Skip to main content

Polymerase Chain Reaction and Reverse Transcription-Polymerase Chain Reaction

  • Chapter
  • First Online:
Book cover Basic Concepts of Molecular Pathology

Part of the book series: Molecular Pathology Library ((MPLB,volume 2))

Abstract

Polymerase chain reaction (PCR) enables one to determine if a specific needle is present in a haystack, and it can be used as a step toward the characterization of the needle. It is a quick, powerful, inexpensive DNA amplification technique that has become a fundamental tool in molecular pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bell J. The polymerase chain reaction. Immunol Today. 1989;10:351–355.

    Article  PubMed  CAS  Google Scholar 

  2. Saiki RK, Scharf S, Faloona F, et al Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science. 1985;230:1350–1354.

    Article  PubMed  CAS  Google Scholar 

  3. Mullis K, Faloona F, Scharf S, et al Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb Symp Quant Biol. 1986;51(pt 1):263–273.

    PubMed  CAS  Google Scholar 

  4. Saiki RK, Gelfand DH, Stoffel S, et al Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988;239:487–491.

    Article  PubMed  CAS  Google Scholar 

  5. Saboor SA, Johnson NM, McFadden J. Detection of mycobacterial DNA in sarcoidosis and tuberculosis with polymerase chain reaction. Lancet. 1992;339:1012–1015.

    Article  PubMed  CAS  Google Scholar 

  6. Myerson D, Lingenfelter PA, Gleaves CA, et al Diagnosis of cytomegalovirus pneumonia by the polymerase chain reaction with archived frozen lung tissue and bronchoalveolar lavage fluid. Am J Clin Pathol. 1993;100:407–413.

    PubMed  CAS  Google Scholar 

  7. Raad I, Hanna H, Huaringa A, et al Diagnosis of invasive pulmonary aspergillosis using polymerase chain reaction-based detection of aspergillus in BAL. Chest. 2002;121:1171–1176.

    Article  PubMed  Google Scholar 

  8. Sundaresan S, Alevy YG, Steward N, et al Cytokine gene transcripts for tumor necrosis factor-alpha, interleukin-2, and interferon-gamma in human pulmonary allografts. J Heart Lung Transplant. 1995;14:512–518.

    PubMed  CAS  Google Scholar 

  9. Lordan JL, Bucchieri F, Richter A, et al Cooperative effects of Th2 cytokines and allergen on normal and asthmatic bronchial epithelial cells. J Immunol. 2002;169:407–414.

    PubMed  CAS  Google Scholar 

  10. Nogee LM, Dunbar AE III, Wert SE, et al A mutation in the surfactant protein C gene associated with familial interstitial lung disease. N Engl J Med. 2001;344:573–579.

    Article  PubMed  CAS  Google Scholar 

  11. Pan Q, Pao W, Ladanyi M. Rapid polymerase chain reaction-based detection of epidermal growth factor receptor gene mutations in lung adenocarcinomas. J Mol Diagn. 2005;7:396–403.

    PubMed  CAS  Google Scholar 

  12. Westra WH, Baas IO, Hruban RH, et al K-ras oncogene activation in atypical alveolar hyperplasias of the human lung. Cancer Res. 1996;56:2224–2228.

    PubMed  CAS  Google Scholar 

  13. Pulte D, Li E, Crawford BK, et al Sentinel lymph node mapping and molecular staging in nonsmall cell lung carcinoma. Cancer. 2005;104:1453–1461.

    Article  PubMed  CAS  Google Scholar 

  14. Bohlmeyer T, Le TN, Shroyer AL, et al Detection of human papillomavirus in squamous cell carcinomas of the lung by polymerase chain reaction. Am J Respir Cell Mol Biol. 1998;18:265–269.

    PubMed  CAS  Google Scholar 

  15. Bremnes RM, Sirera R, Camps C. Circulating tumour-derived DNA and RNA markers in blood: a tool for early detection, diagnostics, and follow-up? Lung Cancer. 2005;49:1–12.

