chloroplasts. EMBO Rep. 4(11):1073–1078.

    Article  PubMed  CAS  Google Scholar 

  • Bhushan, S., Stahl, A., Nilsson, S., Lefebvre, B., Seki, M., Roth, C., McWilliam, D., Wright, S. J., Liberles, D. A., Shinozaki, K., Bruce, B. D., Boutry, M., Glaser, E. 2005. Catalysis, subcellular localization, expression and evolution of the targeting peptides degrading protease, atprep2. Plant Cell Phsyiol. 46(6):985–996.

    Article  PubMed  CAS  Google Scholar 

  • Bhushan, S., Kuhn, C., Berglund, A. K., Roth, C., Glaser, E. 2006. The role of the n-terminal domain of chloroplast targeting peptides in organellar protein import and miss-sorting. FEBS Lett. 580(16):3966–3972.

    Article  PubMed  CAS  Google Scholar 

  • Branda, S. S., Isaya. G. 1995. Prediction and identification of new natural substrates of the yeast mitochondrial intermediate peptidase. J. Biol. Chem. 270(45):27366–27373.

    Article  PubMed  CAS  Google Scholar 

  • Braun, H. P., Emmermann, M., Kruft, V., Schmitz, U. K. 1992. The general mitochondrial processing peptidase from potato is an integral part of cytochrome c reductase of the respiratory chain. EMBO J. 11(9):3219–3227.

    PubMed  CAS  Google Scholar 

  • Brix, J., Rudiger, S., Bukau, B., Schneider-Mergener, J., Pfanner, N. 1999. Distribution of binding sequences for the mitochondrial import receptors tom20, tom22, and tom70 in a presequence-carrying preprotein and a non-cleavable preprotein. J. Biol. Chem. 274(23):16522–16530.

    Article  PubMed  CAS  Google Scholar 

  • Brix, J., Ziegler, G. A., Dietmeier, K., Schneider-Mergener, J., Schulz, G. E., Pfanner, N. 2000. The mitochondrial import receptor tom70: Identification of a 25 kda core domain with a specific binding site for preproteins. J. Mol. Biol. 303(4):479–488.

    Article  PubMed  CAS  Google Scholar 

  • Bruce, B. D. 2000. Chloroplast transit peptides: Structure, function and evolution. Trends Cell Biol. 10(10):440–447.

    Article  PubMed  CAS  Google Scholar 

  • Brumme, S., Kruft, V., Schmitz, U. K., Braun, H. P. 1998. New insights into the co-evolution of cytochrome c reductase and the mitochondrial processing peptidase. J. Biol. Chem. 273(21):13143–13149.

    Article  PubMed  CAS  Google Scholar 

  • Burri, L., Strahm, Y., Hawkins, C. J., Gentle, I. E., Puryer, M. A., Verhagen, A., Callus, B., Vaux, D., Lithgow, T. 2005. Mature diablo/smac is produced by the imp protease complex on the mitochondrial inner membrane. Mol. Biol. Cell 16(6):2926–2933.

    Article  PubMed  CAS  Google Scholar 

  • Carrie, C., Giraud, E., Duncan, O., Hsu, L., Wang, Y., Clifton, R., Murcha, M. W., Filipovska, A., Rackham, O., Vrielink, A., Whelan, J. 2010. Conserved and novel functions for Arabidopsis MIA40 in assembly of proteins in mitochondria and peroxisomes. J Biol. Chem. (PMID: 20829360).

    Google Scholar 

  • Carrie, C., Giraud, E., Whelan, J. 2009. Protein transport in organelles: Dual targeting of proteins to mitochondria and chloroplasts. FEBS J. 276(5):1187–1195.

    Article  PubMed  CAS  Google Scholar 

  • Chacinska, A., Koehler, C. M., Milenkovic, D., Lithgow, T., Pfanner, N. 2009. Importing mitochondrial proteins: Machineries and mechanisms. Cell 138(4):628–644. doi:S0092-8674(09)00967-2 [pii].10.1016/j.cell.2009.08.005.

    Article  PubMed  CAS  Google Scholar 

  • Chan, N. C., Likic, V. A., Waller, R. F., Mulhern, T. D., Lithgow, T. 2006. The c-terminal tpr domain of tom70 defines a family of mitochondrial protein import receptors found only in animals and fungi. J. Mol. Biol. 358(4):1010–1022. doi:S0022-2836(06)00277-4 [pii]10.1016/j.jmb.2006.02.062.

    Article  PubMed  CAS  Google Scholar 

  • Chen, X., Van Valkenburgh, C., Fang, H., Green, N. 1999. Signal peptides having standard and nonstandard cleavage sites can be processed by imp1p of the mitochondrial inner membrane protease. J. Biol. Chem. 274(53):37750–37754.

    Article  PubMed  CAS  Google Scholar 

  • Chew, O., Rudhe, C., Glaser, E., Whelan, J. 2003. Characterization of the targeting signal of dual-targeted pea glutathione reductase. Plant Mol. Biol. 53(3):341–356.