    Article  PubMed  Google Scholar 

  16. Eisenstein BI. The polymerase chain reaction. A new method of using molecular genetics for medical diagnosis. N Engl J Med. 1990;322:178–183.

    PubMed  CAS  Google Scholar 

  17. Wenham PR. DNA-based techniques in clinical biochemistry: a beginner’s guide to theory and practice. Ann Clin Biochem. 1992;29(pt 6):598–624.

    PubMed  CAS  Google Scholar 

  18. Remick DG, Kunkel SL, Holbrook EA, Hanson CA. Theory and applications of the polymerase chain reaction. Am J Clin Pathol. 1990;93:S49–S54.

    PubMed  CAS  Google Scholar 

  19. Chakrabarti R, Schutt CE. The enhancement of PCR amplification by low molecular-weight sulfones. Gene. 2001;274:293–298.

    Article  PubMed  CAS  Google Scholar 

  20. Laksanalamai P, Pavlov AR, Slesarev AI, Robb FT. Stabilization of Taq DNA polymerase at high temperature by protein folding pathways from a hyperthermophilic archaeon, Pyrococcus furiosus. Biotechnol Bioeng. 2006;93:1–5.

    Article  PubMed  CAS  Google Scholar 

  21. Breslauer KJ, Frank R, Blocker H, Marky LA. Predicting DNA duplex stability from the base sequence. Proc Natl Acad Sci U S A. 1986;83:3746–3750.

    Article  PubMed  CAS  Google Scholar 

  22. SantaLucia J Jr, Allawi HT, Seneviratne PA. Improved nearest-neighbor parameters for predicting DNA duplex stability. Biochemistry. 1996;35:3555–3562.

    Article  PubMed  CAS  Google Scholar 

  23. Wallace RB, Shaffer J, Murphy RF, et al. Hybridization of synthetic oligodeoxyribonucleotides to phi chi 174 DNA: the effect of single base pair mismatch. Nucleic Acids Res. 1979;6:3543–3557.

    Article  PubMed  CAS  Google Scholar 

  24. Chien A, Edgar DB, Trela JM. Deoxyribonucleic acid polymerase from the extreme thermophile Thermus aquaticus. J Bacteriol. 1976;127:1550–1557.

    CAS  Google Scholar 

  25. Takagi M, Nishioka M, Kakihara H, et al Characterization of DNA polymerase from Pyrococcussp. strain KOD1 and its application to PCR. Appl Environ Microbiol. 1997;63:4504–4510.

    PubMed  CAS  Google Scholar 

  26. Davidson JF, Fox R, Harris DD, et al. Insertion of the T3 DNA polymerase thioredoxin binding domain enhances the processivity and fidelity of Taq DNA polymerase. Nucleic Acids Res. 2003;31:4702–4709.

    Article  PubMed  CAS  Google Scholar 

  27. Keohavong P, Thilly WG. Fidelity of DNA polymerases in DNA amplification. Proc Natl Acad Sci U S A 1989;86:9253–9257.

    Article  PubMed  CAS  Google Scholar 

  28. Wilson IG. Inhibition and facilitation of nucleic acid amplification. Appl Environ Microbiol. 1997;63:3741–2751.

    PubMed  CAS  Google Scholar 

  29. Khan G, Kangro HO, Coates PJ, Heath RB. Inhibitory effects of urine on the polymerase chain reaction for cytomegalovirus DNA. J Clin Pathol. 1991;44:360–365.

    Article  PubMed  CAS  Google Scholar 

  30. Pavlov AR, Pavlova NV, Kozyavkin SA, Slesarev AI. Recent developments in the optimization of thermostable DNA polymerases for efficient applications. Trends Biotechnol. 2004;22:253–260.

    Article  PubMed  CAS  Google Scholar 

  31. Longo MC, Berninger MS, Hartley JL. Use of uracil DNA glycosylase to control carry-over contamination in polymerase chain reactions. Gene. 1990;93:125–128.

    Article  PubMed  CAS  Google Scholar 

  32. Eckert KA, Kunkel TA. High fidelity DNA synthesis by the Thermus aquaticus DNA polymerase. Nucleic Acids Res. 1990;18:3739–3744.