    Article  PubMed  CAS  Google Scholar 

  • Chew, O., Lister, R., Qbadou, S., Heazlewood, J. L., Soll, J., Schleiff, E., Millar, A. H., Whelan, J. 2004. A plant outer mitochondrial membrane protein with high amino acid sequence identity to a chloroplast protein import receptor. FEBS Lett. 557(1–3):109–114. doi:S0014579303014571 [pii].

    Article  PubMed  CAS  Google Scholar 

  • Christensen, A. C., Lyznik, A., Mohammed, S., Elowsky, C. G., Elo, A., Yule, R., Mackenzie, S. A. 2005. Dual-domain, dual-targeting organellar protein presequences in arabidopsis can use non-aug start codons. Plant Cell 17(10):2805–2816.

    Article  PubMed  CAS  Google Scholar 

  • Corral-Debrinski, M., Blugeon, C., Jacq, C. 2000. In yeast, the 3′ untranslated region or the presequence of atm1 is required for the exclusive localization of its mrna to the vicinity of mitochondria. Mol. Cell Biol. 20(21):7881–7892.

    Article  PubMed  CAS  Google Scholar 

  • de Castro Silva Filho, M., Chaumont, F., Leterme, S., Boutry, M. 1996. Mitochondrial and chloroplast targeting sequences in tandem modify protein import specificity in plant organelles. Plant Mol. Biol. 30(4):769–780.

    Article  PubMed  Google Scholar 

  • Dessi, P., Rudhe, C., Glaser, E. 2000. Studies on the topology of the protein import channel in relation to the plant mitochondrial processing peptidase integrated into the cytochrome bc1 complex. Plant J. 24(5):637–644.

    Article  PubMed  CAS  Google Scholar 

  • Dessi, P., Pavlov, P. F., Wallberg, F., Rudhe, C., Brack, S., Whelan, J., Glaser, E. 2003. Investigations on the in vitro import ability of mitochondrial precursor proteins synthesized in wheat germ transcription-translation extract. Plant Mol. Biol. 52(2):259–271.

    Article  PubMed  CAS  Google Scholar 

  • Donzeau, M., Kaldi, K., Adam, A., Paschen, S., Wanner, G., Guiard, B., Bauer, M. F., Neupert, W., Brunner, M. 2000. Tim23 links the inner and outer mitochondrial membranes. Cell 101(4):401–412. doi:S0092-8674(00)80850-8 [pii].

    Article  PubMed  CAS  Google Scholar 

  • Duby, G., Degand, H., Boutry, M. 2001a. Structure requirement and identification of a cryptic cleavage site in the mitochondrial processing of a plant f1-atpase beta-subunit presequence. FEBS Lett. 505(3):409–413.

    Article  PubMed  CAS  Google Scholar 

  • Duby, G., Oufattole, M., Boutry, M. 2001b. Hydrophobic residues within the predicted n-terminal amphiphilic alpha-helix of a plant mitochondrial targeting presequence play a major role in in vivo import. Plant J. 27(6):539–549.

    Article  PubMed  CAS  Google Scholar 

  • Duchene, A. M., Giritch, A., Hoffmann, B., Cognat, V., Lancelin, D., Peeters, N. M., Zaepfel, M., Marechal-Drouard, L., Small, I. D. 2005. Dual targeting is the rule for organellar aminoacyl-trna synthetases in arabidopsis thaliana. Proc. Natl. Acad. Sci. U.S.A. 102(45):16484–16489.

    Article  PubMed  CAS  Google Scholar 

  • Dyall, S. D., Brown, M. T., Johnson, P. J. 2004. Ancient invasions: From endosymbionts to organelles. Science 304(5668):253–257. doi:10.1126/science.1094884, 304/5668/253 [pii].

    Article  PubMed  CAS  Google Scholar 

  • Emmermann, M., Braun, H. P., Arretz, M., Schmitz, U. K. 1993. Characterization of the bifunctional cytochrome c reductase-processing peptidase complex from potato mitochondria. J. Biol. Chem. 268(25):18936–18942.

    PubMed  CAS  Google Scholar 

  • Eriksson, A. C., Sjoling, S., Glaser, E. 1996. Characterization of the bifunctional mitochondrial processing peptidase (mpp)/bc1 complex in spinacia oleracea. J. Bioenerg. Biomembr.28 (3):285–292.

    Article  PubMed  CAS  Google Scholar 

  • Falkevall, A., Alikhani, N., Bhushan, S., Pavlov, P. F., Busch, K., Johnson, K. A., Eneqvist, T., Tjernberg, L., Ankarcrona, M., Glaser, E. 2006. Degradation of the amyloid beta-protein by the novel mitochondrial peptidasome, prep. J. Biol. Chem. 281(39):29096–29104.