    Article  PubMed  CAS  Google Scholar 

  33. McPherson MJ, Møller SG. PCR. Oxford, UK: BIOS Scientific; 2000.

    Google Scholar 

  34. Southern EM. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975;98:503–517.

    Article  PubMed  CAS  Google Scholar 

  35. Bevan IS, Rapley R, Walker MR. Sequencing of PCR-amplified DNA. PCR Methods Appl. 1992;1:222–228.

    PubMed  CAS  Google Scholar 

  36. Moretti T, Koons B, Budowle B. Enhancement of PCR amplification yield and specificity using AmpliTaq Gold DNA polymerase. Biotechniques. 1998;25:716–722.

    PubMed  CAS  Google Scholar 

  37. Brandwein M, Zeitlin J, Nuovo GJ, et al. HPV detection using “hot start” polymerase chain reaction in patients with oral cancer: a clinicopathological study of 64 patients. Mod Pathol. 1994;7:720–727.

    PubMed  CAS  Google Scholar 

  38. Nuovo GJ, Gallery F, MacConnell P. Detection of amplified HPV 6 and 11 DNA in vulvar lesions by hot start PCR in situ hybridization. Mod Pathol. 1992;5:444–448.

    PubMed  CAS  Google Scholar 

  39. Chou Q, Russell M, Birch DE, et al. Prevention of pre-PCR mis-priming and primer dimerization improves low-copy-number amplifications. Nucleic Acids Res. 1992;20:1717–1723.

    Article  PubMed  CAS  Google Scholar 

  40. Tilston P, Corbitt G. A single tube nested PCR for the detection of hepatitis C virus RNA. J Virol Methods. 1995;53:121–129.

    Article  PubMed  CAS  Google Scholar 

  41. Smit VT, Boot AJ, Smits AM, et al. KRAS codon 12 mutations occur very frequently in pancreatic adenocarcinomas. Nucleic Acids Res. 1988;16:7773–7782.

    Article  PubMed  CAS  Google Scholar 

  42. Herman JG, Graff JR, Myohanen S, et al. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci U S A. 1996;93:9821–9826.

    Article  PubMed  CAS  Google Scholar 

  43. Curtis CD, Goggins M. DNA methylation analysis in human cancer. Methods Mol Med. 2005;103:123–136.

    PubMed  CAS  Google Scholar 

  44. Li LC, Dahiya R. MethPrimer: designing primers for methylation PCRs. Bioinformatics. 2002;18:1427–1431.

    Article  PubMed  CAS  Google Scholar 

  45. Bird A. The essentials of DNA methylation. Cell. 1992;70:5–8.

    Article  PubMed  CAS  Google Scholar 

  46. Robertson KD, Jones PA. DNA methylation: past, present and future directions. Carcinogenesis. 2000;21:461–467.

    Article  PubMed  CAS  Google Scholar 

  47. Rhee I, Bachman KE, Park BH, et al. DNMT1 and DNMT3b cooperate to silence genes in human cancer cells. Nature. 2002;416:552–556.

    Article  PubMed  CAS  Google Scholar 

  48. Dammann R, Takahashi T, Pfeifer GP. The CpG island of the novel tumor suppressor gene RASSF1A is intensely methylated in primary small cell lung carcinomas. Oncogene. 2001;20:3563–3567.

    Article  PubMed  CAS  Google Scholar 

  49. Zochbauer-Muller S, Fong KM, Virmani AK, et al. Aberrant promoter methylation of multiple genes in non-small cell lung cancers. Cancer Res. 2001;61:249–255.

    PubMed  CAS  Google Scholar 

  50. Clark SJ, Harrison J, Paul CL, Frommer M. High sensitivity mapping of methylated cytosines. Nucleic Acids Res. 1994;22:2990–2997.

    Article  PubMed  CAS  Google Scholar 

  51. Elnifro EM, Ashshi AM, Cooper RJ, Klapper PE. Multiplex PCR: optimization and application in diagnostic virology. Clin Microbiol Rev. 2000;13:559–570.

    Article  PubMed  CAS  Google Scholar 

  52. Richards B, Skoletsky J, Shuber AP, et al. Multiplex PCR amplification from the CFTR gene using DNA prepared from buccal brushes/swabs. Hum Mol Genet. 1993;2:159–163.

    Article  PubMed  CAS  Google Scholar 

  53. Scurto P, Hsu Rocha M, Kane JR, et al. A multiplex RT-PCR assay for the detection of chimeric transcripts encoded by the risk-stratifying translocations of pediatric acute lymphoblastic leukemia. Leukemia. 1998;12:1994–2005.

    Article  PubMed  CAS  Google Scholar 

  54. Pallisgaard N, Hokland P, Riishoj DC, et al. Multiplex reverse transcription-polymerase chain reaction for simultaneous screening of 29 translocations and chromosomal aberrations in acute leukemia. Blood. 1998;92:574–588.

    PubMed  CAS  Google Scholar 

  55. Newton CR, Graham A, Heptinstall LE, et al Analysis of any point mutation in DNA. The amplification refractory mutation system (ARMS). Nucleic Acids Res. 1989;17:2503–2516.

    Article  PubMed  CAS  Google Scholar 

  56. Saiki RK, Bugawan TL, Horn GT, et al. Analysis of enzymatically amplified beta-globin and HLA-DQ alpha DNA with allele-specific oligonucleotide probes. Nature. 1986;324:163–166.

    Article  PubMed  CAS  Google Scholar 

  57. Schaefer BC. Revolutions in rapid amplification of cDNA ends: new strategies for polymerase chain reaction cloning of full-length cDNA ends. Anal Biochem. 1995;227:255–273.

    Article  PubMed  CAS  Google Scholar 

  58. Komminoth P, Long AA. In-situ polymerase chain reaction. An overview of methods, applications and limitations of a new molecular technique. Virchows Arch B Cell Pathol Incl Mol Pathol. 1993;64:67–73.

    Article  PubMed  CAS  Google Scholar 

  59. Livak KJ, Flood SJ, Marmaro J, et al. Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting PCR product and nucleic acid hybridization. PCR Methods Appl. 1995;4:357–362.

    PubMed  CAS  Google Scholar 

  60. Heid CA, Stevens J, Livak KJ, Williams PM. Real time quantitative PCR. Genome Res. 1996;6:986–994.

    Article  PubMed  CAS  Google Scholar 

  61. Lie YS, Petropoulos CJ. Advances in quantitative PCR technology: 5′ nuclease assays. Curr Opin Biotechnol. 1998;9:43–48.

    Article  PubMed  CAS  Google Scholar 

  62. Holland PM, Abramson RD, Watson R, Gelfand DH. Detection of specific polymerase chain reaction product by utilizing the 5′-3′ exonuclease activity of Thermus aquaticus DNA polymerase. Proc Natl Acad Sci U S A. 1991;88:7276–7280.

    Article  Google Scholar 

  63. Longley MJ, Bennett SE, Mosbaugh DW. Characterization of the 5′ to 3′ exonuclease associated with Thermus aquaticus DNA polymerase. Nucleic Acids Res. 1990;18:7317–7322.

    Article  PubMed  CAS  Google Scholar 

  64. Förster T. Zwischemolekulare energiewanderung und fluoreszenz. Ann Physik. 1948;2:55–67.

    Article  Google Scholar 

  65. Stryer L, Haugland RP. Energy transfer: a spectroscopic ruler. Proc Natl Acad Sci U S A. 1967;58:719–726.

    Article  PubMed  CAS  Google Scholar 

  66. Grinvald A, Haas E, Steinberg IZ. Evaluation of the distribution of distances between energy donors and acceptors by fluorescence decay. Proc Natl Acad Sci U S A. 1972;69:2273–2277.

    Article  PubMed  CAS  Google Scholar 

  67. Oliver DH, Thompson RE, Griffin CA, Eshleman JR. Use of single nucleotide polymorphisms (SNP) and real-time polymerase chain reaction for bone marrow engraftment analysis. J Mol Diagn. 2000;2:202–208.