    Article  PubMed  CAS  Google Scholar 

  • Flavell, R. 2009. Role of model plant species. Methods Mol. Biol. 513:1–18. doi:10.1007/978-1-59745-427-8_1.

    Article  CAS  Google Scholar 

  • Gabriel, K., Egan, B., Lithgow, T. 2003. Tom40, the import channel of the mitochondrial outer membrane, plays an active role in sorting imported proteins. EMBO J. 22 (10):2380–2386. doi:10.1093/emboj/cdg229

    Article  PubMed  CAS  Google Scholar 

  • Gakh, O., Cavadini, P., Isaya, G. 2002. Mitochondrial processing peptidases. Biochim. Biophys. Acta 1592(1):63–77.

    Article  PubMed  CAS  Google Scholar 

  • Glaser, E., Alikhani, N. 2009. The organellar peptidasome, prep: A journey from arabidopsis to Alzheimer’s disease. Biochim. Biophys. Acta 1797(6–7):1076–1080.

    PubMed  Google Scholar 

  • Glaser, E., Dessi, P. 1999. Integration of the mitochondrial-processing peptidase into the cytochrome bc1 complex in plants. J. Bioenerg. Biomembr. 31(3):259–274.

    Article  PubMed  CAS  Google Scholar 

  • Glaser, E., Eriksson, A., Sjoling, S. 1994. Bifunctional role of the bc1 complex in plants. Mitochondrial bc1 complex catalyses both electron transport and protein processing. FEBS Lett. 346(1):83–87.

    Article  PubMed  CAS  Google Scholar 

  • Glaser, E., Sjoling, S., Tanudji, M., Whelan, J. 1998. Mitochondrial protein import in plants. Signals, sorting, targeting, processing and regulation. Plant Mol. Biol. 38(1–2):311–338.

    Article  PubMed  CAS  Google Scholar 

  • Habib, S. J., Vasiljev, A., Neupert, W., Rapaport, D. 2003. Multiple functions of tail-anchor domains of mitochondrial outer membrane proteins. FEBS Lett. 555(3):511–515.

    Article  PubMed  CAS  Google Scholar 

  • Hachiya, N., Alam, R., Sakasegawa, Y., Sakaguchi, M., Mihara, K., Omura, T. 1993. A mitochondrial import factor purified from rat liver cytosol is an atp-dependent conformational modulator for precursor proteins. EMBO J. 12(4):1579–1586.

    PubMed  CAS  Google Scholar 

  • Hartl, F. U., Pfanner, N., Nicholson, D. W., Neupert, W. 1989. Mitochondrial protein import. Biochim. Biophys. Acta 988(1):1–45. doi:0304-4157(89)90002-6 [pii].

    Article  PubMed  CAS  Google Scholar 

  • Heazlewood, J. L., Tonti-Filippini, J. S., Gout, A. M., Day, D. A., Whelan, J., Millar, A. H. 2004. Experimental analysis of the arabidopsis mitochondrial proteome highlights signaling and regulatory components, provides assessment of targeting prediction programs, and indicates plant-specific mitochondrial proteins. Plant Cell 16(1):241–256.

    Article  PubMed  CAS  Google Scholar 

  • Hedtke, B., Borner, T., Weihe, A. 2000. One RNA polymerase serving two genomes. EMBO Rep. 1(5):435–440.

    Article  PubMed  CAS  Google Scholar 

  • Heins, L., Schmitz, U. K. 1996. A receptor for protein import into potato mitochondria. Plant J. 9(6):829–839.

    Article  PubMed  CAS  Google Scholar 

  • Hell, K., Neupert, W., Stuart, R. A. 2001. Oxa1p acts as a general membrane insertion machinery for proteins encoded by mitochondrial DNA. EMBO J. 20(6):1281–1288. doi:10.1093/emboj/20.6.1281

    Article  PubMed  CAS  Google Scholar 

  • Horie, C., Suzuki, H., Sakaguchi, M., Mihara, K. 2003. Targeting and assembly of mitochondrial tail-anchored protein tom5 to the tom complex depend on a signal distinct from that of tail-anchored proteins dispersed in the membrane. J. Biol. Chem. 278(42):41462–41471.

    Article  PubMed  CAS  Google Scholar 

  • Howell, K. A., Millar, A. H., Whelan, J. 2006. Ordered assembly of mitochondria during rice germination begins with pro-mitochondrial structures rich in components of the protein import apparatus. Plant Mol. Biol. 60(2):201–223. doi:10.1007/s11103-005-3688-7

    Article  PubMed  CAS  Google Scholar 

  • Huang, S., Taylor, N. L., Whelan, J., Millar, A. H. 2009. Refining the definition of plant mitochondrial presequences through analysis of sorting signals, n-terminal modifications, and cleavage motifs. Plant Physiol.150(3):1272–1285.

    Article  PubMed  CAS  Google Scholar 

  • Hugosson, M., Andreu, D., Boman, H. G., Glaser, E. 1994. Antibacterial peptides and mitochondrial presequences affect mitochondrial coupling, respiration and protein import. Eur. J. biochem. FEBS 223(3):1027–1033.

    Article  CAS  Google Scholar 

  • Isaya, G., Kalousek, F., Rosenberg, L. E. 1992. Sequence analysis of rat mitochondrial interme-diate peptidase: Similarity to zinc metallopeptidases and to a putative yeast homologue. Proc. Natl. Acad. Sci. U.S.A. 89(17):8317–8321.

    Article  PubMed  CAS  Google Scholar 

  • Jansch, L., Kruft, V., Schmitz, U. K., Braun, H. P. 1998. Unique composition of the preprotein translocase of the outer mitochondrial membrane from plants. J. Biol. Chem. 273(27):17251–17257.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, K. A., Bhushan, S., Stahl, A., Hallberg, B. M., Frohn, A., Glaser, E., Eneqvist, T. 2006. The closed structure of presequence protease prep forms a unique 10,000 angstroms3 chamber for proteolysis. EMBO J. 25(9):1977–1986.

    Article  PubMed  CAS  Google Scholar 

  • Kambacheld, M., Augustin, S., Tatsuta, T., Muller, S., Langer, T. 2005. Role of the novel metallopeptidase mop112 and saccharolysin for the complete degradation of proteins residing in different subcompartments of mitochondria. J. Biol. Chem. 280(20):20132–20139. doi:M500398200 [pii]10.1074/jbc.M500398200.

    Article  PubMed  CAS  Google Scholar 

  • Kmiec-Wisniewska, B., Krumpe, K., Urantowka, A., Sakamoto, W., Pratje, E., Janska, H. 2008. Plant mitochondrial rhomboid, atrbl12, has different substrate specificity from its yeast counterpart. Plant Mol. Biol. 68(1–2):159–171.

    Article  PubMed  CAS  Google Scholar 

  • Koppen, M., Langer, T. 2007. Protein degradation within mitochondria: Versatile activities of aaa proteases and other peptidases. Crit. Rev. Biochem. Mol. Biol. 42(3):221–242.

    Article  PubMed  CAS  Google Scholar 

  • Likic, V. A., Perry, A., Hulett, J., Derby, M., Traven, A., Waller, R. F., Keeling, P. J., Koehler, C. M., Curran, S. P., Gooley, P. R., Lithgow, T. 2005. Patterns that define the four domains conserved in known and novel isoforms of the protein import receptor tom20. J. Mol. Biol. 347(1):81–93. doi:S0022-2836(05)00005-7 [pii]0.1016/j.jmb.2004.12.057

    Article  PubMed  CAS  Google Scholar 

  • Lister, R., Whelan, J. 2006. Mitochondrial protein import: Convergent solutions for receptor structure. Curr. Biol. 16(6):R197–199. doi:S0960-9822(06)01174-2 [pii]10.1016/j.cub.2006.02.024

    Article  PubMed  CAS  Google Scholar 

  • Lister, R., Mowday, B., Whelan, J., Millar, A. H. 2002. Zinc-dependent intermembrane space proteins stimulate import of carrier proteins into plant mitochondria. Plant J. 30(5):555–566. doi:1316 [pii].

    Article  PubMed  CAS  Google Scholar 

  • Lister, R., Murcha, M. W., Whelan, J. 2003. The mitochondrial protein import machinery of plants (mpimp) database. Nucleic Acids Res. 31(1):325–327.

    Article  PubMed  CAS  Google Scholar 

  • Lister, R., Hulett, J. M., Lithgow, T., Whelan, J. 2005. Protein import into mitochondria: Origins and functions today (review). Mol. Membr. Biol. 22(1–2):87–100.

    Article  PubMed  CAS  Google Scholar 

  • Lister, R., Carrie, C., Duncan, O., Ho, L. H., Howell, K. A., Murcha, M. W., Whelan, J. 2007. Functional definition of outer membrane proteins involved in preprotein import into mitochondria. Plant Cell 19(11):3739–3759. doi:tpc.107.050534 [pii] 10.1105/tpc.107.050534.

    Article  PubMed  CAS  Google Scholar 

  • Lithgow, T. 2000. Targeting of proteins to mitochondria. FEBS Lett.476(1–2):22–26. doi:S0014-5793(00)01663-X [pii].

    Article  PubMed  CAS  Google Scholar 

  • Luirink, J., Samuelsson, T., de Gier, J. W. 2001. Yidc/oxa1p/alb3: Evolutionarily conserved mediators of membrane protein assembly. FEBS Lett. 501(1):1–5. doi:S0014-5793(01)02616-3 [pii].

    Article  PubMed  CAS  Google Scholar 

  • Macasev, D., Whelan, J., Newbigin, E., Silva-Filho, M. C., Mulhern, T. D., Lithgow, T. 2004. Tom22′, an 8-kda trans-site receptor in plants and protozoans, is a conserved feature of the tom complex that appeared early in the evolution of eukaryotes. Mol. Biol. Evol. 21(8):1557–1564. doi:10.1093/molbev/msh166[pii].

    Article  PubMed  CAS  Google Scholar 

  • McQuibban, G. A., Saurya, S., Freeman, M. 2003. Mitochondrial membrane remodelling regulated by a conserved rhomboid protease. Nature 423(6939):537–541.

    Article  PubMed  CAS  Google Scholar 

  • Mesecke, N., Bihlmaier, K., Grumbt, B., Longen, S., Terziyska, N., Hell, K., Herrmann, J. M. 2008. The zinc-binding protein hot13 promotes oxidation of the mitochondrial import receptor mia40. EMBO Rep. 9(11):1107–1113. doi:embor2008173 [pii].

    Article  PubMed  CAS  Google Scholar 

  • Meyer, E. H., Taylor, N. L., Millar, A. H. 2008. Resolving and identifying protein components of plant mitochondrial respiratory complexes using three dimensions of gel electrophoresis. J. Proteome Res. 7(2):786–794. doi:10.1021/pr700595p

    Article  PubMed  CAS  Google Scholar 

  • Milla, A. H., Sweetlove, L. J., Giege, P., Leaver, C. J. 2001. Analysis of the arabidopsis mitochondrial proteome. Plant Physiol. 127(4):1711–1727.

    Article  CAS  Google Scholar 

  • Millar, A. H., Heazlewood, J. L., Kristensen, B. K., Braun, H. P., Moller, I. M. 2005. The plant mitochondrial proteome. Trends Plant Sci. 10(1):36–43. doi:S1360-1385(04)00273-0 [pii]10.1016/j.tplants.2004.12.002.

    Article  PubMed  CAS  Google Scholar 

  • Mitschke, J., Fuss, J., Blum, T., Hoglund, A., Reski, R., Kohlbacher, O., Rensing, S. A. 2009. Prediction of dual protein targeting to plant organelles. New Phytol. 183(1):224–235.

    Article  PubMed  CAS  Google Scholar 

  • Moberg, P., Stahl, A., Bhushan, S., Wright, S. J., Eriksson, A., Bruce, B. D., Glaser, E. 2003. Characterization of a novel zinc metalloprotease involved in degrading targeting peptides in mitochondria and chloroplasts. Plant J. 36(5):616–628.

    Article  PubMed  CAS  Google Scholar 

  • Moberg, P., Nilsson, S., Stahl, A., Eriksson, A. C., Glaser, E., Maler, L. 2004. Nmr solution structure of the mitochondrial f1beta presequence from nicotiana plumbaginifolia. J. Mol. Biol. 336(5):1129–1140.

    Article  PubMed  CAS  Google Scholar 

  • Murakami, K., Mori, M. 1990. Purified presequence binding factor (pbf) forms an import-comp-etent complex with a purified mitochondrial precursor protein. EMBO J. 9(10):3201–3208.

    PubMed  CAS  Google Scholar 

  • Murcha, M. W., Elhafez, D., Millar, A. H., Whelan, J. 2004. The n-terminal extension of plant mitochondrial carrier proteins is removed by two-step processing: the first cleavage is by the mitochondrial processing peptidase. J. Mol. Biol. 344 (2):443–454. doi:S0022-2836(04)01201-X [pii]10.1016/j.jmb.2004.09.045

    Article  PubMed  CAS  Google Scholar 

  • Murcha, M. W., Elhafez, D., Millar, A. H., Whelan, J. 2005a. The c-terminal region of tim17 links the outer and inner mitochondrial membranes in arabidopsis and is essential for protein import. J. Biol. Chem. 280 (16):16476–16483. doi:M413299200 [pii] 10.1074/jbc.M41329920010.1074/jbc.M413299200

    Article  PubMed  CAS  Google Scholar 

  • Murcha, M. W., Millar, A. H., Whelan, J. 2005b. The n-terminal cleavable extension of plant carrier proteins is responsible for efficient insertion into the inner mitochondrial membrane. J. Mol. Biol. 351 (1):16–25. doi:S0022-2836(05)00649-2 [pii] 10.1016/j.jmb.2005.06.004

    Article  PubMed  CAS  Google Scholar 

  • Murcha, M. W., Elhafez, D., Lister, R., Tonti-Filippini, J., Baumgartner, M., Philippar, K., Carrie, C., Mokranjac, D., Soll, J., Whelan, J. 2007. Characterization of the preprotein and amino acid transporter gene family in arabidopsis. Plant Physiol. 143(1):199–212. doi:pp.106.090688 [pii]10.1104/pp.106.090688.

    Article  PubMed  CAS  Google Scholar 

  • Muto, T., Obita, T., Abe, Y., Shodai, T., Endo, T., Kohda, D. 2001. Nmr identification of the tom20 binding segment in mitochondrial presequences. J. Mol. Biol. 306(2):137–143.

    Article  PubMed  CAS  Google Scholar 

  • Naamati, A., Regev-Rudzki, N., Galperin, S., Lill, R., Pines, O. 2009. Dual targeting of nfs1 and discovery of its novel processing enzyme, icp55. J. Biol. Chem. 284(44):30200–30208.

    Article  PubMed  CAS  Google Scholar 

  • Neupert, W. 1997. Protein import into mitochondria. Annu. Rev. Biochem. 66:863–917.

    Article  PubMed  CAS  Google Scholar 

  • Neupert, W., Herrmann, J. M. 2007. Translocation of proteins into mitochondria. Annu. Rev. Biochem. 76:723–749. doi:10.1146/annurev.biochem.76.052705.163409.

    Article  PubMed  CAS  Google Scholar 

  • Nilsson Cederholm, S., Backman, H. G., Pesaresi, P., Leister, D., Glaser, E. 2009. Deletion of an organellar peptidasome prep affects early development in arabidopsis thaliana. Plant Mol. Biol. 71(4–5):497–508.

    Article  PubMed  CAS  Google Scholar 

  • Ono, H., Tuboi, S. 1990. Purification and identification of a cytosolic factor required for import of precursors of mitochondrial proteins into mitochondria. Arch. Biochem. Biophys. 280(2):299–304.

    Article  PubMed  CAS  Google Scholar 

  • Paschen, S. A., Waizenegger, T., Stan, T., Preuss, M., Cyrklaff, M., Hell, K., Rapaport, D., Neupert, W. 2003. Evolutionary conservation of biogenesis of beta-barrel membrane proteins. Nature 426(6968):862–866. doi:10.1038/nature02208nature02208 [pii].

    Article  PubMed  CAS  Google Scholar 

  • Peeters, N., Small, I. 2001. Dual targeting to mitochondria and chloroplasts. Biochim. Biophys. Acta 1541(1–2):54–63.

    Article  PubMed  CAS  Google Scholar 

  • Perry, A. J., Hulett, J. M., Likic, V. A., Lithgow, T., Gooley, P. R. 2006. Convergent evolution of receptors for protein import into mitochondria. Curr. Biol. 1 (3):221–229. doi:S0960-9822(05)01596-4 [pii]10.1016/j.cub.2005.12.034.

    Article  CAS  Google Scholar 

  • Pfanner, N., Geissler, A. 2001. Versatility of the mitochondrial protein import machinery. Nat. Rev. Mol. Cell Biol. 2(5):339–349. doi:10.1038/3507300635073006 [pii].

    Article  PubMed  CAS  Google Scholar 

  • Pinho, C. M., Bjork, B. F., Alikhani, N., Backman, H. G., Eneqvist, T., Fratiglioni, L., Glaser, E., Graff, C. 2010. Genetic and biochemical studies of snps of the mitochondrial a beta-degrading protease, hprep. Neurosci. Letts. 469(2):204–208.

    Article  CAS  Google Scholar 

  • Pohlmeyer, K., Soll, J., Steinkamp, T., Hinnah, S., Wagner, R. 1997. Isolation and characterization of an amino acid-selective channel protein present in the chloroplastic outer envelope membrane. Proc. Natl. Acad. Sci. U.S.A. 94(17):9504–9509.

    Article  PubMed  CAS  Google Scholar 

  • Pujol, C., Marechal-Drouard, L., Duchene, A. M. 2007. How can organellar protein n-terminal sequences be dual targeting signals? In silico analysis and mutagenesis approach. J. Mol. Biol. 369(2):356–367.

    Article  PubMed  CAS  Google Scholar 

  • Rapaport, D. 2003. Finding the right organelle. Targeting signals in mitochondrial outer-membrane proteins. EMBO Rep. 4(10):948–952.

    Article  PubMed  CAS  Google Scholar 

  • Rassow, J., Dekker, P. J., van Wilpe, S., Meijer, M., Soll, J. 1999. The preprotein translocase of the mitochondrial inner membrane: Function and evolution. J. Mol. Biol. 286(1):105–120. doi:S0022-2836(98)92455-X [pii]10.1006/jmbi.1998.2455.

    Article  PubMed  CAS  Google Scholar 

  • Rawlings, N. D., Morton, F. R., Kok, C. Y., Kong, J., Barrett, A. J. 2008. Merops: The peptidase database. Nucleic Acids Res. 36(Database issue):D320–325.

    PubMed  CAS  Google Scholar 

  • Richter, S., Lamppa, G. K. 2002. Determinants for removal and degradation of transit peptides of chloroplast precursor proteins. J. Biol. Chem. 277(46):43888–43894.

    Article  PubMed  CAS  Google Scholar 

  • Rudhe, C., Chew, O., Whelan, J., Glaser, E. 2002a. A novel in vitro system for simultaneous import of precursor proteins into mitochondria and chloroplasts. Plant J. 30(2):213–220.

    Article  PubMed  CAS  Google Scholar 

  • Rudhe, C., Clifton, R., Whelan, J., Glaser, E. 2002b. N-terminal domain of the dual-targeted pea glutathione reductase signal peptide controls organellar targeting efficiency. J. Mol. Biol. 324(4):577–585.

    Article  PubMed  CAS  Google Scholar 

  • Rudhe, C., Clifton, R., Chew, O., Zemam, K., Richter, S., Lamppa, G., Whelan, J., Glaser, E. 2004. Processing of the dual targeted precursor protein of glutathione reductase in mitochondria and chloroplasts. J. Mol. Biol. 343(3):639–647.

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto, W., Spielewoy, N., Bonnard, G., Murata, M., Wintz, H. 2000. Mitochondrial localization of atoxa1, an arabidopsis homologue of yeast oxa1p involved in the insertion and assembly of protein complexes in mitochondrial inner membrane. Plant Cell Physiol. 41(10):1157–1163.

    Article  PubMed  CAS  Google Scholar 

  • Schleiff, E., Motzkus, M., Soll, J. 2002. Chloroplast protein import inhibition by a soluble factor from wheat germ lysate. Plant Mol. Biol. 50(2):177–185.

    Article  PubMed  CAS  Google Scholar 

  • Schneider, G., Sjoling, S., Wallin, E., Wrede, P., Glaser, E., von Heijne, G. 1998. Feature-extraction from endopeptidase cleavage sites in mitochondrial targeting peptides. Proteins 30(1):49–60.

    Article  PubMed  CAS  Google Scholar 

  • Schulte, U., Arretz, M., Schneider, H., Tropschug, M., Wachter, E., Neupert, W., Weiss, H. 1989. A family of mitochondrial proteins involved in bioenergetics and biogenesis. Nature 339(6220):147–149.

    Article  PubMed  CAS  Google Scholar 

  • Shen, Y., Joachimiak, A., Rosner, M. R., Tang, W. J. 2006. Structures of human insulin-degrading enzyme reveal a new substrate recognition mechanism. Nature 443(7113):870–874.

    Article  PubMed  CAS  Google Scholar 

  • Shore, G. C., McBride, H. M., Millar, D. G., Steenaart, N. A., Nguyen, M. 1995. Import and insertion of proteins into the mitochondrial outer membrane. Eur. J. Biochem. FEBS 227(1–2):9–18.

    Article  Google Scholar 

  • Silva-Filho, M. C. 2003.One ticket for multiple destinations: Dual targeting of proteins to distinct subcellular locations. Curr. Opin. Plant Biol. 6(6):589–595.

    Article  PubMed  CAS  Google Scholar 

  • Soll, J., Schleiff, E. 2004. Protein import into chloroplasts. Nat. Rev. Mol. Cell Biol. 5(3):198–208. doi:10.1038/nrm1333nrm1333 [pii].

    Article  PubMed  CAS  Google Scholar 

  • Stahl, A., Moberg, P., Ytterberg, J., Panfilov, O., Brockenhuus Von Lowenhielm, H, Nilsson, F., Glaser, E. 2002. Isolation and identification of a novel mitochondrial metalloprotease (prep) that degrades targeting presequences in plants. J. Biol. Chem. 277(44):41931–41939.

    Article  PubMed  CAS  Google Scholar 

  • Stahl, A., Nilsson, S., Lundberg, P., Bhushan, S., Biverstahl, H., Moberg, P., Morisset, M., Vener, A., Maler, L., Langel, U., Glaser, E. 2005. Two novel targeting peptide degrading proteases, preps, in mitochondria and chloroplasts, so similar and still different. J. Mol. Biol. 349(4):847–860.

    Article  PubMed  CAS  Google Scholar 

  • Stein, I., Peleg, Y., Even-Ram, S., Pines, O. 1994. The single translation product of the fum1 gene (fumarase) is processed in mitochondria before being distributed between the cytosol and mitochondria in saccharomyces cerevisiae. Mol. Cell Biol. 14(7):4770–4778.

    PubMed  CAS  Google Scholar 

  • Tanudji, M., Sjoling, S., Glaser, E., Whelan, J. 1999. Signals required for the import and processing of the alternative oxidase into mitochondria. J. Biol. Chem. 274(3):1286–1293.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, A. B., Smith, B. S., Kitada, S., Kojima, K., Miyaura, H., Otwinowski, Z., Ito, A., Deisenhofer, J. 2001. Crystal structures of mitochondrial processing peptidase reveal the mode for specific cleavage of import signal sequences. Structure 9(7):615–625.

    Article  PubMed  CAS  Google Scholar 

  • van Wilpe, S., Ryan, M. T., Hill, K., Maarse, A. C., Meisinger, C., Brix, J., Dekker, P. J., Moczko, M., Wagner, R., Meijer, M., Guiard, B., Honlinger, A., Pfanner, N. 1999. Tom22 is a multifunctional organizer of the mitochondrial preprotein translocase. Nature 401(6752):485–489. doi:10.1038/46802.

    Article  PubMed  Google Scholar 

  • Vogtle, F. N., Wortelkamp, S., Zahedi, R. P., Becker, D., Leidhold, C., Gevaert, K., Kellermann, J., Voos, W., Sickmann, A., Pfanner, N., Meisinger, C. 2009. Global analysis of the mitochondrial n-proteome identifies a processing peptidase critical for protein stability. Cell 139(2):428–439.

    Article  PubMed  CAS  Google Scholar 

  • von Heijne, G. 1986. Mitochondrial targeting sequences may form amphiphilic helices. EMBO J. 5(6):1335–1342.

    Google Scholar 

  • Waltner, M., Weiner, H. 1995. Conversion of a nonprocessed mitochondrial precursor protein into one that is processed by the mitochondrial processing peptidase. J. Biol. Chem. 270(44):26311–26317.

    Article  PubMed  CAS  Google Scholar 

  • Westermann, B., Neupert, W. 2000. Mitochondria-targeted green fluorescent proteins: Convenient tools for the study of organelle biogenesis in saccharomyces cerevisiae. Yeast (Chichester, England) 16(15):1421–1427.

    Article  CAS  Google Scholar 

  • Whelan, J., Tanudji, M. R., Smith, M. K., Day, D. A. 1996. Evidence for a link between translocation and processing during protein import into soybean mitochondria. Biochim. Biophys. Acta 1312(1):48–54.

    Article  PubMed  Google Scholar 

  • Wienk, H. L., Czisch, M., de Kruijff, B. 1999. The structural flexibility of the preferredoxin transit peptide. FEBS Lett. 453(3):318–326.

    Article  PubMed  CAS  Google Scholar 

  • Winning, B. M., Sarah, C. J., Purdue, P. E., Day, C. D., Leaver, C. J. 1992. The adenine nucleotide translocator of higher plants is synthesized as a large precursor that is processed upon import into mitochondria. Plant J. 2(5):763–773.

    PubMed  CAS  Google Scholar 

  • Yano, M., Terada, K., Mori, M. 2003. Aip is a mitochondrial import mediator that binds to both import receptor tom20 and preproteins. J. Cell Biol. 16(1):45–56.

    Article  CAS  Google Scholar 

  • Zhang, X. P., Glaser, E. 2002. Interaction of plant mitochondrial and chloroplast signal peptides with the hsp70 molecular chaperone. Trends Plant Sci. 7(1):14–21.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from The Swedish Research Council to E.G. J.W. was supported by a grant from the Wenner-Gren Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Elzbieta Glaser or James Whelan .

Editor information

Editors and Affiliations

Glossary

Ambiguous targeting signal:

A targeting signal that directs a protein to more than one location in a cell.

Amphiphilic (amphipathic):

With reference to targeting signals refers to the fact that they contain polar and apolar properties.

Dual-targeting:

A targeting process in which a protein is authentically targeted and accumulates in more than one location in a cell.

Intraorganelle sorting:

The requirement to sort a protein to the correct location inside the organelle once it has been targeted to that organelle. The default targeting signal for mitochondria targets protein to the matrix and thus all proteins that are not located in the matrix must be stopped on their ways to the matrix (stop-transfer) or retargeted from the matrix to their final location (conservative sorting).

Mis-targeting:

A process in which a protein is targeted to a location other than that where it is normally found. Mis-targeting can be observed in some in vitro uptake assays, in vivo targeting assays that tag proteins with artificial passenger proteins, when using heterologous systems or when using chimeric constructs.

Molecular chaperone:

A protein that binds transiently to unfolded domains of other proteins, preventing them for misfolding and conferring an import competent conformation.

Passenger protein:

A protein that when linked to a presequence will be directed to mitochondria. Passenger proteins have properties that allow them to be easily visualized, such as fluorescence (GFP) or can be manipulated to fold or unfold under altered experimental (DHFR).

Precursor processing:

Proteolytic cleavage of the presequence from a precursor protein by mitochondrial processing peptidases (MPP, IMP, ICP55, MIP) resulting in a mature protein and a free presequence that is further degraded by presequence protease, PreP.

Presequence:

N-terminal cleavable targeting signals that direct proteins to mitochondria.

Transit peptide:

N-terminal cleavable targeting signals that direct proteins to chloroplasts.

Translocase:

A multi-subunit membrane bound protein complex that mediates the recognition and insertion of proteins into or across a membrane.

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Glaser, E., Whelan, J. (2011). Protein Import into Plant Mitochondria. In: Kempken, F. (eds) Plant Mitochondria. Advances in Plant Biology, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-0-387-89781-3_11

Download citation

Publish with us

Policies and ethics