    PubMed  CAS  Google Scholar 

  68. Lay MJ, Wittwer CT. Real-time fluorescence genotyping of factor V Leiden during rapid-cycle PCR. Clin Chem. 1997;43:2262–2267.

    PubMed  CAS  Google Scholar 

  69. Temin HM, Mizutani S. RNA-dependent DNA polymerase in virions of Rous sarcoma virus. Nature. 1970;226:1211–1213.

    Article  PubMed  CAS  Google Scholar 

  70. Baltimore D. RNA-dependent DNA polymerase in virions of RNA tumour viruses. Nature. 1970;226:1209–1211.

    Article  PubMed  CAS  Google Scholar 

  71. Spiegelman S, Burny A, Das MR, et al. Characterization of the products of DNA-directed DNA polymerases in oncogenic RNA viruses. Nature. 1970;227:563–567.

    Article  PubMed  CAS  Google Scholar 

  72. Shinnick TM, Lerner RA, Sutcliffe JG. Nucleotide sequence of Moloney murine leukaemia virus. Nature. 1981;293:543–548.

    Article  PubMed  CAS  Google Scholar 

  73. Reddy EP, Smith MJ, Aaronson SA. Complete nucleotide sequence and organization of the Moloney murine sarcoma virus genome. Science. 1981;214:445–450.

    Article  PubMed  CAS  Google Scholar 

  74. Kotewicz ML, D’Alessio JM, Driftmier KM, et al. Cloning and overexpression of Moloney murine leukemia virus reverse transcriptase in Escherichia coli. Gene. 1985;35:249–258.

    Article  PubMed  CAS  Google Scholar 

  75. Verma IM, Baltimore D. Purification of the RNA-directed DNA polymerase from avian myeloblastosis virus and its assay with polynucleotide templates. Methods Enzymol. 1974;29:125–130.

    Article  PubMed  CAS  Google Scholar 

  76. Houts GE, Miyagi M, Ellis C, et al. Reverse transcriptase from avian myeloblastosis virus. J Virol. 1979;29:517–522.

    PubMed  CAS  Google Scholar 

  77. Verma IM. Studies on reverse transcriptase of RNA tumor viruses III. Properties of purified Moloney murine leukemia virus DNA polymerase and associated RNase H. J Virol. 1975;15:843–854.

    PubMed  CAS  Google Scholar 

  78. Marcus SL, Modak MJ. Observations on template-specific conditions for DNA synthesis by avian myeloblastosis virus DNA polymerase. Nucleic Acids Res. 1976;3:1473–1486.

    PubMed  CAS  Google Scholar 

  79. Sambrook J, Russell DW. Molecular Cloning: A Laboratory Manual, 3rd ed. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 2001:A4.24.

    Google Scholar 

  80. Broackes-Carter FC, Mouchel N, Gill D, et al. Temporal regulation of CFTR expression during ovine lung development: implications for CF gene therapy. Hum Mol Genet. 2002;11:125–131.

    Article  PubMed  CAS  Google Scholar 

  81. Dagnon K, Pacary E, Commo F, et al. Expression of erythropoietin and erythropoietin receptor in non-small cell lung carcinomas. Clin Cancer Res. 2005;11:993–999.

    PubMed  CAS  Google Scholar 

  82. Singhal S, Wiewrodt R, Malden LD, et al. Gene expression profiling of malignant mesothelioma. Clin Cancer Res. 2003;9:3080–3097.

    PubMed  CAS  Google Scholar 

  83. Lam KM, Oldenburg N, Khan MA, et al. Significance of reverse transcription polymerase chain reaction in the detection of human cytomegalovirus gene transcripts in ­thoracic organ transplant recipients. J Heart Lung Transplant. 1998;17:555–565.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Oliver, D. (2009). Polymerase Chain Reaction and Reverse Transcription-Polymerase Chain Reaction. In: Allen, T., Cagle, P.T. (eds) Basic Concepts of Molecular Pathology. Molecular Pathology Library, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-89626-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-89626-7_9

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-89625-0

  • Online ISBN: 978-0-387-89626-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics