Skip to main content

The Role of Mutation and Epimutation in the Development of Human Disease

  • Chapter
  • First Online:
Book cover Basic Concepts of Molecular Pathology

Part of the book series: Molecular Pathology Library ((MPLB,volume 2))

Abstract

The paradigm of disease causation holds that disease represents the manifestation or several manifestations of an underlying process that has one or more root causes. Thus, human diseases reflect a spectrum of pathologies and mechanisms of disease pathogenesis. The general categories of disease affecting humans include (a) hereditary diseases, (b) infectious diseases, (c) inflammatory diseases, and (d) neoplastic diseases. Pathological conditions representing each of these general categories have been described for every tissue in the body. Despite the grouping of diseases by the common features of the general disease type, the pathogenesis of each of the various diseases is unique, and in some cases multiple mechanisms can give rise to a similar pathology (disease manifestation). Disease causation may be related to intrinsic factors or extrinsic factors, but many or most diseases are multifactorial, involving a combination of intrinsic and extrinsic factors. It is now well recognized that most major diseases are ultimately the result of aberrant gene expression and that susceptibility to disease is significantly influenced by patterns of gene expression in target cells or tissues for a particular type of pathology. It follows that gene mutations and other genetic alterations are important in the pathogenesis of many human diseases. Similarly, nongenetic alterations affecting the expression of key genes, called epimutations, may also contribute to the genesis of disease at many tissue sites. In this chapter, general concepts related to the molecular basis for the major disease types are reviewed. This review is not intended to be comprehensive. Rather, the current state of understanding related to the genes and molecular mechanisms (genetic and epigenetic) that contribute to illustrative diseases is described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Coleman WB, Rivenbark AG. Quantitative DNA methylation analysis: the promise of high-throughput epigenomic diagnostic testing in human neoplastic disease. J Mol Diagn. 2006;8:152–156.

    Article  PubMed  CAS  Google Scholar 

  2. Murrell A, Rakyan VK, Beck S. From genome to epigenome. Hum Mol Genet. 2005;14(Special No. 1):R3-R10.

    Article  PubMed  CAS  Google Scholar 

  3. Fuks F. DNA methylation and histone modifications: teaming up to silence genes. Curr Opin Genet Dev. 2005;15:490-495.

    Article  PubMed  CAS  Google Scholar 

  4. Kallioniemi A, Kallioniemi OP, Sudar D, et al. Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science. 1992;258:818-821.

    Article  PubMed  CAS  Google Scholar 

  5. Bignell GR, Huang J, Greshock J, et al. High-resolution analysis of DNA copy number using oligonucleotide microarrays. Genome Res. 2006;14:287-295.

    Article  CAS  Google Scholar 

  6. Albertson DG, Ylstra B, Segraves R, et al. Quantitative mapping of amplicon structure by array CGH identifies CYP24 as a candidate oncogene. Nat Genet. 2000;25:144-146.

    Article  PubMed  CAS  Google Scholar 

  7. Jain AN, Chin K, Borresen-Dale AL, et al. Quantitative analysis of chromosomal CGH in human breast tumors associates copy number abnormalities with p53 status and patient survival. Proc Natl Acad Sci USA. 2001;98:7952-7957.

    Article  PubMed  CAS  Google Scholar 

  8. Weiss MM, Kuipers EJ, Postma C, et al. Genomic profiling of gastric cancer predicts lymph node status and survival. Oncogene. 2003;22:1872-1879.

    Article  PubMed  CAS  Google Scholar 

  9. Weiss MM, Snijders AM, Kuipers EJ, et al. Determination of amplicon boundaries at 20q13.2 in tissue samples of human gastric adenocarcinomas by high-resolution microarray comparative genomic hybridization. J Pathol. 2003;200:320-326.

    Article  PubMed  CAS  Google Scholar 

  10. Schwaenen C, Nessling M, Wessendorf S, et al. Automated array-based genomic profiling in chronic lymphocytic leukemia: development of a clinical tool and discovery of recurrent genomic alterations. Proc Natl Acad Sci USA. 2004;101:1039-1044.

    Article  PubMed  CAS  Google Scholar 

  11. Snijders AM, Nowee ME, Fridlyand J, et al. Genome-wide-array-based comparative genomic hybridization reveals genetic homogeneity and frequent copy number increases encompassing CCNE1 in fallopian tube carcinoma. Oncogene. 2003;22:4281-4286.

    Article  PubMed  CAS  Google Scholar 

  12. Garnis C, Coe BP, Zhang L, et al. Overexpression of LRP12, a gene contained within an 8q22 amplicon identified by high-resolution array CGH analysis of oral squamous cell carcinomas. Oncogene. 2004;23:2582-2586.

    Article  PubMed  CAS  Google Scholar 

  13. Veltman JA, Fridlyand J, Pejavar S, et al. Array-based comparative genomic hybridization for genome-wide screening of DNA copy number in bladder tumors. Cancer Res. 2003;63:2872-2880.

    PubMed  CAS  Google Scholar 

  14. Holzmann K, Kohlhammer H, Schwaenen C, et al. Genomic DNA-chip hybridization reveals a higher incidence of genomic amplifications in pancreatic cancer than conventional comparative genomic hybridization and leads to the identification of novel candidate genes. Cancer Res. 2004;64:4428-4433.

    Article  PubMed  CAS  Google Scholar 

  15. Berrieman HK, Ashman JN, Cowen ME, et al. Chromosomal analysis of non-small-cell lung cancer by multicolour fluorescent in situ hybridisation. Br J Cancer. 2004;90:900-905.

    Article  PubMed  CAS  Google Scholar 

  16. Balsara BR, Sonoda G, du Manoir S, et al. Comparative genomic hybridization analysis detects frequent, often high-level, overrepresentation of DNA sequences at 3q, 5p, 7p, and 8q in human non-small cell lung carcinomas. Cancer Res. 1997;57:2116-2120.

    PubMed  CAS  Google Scholar 

  17. Nowell PC, Croce CM. Chromosomal approaches to the molecular basis of neoplasia. Symp Fundam Cancer Res. 1986;39:17-29.

    PubMed  CAS  Google Scholar 

  18. Grandori C, Eisenman RN. Myc target genes. Trends Biochem Sci. 1997;22:177-181.

    Article  PubMed  CAS  Google Scholar 

  19. Hurlin PJ, Huang J. The MAX-interacting transcription factor network. Semin Cancer Biol 2006;16:265-274.

    Article  PubMed  CAS  Google Scholar 

  20. Blackwood EM, Eisenman RN. Max: a helix-loop-helix zipper protein that forms a sequence-specific DNA-binding complex with Myc. Science. 1991;251:1211-1217.

    Article  PubMed  CAS  Google Scholar 

  21. Blackwood EM, Kretzner L, Eisenman RN. Myc and Max function as a nucleoprotein complex. Curr Opin Genet Dev. 1992;2:227-235.

    Article  PubMed  CAS  Google Scholar 

  22. Blackwood EM, Luscher B, Kretzner L, et al. The Myc:Max protein complex and cell growth regulation. Cold Spring Harb Symp Quant Biol. 1991;56:109-117.

    PubMed  CAS  Google Scholar 

  23. Gazzeri S, Brambilla E, Caron de Fromentel C, et al. p53 genetic abnormalities and myc activation in human lung carcinoma. Int J Cancer. 1994;58:24-32.

    Article  PubMed  CAS  Google Scholar 

  24. Broers JL, Viallet J, Jensen SM, et al. Expression of c-myc in progenitor cells of the bronchopulmonary epithelium and in a large number of non-small cell lung cancers. Am J Respir Cell Mol Biol. 1993;9:33-43.

    PubMed  CAS  Google Scholar 

  25. Lorenz J, Friedberg T, Paulus R, et al. Oncogene overexpression in non-small-cell lung cancer tissue: prevalence and clinicopathological significance. Clin Invest. 1994;72:156-163.

    Article  CAS  Google Scholar 

  26. Volm M, Drings P, Wodrich W, et al. Expression of oncoproteins in primary human non-small cell lung cancer and incidence of metastases. Clin Exp Metastasis. 1993;11:325-329.

    Article  PubMed  CAS  Google Scholar 

  27. Wodrich W, Volm M. Overexpression of oncoproteins in non-small cell lung carcinomas of smokers. Carcinogenesis. 1993;14:1121-1124.

    Article  PubMed  CAS  Google Scholar 

  28. Mitani S, Kamata H, Fujiwara M, et al. Analysis of c-myc DNA amplification in non-small cell lung carcinoma in comparison with small cell lung carcinoma using polymerase chain reaction. Clin Exp Med. 2001;1:105-111.

    Article  PubMed  CAS  Google Scholar 

  29. Richardson GE, Johnson BE. The biology of lung cancer. Semin Oncol. 1993;20:105-127.

    PubMed  CAS  Google Scholar 

  30. Krystal G, Birrer M, Way J, et al. Multiple mechanisms for transcriptional regulation of the myc gene family in small-cell lung cancer. Mol Cell Biol. 1988;8:3373-3381.

    PubMed  CAS  Google Scholar 

  31. Johnson BE, Russell E, Simmons AM, et al. MYC family DNA amplification in 126 tumor cell lines from patients with small cell lung cancer. J Cell Biochem Suppl. 1996;24:210-217.

    Article  PubMed  CAS  Google Scholar 

  32. Levin NA, Brzoska P, Gupta N, et al. Identification of frequent novel genetic alterations in small cell lung carcinoma. Cancer Res. 1994;54:5086-5091.

    PubMed  CAS  Google Scholar 

  33. van Beers EH, Nederlof PM. Array-CGH and breast cancer. Breast Cancer Res. 2006;8:210.

    Article  PubMed  CAS  Google Scholar 

  34. Albertson DG. Profiling breast cancer by array CGH. Breast Cancer Res Treat. 2003;78:289-298.

    Article  PubMed  CAS  Google Scholar 

  35. Climent J, Garcia JL, Mao JH, et al. Characterization of breast cancer by array comparative genomic hybridization. Biochem Cell Biol. 2007;85:497-508.

    Article  PubMed  CAS  Google Scholar 

  36. Jonsson G, Naylor TL, Vallon-Christersson J, et al. Distinct genomic profiles in hereditary breast tumors identified by array-based comparative genomic hybridization. Cancer Res. 2005;65: 7612-7621.

    PubMed  Google Scholar 

  37. Slamon DJ, Clark GM, Wong SG, et al. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science. 1987;235:177-182.

    Article  PubMed  CAS  Google Scholar 

  38. Slamon DJ, Godolphin W, Jones LA, et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science. 1989;244:707-712.

    Article  PubMed  CAS  Google Scholar 

  39. Pauletti G, Dandekar S, Rong H, et al. Assessment of methods for tissue-based detection of the HER-2/neu alteration in human breast cancer: a direct comparison of fluorescence in situ hybridization and immunohistochemistry. J Clin Oncol. 2000;18:3651-3664.

    PubMed  CAS  Google Scholar 

  40. Perez EA, Baweja M. HER2-positive breast cancer: current treatment strategies. Cancer Invest. 2008;26:545-552.

    Article  PubMed  Google Scholar 

  41. Oldenhuis CN, Oosting SF, Gietema JA, et al. Prognostic versus predictive value of biomarkers in oncology. Eur J Cancer. 2008;44: 946-953.

    Article  PubMed  CAS  Google Scholar 

  42. Jahanzeb M. Adjuvant trastuzumab therapy for HER2-positive breast cancer. Clin Breast Cancer. 2008;8:324-333.

    Article  PubMed  CAS  Google Scholar 

  43. Widakowich C, Dinh P, de Azambuja E, et al. HER-2 positive breast cancer: what else beyond trastuzumab-based therapy? Anticancer Agents Med Chem. 2008;8:488-496.

    PubMed  CAS  Google Scholar 

  44. Kawanishi M, Kohno T, Otsuka T, et al. Allelotype and replication error phenotype of small cell lung carcinoma. Carcinogenesis. 1997;18:2057-2062.

    Article  PubMed  CAS  Google Scholar 

  45. Shiseki M, Kohno T, Adachi J, et al. Comparative allelotype of early and advanced stage non-small cell lung carcinomas. Genes Chromosomes Cancer. 1996;17:71-77.

    Article  PubMed  CAS  Google Scholar 

  46. Sato S, Nakamura Y, Tsuchiya E. Difference of allelotype between squamous cell carcinoma and adenocarcinoma of the lung. Cancer Res. 1994;54:5652-5655.

    PubMed  CAS  Google Scholar 

  47. Tsuchiya E, Nakamura Y, Weng SY, et al. Allelotype of non-small cell lung carcinoma: comparison between loss of heterozygosity in squamous cell carcinoma and adenocarcinoma. Cancer Res. 1992;52:2478-2481.

    PubMed  CAS  Google Scholar 

  48. Luk C, Tsao MS, Bayani J, et al. Molecular cytogenetic analysis of non-small cell lung carcinoma by spectral karyotyping and comparative genomic hybridization. Cancer Genet Cytogenet. 2001; 125:87-99.

    Article  PubMed  CAS  Google Scholar 

  49. Lui WO, Tanenbaum DM, Larsson C. High level amplification of 1p32-33 and 2p22-24 in small cell lung carcinomas. Int J Oncol. 2001;19:451-457.

    PubMed  CAS  Google Scholar 

  50. Hibi K, Takahashi T, Yamakawa K, et al. Three distinct regions involved in 3p deletion in human lung cancer. Oncogene. 1992;7: 445-449.

    PubMed  CAS  Google Scholar 

  51. Brauch H, Tory K, Kotler F, et al. Molecular mapping of deletion sites in the short arm of chromosome 3 in human lung cancer. Genes Chromosomes Cancer. 1990;1:240-246.

    Article  PubMed  CAS  Google Scholar 

  52. Wistuba II, Behrens C, Virmani AK, et al. High resolution chromosome 3p allelotyping of human lung cancer and preneoplastic/preinvasive bronchial epithelium reveals multiple, discontinuous sites of 3p allele loss and three regions of frequent breakpoints. Cancer Res. 2000;60:1949-1960.

    PubMed  CAS  Google Scholar 

  53. Zochbauer-Muller S, Wistuba II, Minna JD, et al. Fragile histidine triad (FHIT) gene abnormalities in lung cancer. Clin Lung Cancer. 2000;2:141-145.

    Article  PubMed  CAS  Google Scholar 

  54. Dammann R, Schagdarsurengin U, Seidel C, et al. The tumor suppressor RASSF1A in human carcinogenesis: an update. Histol Histopathol. 2005;20:645-663.

    PubMed  CAS  Google Scholar 

  55. Hosoe S, Ueno K, Shigedo Y, et al. A frequent deletion of chromosome 5q21 in advanced small cell and non-small cell carcinoma of the lung. Cancer Res. 1994;54:1787-1790.

    PubMed  CAS  Google Scholar 

  56. Kinzler KW, Nilbert MC, Su LK, et al. Identification of FAP locus genes from chromosome 5q21. Science. 1991;253:661-665.

    Article  PubMed  CAS  Google Scholar 

  57. Kinzler KW, Nilbert MC, Vogelstein B, et al. Identification of a gene located at chromosome 5q21 that is mutated in colorectal cancers. Science. 1991;251:1366-1370.

    Article  PubMed  CAS  Google Scholar 

  58. Groden J, Thliveris A, Samowitz W, et al. Identification and characterization of the familial adenomatous polyposis coli gene. Cell. 1991;66:589-600.

    Article  PubMed  CAS  Google Scholar 

  59. Joslyn G, Carlson M, Thliveris A, et al. Identification of deletion mutations and three new genes at the familial polyposis locus. Cell. 1991;66:601-613.

    Article  PubMed  CAS  Google Scholar 

  60. Horii A, Nakatsuru S, Miyoshi Y, et al. Frequent somatic mutations of the APC gene in human pancreatic cancer. Cancer Res. 1992;52:6696-6698.

    PubMed  CAS  Google Scholar 

  61. Fung YK, Murphree AL, T’Ang A, et al. Structural evidence for the authenticity of the human retinoblastoma gene. Science. 1987;236:1657-1661.

    Article  PubMed  CAS  Google Scholar 

  62. Lee WH, Bookstein R, Hong F, et al. Human retinoblastoma susceptibility gene: cloning, identification, and sequence. Science. 1987;235:1394-1399.

    Article  PubMed  CAS  Google Scholar 

  63. Hensel CH, Hsieh CL, Gazdar AF, et al. Altered structure and expression of the human retinoblastoma susceptibility gene in small cell lung cancer. Cancer Res. 1990;50:3067-3072.

    PubMed  CAS  Google Scholar 

  64. Xu HJ, Hu SX, Cagle PT, et al. Absence of retinoblastoma protein expression in primary non-small cell lung carcinomas. Cancer Res. 1991;51:2735-2739.

    PubMed  CAS  Google Scholar 

  65. McBride OW, Merry D, Givol D. The gene for human p53 cellular tumor antigen is located on chromosome 17 short arm (17p13). Proc Natl Acad Sci USA. 1986;83:130-134.

    Article  PubMed  CAS  Google Scholar 

  66. Yokota J, Wada M, Shimosato Y, et al. Loss of heterozygosity on chromosomes 3, 13, and 17 in small-cell carcinoma and on chromosome 3 in adenocarcinoma of the lung. Proc Natl Acad Sci USA. 1987;84:9252-9256.

    Article  PubMed  CAS  Google Scholar 

  67. Nishioka M, Kohno T, Takahashi M, et al. Identification of a 428-kb homozygously deleted region disrupting the SEZ6L gene at 22q12.1 in a lung cancer cell line. Oncogene. 2000;19:6251-6260.

    Article  PubMed  CAS  Google Scholar 

  68. Callahan R, Cropp C, Merlo GR, et al. Genetic and molecular heterogeneity of breast cancer cells. Clin Chim Acta. 1993;217:63-73.

    Article  PubMed  CAS  Google Scholar 

  69. Cleton-Jansen AM, Moerland EW, Kuipers-Dijkshoorn NJ, et al. At least two different regions are involved in allelic imbalance on chromosome arm 16q in breast cancer. Genes Chromosomes Cancer. 1994;9:101-107.

    Article  PubMed  CAS  Google Scholar 

  70. Eiriksdottir G, Sigurdsson A, Jonasson JG, et al. Loss of heterozygosity on chromosome 9 in human breast cancer: association with clinical variables and genetic changes at other chromosome regions. Int J Cancer. 1995;64:378-382.

    Article  PubMed  CAS  Google Scholar 

  71. Gudmundsson J, Barkardottir RB, Eiriksdottir G, et al. Loss of heterozygosity at chromosome 11 in breast cancer: association of prognostic factors with genetic alterations. Br J Cancer. 1995;72:696-701.

    PubMed  CAS  Google Scholar 

  72. Morelli C, Sherratt T, Trabanelli C, et al. Characterization of a 4-Mb region at chromosome 6q21 harboring a replicative senescence gene. Cancer Res. 1997;57:4153-4157.

    PubMed  CAS  Google Scholar 

  73. Huang H, Qian C, Jenkins RB, et al. Fish mapping of YAC clones at human chromosomal band 7q31.2: identification of YACS spanning FRA7G within the common region of LOH in breast and prostate cancer. Genes Chromosomes Cancer. 1998;21:152-159.

    Article  PubMed  CAS  Google Scholar 

  74. Mars WM, Saunders GF. Chromosomal abnormalities in human breast cancer. Cancer Metastasis Rev. 1990;9:35-43.

    Article  PubMed  CAS  Google Scholar 

  75. Kerangueven F, Noguchi T, Coulier F, et al. Genome-wide search for loss of heterozygosity shows extensive genetic diversity of human breast carcinomas. Cancer Res. 1997;57:5469-5474.

    PubMed  CAS  Google Scholar 

  76. Miki Y, Swensen J, Shattuck-Eidens D, et al. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science. 1994;266:66-71.

    Article  PubMed  CAS  Google Scholar 

  77. Wooster R, Neuhausen SL, Mangion J, et al. Localization of a breast cancer susceptibility gene, BRCA2, to chromosome 13q12-13. Science. 1994;265:2088-2090.

    Article  PubMed  CAS  Google Scholar 

  78. Schultz DC, Vanderveer L, Berman DB, et al. Identification of two candidate tumor suppressor genes on chromosome 17p13.3. Cancer Res. 1996;56:1997-2002.

    PubMed  CAS  Google Scholar 

  79. Cleton-Jansen AM. E-cadherin and loss of heterozygosity at chromosome 16 in breast carcinogenesis: different genetic pathways in ductal and lobular breast cancer? Breast Cancer Res. 2002;4:5-8.

    Article  PubMed  CAS  Google Scholar 

  80. Debies MT, Welch DR. Genetic basis of human breast cancer metastasis. J Mammary Gland Biol Neoplasia. 2001;6:441-451.

    Article  PubMed  CAS  Google Scholar 

  81. Fearon ER, Cho KR, Nigro JM, et al. Identification of a chromosome 18q gene that is altered in colorectal cancers. Science. 1990;247:49-56.

    Article  PubMed  CAS  Google Scholar 

  82. Bieche I, Champeme MH, Lidereau R. Loss and gain of distinct regions of chromosome 1q in primary breast cancer. Clin Cancer Res. 1995;1:123-127.

    PubMed  CAS  Google Scholar 

  83. Bieche I, Khodja A, Lidereau R. Deletion mapping in breast tumor cell lines points to two distinct tumor-suppressor genes in the 1p32-pter region, one of deleted regions (1p36.2) being located within the consensus region of LOH in neuroblastoma. Oncol Rep. 1998;5:267-272.

    PubMed  CAS  Google Scholar 

  84.  84. Kerangueven F, Eisinger F, Noguchi T, et al. Loss of heterozygosity in human breast carcinomas in the ataxia telangiectasia, Cowden disease and BRCA1 gene regions. Oncogene. 1997;14:339-347.

    Article  PubMed  CAS  Google Scholar 

  85. Aldaz CM, Chen T, Sahin A, et al. Comparative allelotype of in situ and invasive human breast cancer: high frequency of microsatellite instability in lobular breast carcinomas. Cancer Res. 1995;55:3976-3981.

    PubMed  CAS  Google Scholar 

  86.  86. Radford DM, Fair KL, Phillips NJ, et al. Allelotyping of ductal carcinoma in situ of the breast: deletion of loci on 8p, 13q, 16q, 17p and 17q. Cancer Res. 1995;55:3399-3405.

    PubMed  CAS  Google Scholar 

  87.  87. Nowell PC, Hungerford DA. A minute chromosome in human chronic granulocytic leukemia [abstract]. Science. 1960;132:1497.

    Google Scholar 

  88.  88. Nowell PC, Hungerford DA. Chromosome studies on normal and leukemic human leukocytes. J Natl Cancer Inst. 1960;25:85-109.

    PubMed  CAS  Google Scholar 

  89.  89. Rowley JD. Letter: A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature. 1973;243:290-293.

    Article  PubMed  CAS  Google Scholar 

  90.  90. Kakizuka A, Miller WH Jr, Umesono K, et al. Chromosomal translocation t(15;17) in human acute promyelocytic leukemia fuses RAR alpha with a novel putative transcription factor, PML. Cell. 1991;66:663-674.

    Article  PubMed  CAS  Google Scholar 

  91.  91. de The H, Lavau C, Marchio A, et al. The PML-RAR alpha fusion mRNA generated by the t(15;17) translocation in acute promyelocytic leukemia encodes a functionally altered RAR. Cell. 1991;66:675-684.

    Article  PubMed  CAS  Google Scholar 

  92.  92. Miller WH, Jr., Kakizuka A, Frankel SR, et al. Reverse transcription polymerase chain reaction for the rearranged retinoic acid receptor alpha clarifies diagnosis and detects minimal residual disease in acute promyelocytic leukemia. Proc Natl Acad Sci USA. 1992;89:2694-2698.

    Article  PubMed  CAS  Google Scholar 

  93.  93. Huang W, Sun GL, Li XS, et al. Acute promyelocytic leukemia: clinical relevance of two major PML-RAR alpha isoforms and detection of minimal residual disease by retrotranscriptase/polymerase chain reaction to predict relapse. Blood. 1993; 82:1264-1269.

    PubMed  CAS  Google Scholar 

  94.  94. Gallagher RE, Willman CL, Slack JL, et al. Association of PML-RAR alpha fusion mRNA type with pretreatment hematologic characteristics but not treatment outcome in acute promyelocytic leukemia: an intergroup molecular study. Blood. 1997;90:1656-1663.

    PubMed  CAS  Google Scholar 

  95.  95. Vyas RC, Frankel SR, Agbor P, et al. Probing the pathobiology of response to all-trans retinoic acid in acute promyelocytic leukemia: premature chromosome condensation/fluorescence in situ hybridization analysis. Blood. 1996;87:218-226.

    PubMed  CAS  Google Scholar 

  96.  96. Grignani F, Fagioli M, Alcalay M, et al. Acute promyelocytic leukemia: from genetics to treatment. Blood. 1994;83:10-25.

    PubMed  CAS  Google Scholar 

  97.  97. Sy SM, Fan B, Lee TW, et al. Spectral karyotyping indicates complex rearrangements in lung adenocarcinoma of nonsmokers. Cancer Genet Cytogenet. 2004;153:57-59.

    Article  PubMed  CAS  Google Scholar 

  98.  98. Sy SM, Wong N, Lee TW, et al. Distinct patterns of genetic alterations in adenocarcinoma and squamous cell carcinoma of the lung. Eur J Cancer. 2004;40:1082-1094.

    Article  PubMed  CAS  Google Scholar 

  99.  99. Greenberg F. Williams syndrome. Pediatrics. 1989;84:922-923.

    PubMed  CAS  Google Scholar 

  100. Osborne LR, Li M, Pober B, et al. A 1.5 million-base pair inversion polymorphism in families with Williams–Beuren syndrome. Nat Genet. 2001;29:321-325.

    Article  PubMed  CAS  Google Scholar 

  101. Inoue K, Lupski JR. Molecular mechanisms for genomic disorders. Annu Rev Genomic Hum Genet. 2002;3:199-242.

    Article  CAS  Google Scholar 

  102. Gimelli G, Pujana MA, Patricelli MG, et al. Genomic inversions of human chromosome 15q11–q13 in mothers of Angelman syndrome patients with class II (BP2/3) deletions. Hum Mol Genet. 2003;12:849-858.

    Article  PubMed  CAS  Google Scholar 

  103. Feuk L, Carson AR, Scherer SW. Structural variation in the human genome. Nat Rev Genet. 2006;7:85-97.

    Article  PubMed  CAS  Google Scholar 

  104. Lakich D, Kazazian HH Jr, Antonarakis SE, et al. Inversions disrupting the factor VIII gene are a common cause of severe haemophilia A. Nat Genet. 1993;5:236-241.

    Article  PubMed  CAS  Google Scholar 

  105. Naylor J, Brinke A, Hassock S, et al. Characteristic mRNA abnormality found in half the patients with severe haemophilia A is due to large DNA inversions. Hum Mol Genet. 1993;2:1773-1778.

    Article  PubMed  CAS  Google Scholar 

  106. Small K, Iber J, Warren ST. Emerin deletion reveals a common X-chromosome inversion mediated by inverted repeats. Nat Genet. 1997;16:96-99.

    Article  PubMed  CAS  Google Scholar 

  107. Timms KM, Bondeson ML, Ansari-Lari MA, et al. Molecular and phenotypic variation in patients with severe Hunter syndrome. Hum Mol Genet. 1997;6:479-486.

    Article  PubMed  CAS  Google Scholar 

  108. Bondeson ML, Dahl N, Malmgren H, et al. Inversion of the IDS gene resulting from recombination with IDS-related sequences is a common cause of the Hunter syndrome. Hum Mol Genet. 1995;4:615-621.

    Article  PubMed  CAS  Google Scholar 

  109. Visser R, Shimokawa O, Harada N, et al. Identification of a 3.0-kb major recombination hotspot in patients with Sotos syndrome who carry a common 1.9-Mb microdeletion. Am J Hum Genet. 2005;76:52-67.

    Article  PubMed  CAS  Google Scholar 

  110. Giglio S, Broman KW, Matsumoto N, et al. Olfactory receptor-gene clusters, genomic-inversion polymorphisms, and common chromosome rearrangements. Am J Hum Genet. 2001;68:874-883.

    Article  PubMed  CAS  Google Scholar 

  111. Giglio S, Calvari V, Gregato G, et al. Heterozygous submicroscopic inversions involving olfactory receptor-gene clusters mediate the recurrent t(4;8)(p16;p23) translocation. Am J Hum Genet. 2002;71:276-285.

    Article  PubMed  CAS  Google Scholar 

  112. Higgs DR, Old JM, Pressley L, et al. A novel alpha-globin gene arrangement in man. Nature. 1980;284:632-635.

    Article  PubMed  CAS  Google Scholar 

  113. Lauer J, Shen CK, Maniatis T. The chromosomal arrangement of human alpha-like globin genes: sequence homology and alpha-globin gene deletions. Cell. 1980;20:119-130.

    Article  PubMed  CAS  Google Scholar 

  114. Vollrath D, Nathans J, Davis RW. Tandem array of human visual pigment genes at Xq28. Science. 1988;240:1669-1672.

    Article  PubMed  CAS  Google Scholar 

  115. Nathans J, Piantanida TP, Eddy RL, et al. Molecular genetics of inherited variation in human color vision. Science. 1986; 232:203-210.

    Article  PubMed  CAS  Google Scholar 

  116. Aradhya S, Woffendin H, Jakins T, et al. A recurrent deletion in the ubiquitously expressed NEMO (IKK-gamma) gene accounts for the vast majority of incontinentia pigmenti mutations. Hum Mol Genet. 2001;10:2171-2179.

    Article  PubMed  CAS  Google Scholar 

  117. Smahi A, Courtois G, Vabres P, et al. Genomic rearrangement in NEMO impairs NF-kappaB activation and is a cause of incontinentia pigmenti. The International Incontinentia Pigmenti (IP) Consortium. Nature. 2000;405:466-472.

    Article  PubMed  CAS  Google Scholar 

  118. Chance PF, Alderson MK, Leppig KA, et al. DNA deletion associated with hereditary neuropathy with liability to pressure palsies. Cell. 1993;72:143-151.

    Article  PubMed  CAS  Google Scholar 

  119. Upadhyaya M, Ruggieri M, Maynard J, et al. Gross deletions of the neurofibromatosis type 1 (NF1) gene are predominantly of maternal origin and commonly associated with a learning disability, dysmorphic features and developmental delay. Hum Genet. 1998;102:591-597.

    Article  PubMed  CAS  Google Scholar 

  120. Valero MC, Pascual-Castroviejo I, Velasco E, et al. Identification of de novo deletions at the NF1 gene: no preferential paternal origin and phenotypic analysis of patients. Hum Genet. 1997;99:720-726.

    Article  PubMed  CAS  Google Scholar 

  121. Edelmann L, Pandita RK, Spiteri E, et al. A common molecular basis for rearrangement disorders on chromosome 22q11. Hum Mol Genet. 1999;8:1157-1167.

    Article  PubMed  CAS  Google Scholar 

  122. Chen KS, Manian P, Koeuth T, et al. Homologous recombination of a flanking repeat gene cluster is a mechanism for a common contiguous gene deletion syndrome. Nat Genet. 1997;17:154-163.

    Article  PubMed  CAS  Google Scholar 

  123. Pasternak JJ. Molecular genetics of neurological disorders. In: Pasternak JJ, ed. An Introduction to Human Molecular Genetics: Mechanisms of Inherited Diseases. Bethesda, MD: Fitzgerald Science Press, 1999:286-287.

    Google Scholar 

  124. Lupski JR, de Oca-Luna RM, Slaugenhaupt S, et al. DNA duplication associated with Charcot-Marie-Tooth disease type 1A. Cell. 1991;66:219-232.

    Article  PubMed  CAS  Google Scholar 

  125. Inoue K, Osaka H, Imaizumi K, et al. Proteolipid protein gene duplications causing Pelizaeus–Merzbacher disease: molecular mechanism and phenotypic manifestations. Ann Neurol. 1999;45:624-632.

    Article  PubMed  CAS  Google Scholar 

  126. Barbacid M. Ras genes. Annu Rev Biochem. 1987;56:779-827.

    Article  PubMed  CAS  Google Scholar 

  127. Barbacid M. Ras oncogenes: their role in neoplasia. Eur J Clin Invest. 1990;20:225-235.

    Article  PubMed  CAS  Google Scholar 

  128. Wittinghofer A, Scheffzek K, Ahmadian MR. The interaction of Ras with GTPase-activating proteins. FEBS Lett. 1997;410:63-67.

    Article  PubMed  CAS  Google Scholar 

  129. Hancock JF. Ras proteins: different signals from different locations. Nat Rev Mol Cell Biol. 2003;4:373-384.

    Article  PubMed  CAS  Google Scholar 

  130. Downward J. Targeting RAS signalling pathways in cancer therapy. Nat Rev Cancer. 2003;3:11-22.

    Article  PubMed  CAS  Google Scholar 

  131. Mills NE, Fishman CL, Rom WN, et al. Increased prevalence of K-ras oncogene mutations in lung adenocarcinoma. Cancer Res. 1995;55:1444-1447.

    PubMed  CAS  Google Scholar 

  132. Slebos RJ, Kibbelaar RE, Dalesio O, et al. K-ras oncogene activation as a prognostic marker in adenocarcinoma of the lung. N Engl J Med. 1990;323:561-565.

    PubMed  CAS  Google Scholar 

  133. Rodenhuis S, Slebos RJ, Boot AJ, et al. Incidence and possible clinical significance of K-ras oncogene activation in adenocarcinoma of the human lung. Cancer Res. 1988;48:5738-5741.

    PubMed  CAS  Google Scholar 

  134. Rodenhuis S, Slebos RJ. Clinical significance of ras oncogene activation in human lung cancer. Cancer Res. 1992;52:2665s-2669s.

    PubMed  CAS  Google Scholar 

  135. Reynolds SH, Anna CK, Brown KC, et al. Activated protooncogenes in human lung tumors from smokers. Proc Natl Acad Sci USA. 1991;88:1085-1089.

    Article  PubMed  CAS  Google Scholar 

  136. Suzuki Y, Orita M, Shiraishi M, et al. Detection of ras gene mutations in human lung cancers by single-strand conformation polymorphism analysis of polymerase chain reaction products. Oncogene. 1990;5:1037-1043.

    PubMed  CAS  Google Scholar 

  137. Li S, Rosell R, Urban A, et al. K-ras gene point mutation: a stable tumor marker in non-small cell lung carcinoma. Lung Cancer. 1994;11:19-27.

    Article  PubMed  CAS  Google Scholar 

  138. Feng Z, Hu W, Chen JX, et al. Preferential DNA damage and poor repair determine ras gene mutational hotspot in human cancer. J Natl Cancer Inst. 2002;94:1527-1536.

    PubMed  CAS  Google Scholar 

  139. Hu W, Feng Z, Tang MS. Preferential carcinogen-DNA adduct formation at codons 12 and 14 in the human K-ras gene and their possible mechanisms. Biochemistry. 2003;42:10012-10023.

    Article  PubMed  CAS  Google Scholar 

  140. Ahrendt SA, Decker PA, Alawi EA, et al. Cigarette smoking is strongly associated with mutation of the K-ras gene in patients with primary adenocarcinoma of the lung. Cancer. 2001;92:1525-1530.

    Article  PubMed  CAS  Google Scholar 

  141. Slebos RJ, Hruban RH, Dalesio O, et al. Relationship between K-ras oncogene activation and smoking in adenocarcinoma of the human lung. J Natl Cancer Inst. 1991;83:1024-1027.

    Article  PubMed  CAS  Google Scholar 

  142. Hollstein M, Sidransky D, Vogelstein B, et al. p53 mutations in human cancers. Science. 1991;253:49-53.

    Article  PubMed  CAS  Google Scholar 

  143. Hollstein M, Shomer B, Greenblatt M, et al. Somatic point mutations in the p53 gene of human tumors and cell lines: updated compilation. Nucleic Acids Res. 1996;24:141-146.

    Article  PubMed  CAS  Google Scholar 

  144. Kastan MB, Onyekwere O, Sidransky D, et al. Participation of p53 protein in the cellular response to DNA damage. Cancer Res. 1991;51:6304-6311.

    PubMed  CAS  Google Scholar 

  145. Gannon JV, Greaves R, Iggo R, et al. Activating mutations in p53 produce a common conformational effect. A monoclonal antibody specific for the mutant form. EMBO J. 1990;9:1595-1602.

    PubMed  CAS  Google Scholar 

  146. Kern SE, Kinzler KW, Baker SJ, et al. Mutant p53 proteins bind DNA abnormally in vitro. Oncogene. 1991;6:131-136.

    PubMed  CAS  Google Scholar 

  147. Kern SE, Kinzler KW, Bruskin A, et al. Identification of p53 as a sequence-specific DNA-binding protein. Science. 1991;252: 1708-1711.

    Article  PubMed  CAS  Google Scholar 

  148. Kern SE, Pietenpol JA, Thiagalingam S, et al. Oncogenic forms of p53 inhibit p53-regulated gene expression. Science. 1992;256:827-830.

    Article  PubMed  CAS  Google Scholar 

  149. Kramer A, Neben K, Ho AD. Centrosome replication, genomic instability and cancer. Leukemia. 2002;16:767-775.

    Article  PubMed  CAS  Google Scholar 

  150. Wahl GM, Linke SP, Paulson TG, et al. Maintaining genetic stability through TP53 mediated checkpoint control. Cancer Surv. 1997;29:183-219.

    PubMed  CAS  Google Scholar 

  151. Olivier M, Eeles R, Hollstein M, et al. The IARC TP53 database: new online mutation analysis and recommendations to users. Hum Mutat. 2002;19:607-614.

    Article  PubMed  CAS  Google Scholar 

  152. Petitjean A, Mathe E, Kato S, et al. Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: lessons from recent developments in the IARC TP53 database. Hum Mutat. 2007;28:622-629.

    Article  PubMed  CAS  Google Scholar 

  153. Hainaut P, Hernandez T, Robinson A, et al. IARC Database of p53 gene mutations in human tumors and cell lines: updated compilation, revised formats and new visualisation tools. Nucleic Acids Res. 1998;26:205-213.

    Article  PubMed  CAS  Google Scholar 

  154. Hainaut P, Soussi T, Shomer B, et al. Database of p53 gene somatic mutations in human tumors and cell lines: updated compilation and future prospects. Nucleic Acids Res. 1997;25:151-157.

    Article  PubMed  CAS  Google Scholar 

  155. Hollstein M, Rice K, Greenblatt MS, et al. Database of p53 gene somatic mutations in human tumors and cell lines. Nucleic Acids Res. 1994;22:3551-3555.

    PubMed  CAS  Google Scholar 

  156. Petitjean A, Achatz MI, Borresen-Dale AL, et al. TP53 mutations in human cancers: functional selection and impact on cancer prognosis and outcomes. Oncogene. 2007;26:2157-2165.

    Article  PubMed  CAS  Google Scholar 

  157. Grisham JW. Molecular genetic alterations in primary hepatocellular neoplasms: Hepatocellular adenoma, hepatocellular carcinoma, and hepatoblastoma. In: Coleman WB, Tsongalis GJ, eds. The Molecular Basis of Human Cancer. Totowa: Humana Press, 2002:269-346.

    Google Scholar 

  158. Hsu IC, Metcalf RA, Sun T, et al. Mutational hotspot in the p53 gene in human hepatocellular carcinomas. Nature. 1991;350: 427-428.

    Article  PubMed  CAS  Google Scholar 

  159. Scorsone KA, Zhou YZ, Butel JS, et al. p53 mutations cluster at codon 249 in hepatitis B virus-positive hepatocellular carcinomas from China. Cancer Res. 1992;52:1635-1638.

    PubMed  CAS  Google Scholar 

  160. Li D, Cao Y, He L, et al. Aberrations of p53 gene in human hepatocellular carcinoma from China. Carcinogenesis. 1993;14:169-173.

    Article  PubMed  CAS  Google Scholar 

  161. Bressac B, Kew M, Wands J, et al. Selective G to T mutations of p53 gene in hepatocellular carcinoma from southern Africa. Nature. 1991;350:429-431.

    Article  PubMed  CAS  Google Scholar 

  162. Ozturk M. p53 mutation in hepatocellular carcinoma after aflatoxin exposure. Lancet. 1991;338:1356-1359.

    Article  PubMed  CAS  Google Scholar 

  163. Soini Y, Chia SC, Bennett WP, et al. An aflatoxin-associated mutational hotspot at codon 249 in the p53 tumor suppressor gene occurs in hepatocellular carcinomas from Mexico. Carcinogenesis. 1996;17:1007-1012.

    Article  PubMed  CAS  Google Scholar 

  164. Puisieux A, Lim S, Groopman J, et al. Selective targeting of p53 gene mutational hotspots in human cancers by etiologically defined carcinogens. Cancer Res. 1991;51:6185-6189.

    PubMed  CAS  Google Scholar 

  165. Oda T, Tsuda H, Scarpa A, et al. p53 gene mutation spectrum in hepatocellular carcinoma. Cancer Res. 1992;52:6358-6364.

    PubMed  CAS  Google Scholar 

  166. Kress S, Jahn UR, Buchmann A, et al. p53 mutations in human hepatocellular carcinomas from Germany. Cancer Res. 1992;52: 3220-3223.

    PubMed  CAS  Google Scholar 

  167. Chiba I, Takahashi T, Nau MM, et al. Mutations in the p53 gene are frequent in primary, resected non-small cell lung cancer. Lung Cancer Study Group. Oncogene. 1990;5:1603-1610.

    PubMed  CAS  Google Scholar 

  168. Curiel DT, Buchhagen DL, Chiba I, et al. A chemical mismatch cleavage method useful for the detection of point mutations in the p53 gene in lung cancer. Am J Respir Cell Mol Biol. 1990;3: 405-411.

    PubMed  CAS  Google Scholar 

  169. D’Amico D, Carbone D, Mitsudomi T, et al. High frequency of somatically acquired p53 mutations in small-cell lung cancer cell lines and tumors. Oncogene. 1992;7:339-346.

    PubMed  Google Scholar 

  170. Robles AI, Linke SP, Harris CC. The p53 network in lung carcinogenesis. Oncogene. 2002;21:6898-6907.

    Article  PubMed  CAS  Google Scholar 

  171. Greenblatt MS, Bennett WP, Hollstein M, et al. Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res. 1994;54:4855-4878.

    PubMed  CAS  Google Scholar 

  172. Denissenko MF, Pao A, Tang M, et al. Preferential formation of benzo[a]pyrene adducts at lung cancer mutational hotspots in P53. Science. 1996;274:430-432.

    Article  PubMed  CAS  Google Scholar 

  173. Woo SL, Lidsky AS, Guttler F, et al. Cloned human phenylalanine hydroxylase gene allows prenatal diagnosis and carrier detection of classical phenylketonuria. Nature. 1983;306:151-155.

    Article  PubMed  CAS  Google Scholar 

  174. Kwok SC, Ledley FD, DiLella AG, et al. Nucleotide sequence of a full-length complementary DNA clone and amino acid sequence of human phenylalanine hydroxylase. Biochemistry. 1985;24:556-561.

    Article  PubMed  CAS  Google Scholar 

  175. Wang Y, DeMayo JL, Hahn TM, et al. Tissue- and development-specific expression of the human phenylalanine hydroxylase/chloramphenicol acetyltransferase fusion gene in transgenic mice. J Biol Chem. 1992;267:15105-15110.

    PubMed  CAS  Google Scholar 

  176. Scriver CR. The PAH gene, phenylketonuria, and a paradigm shift. Hum Mutat. 2007;28:831-845.

    Article  PubMed  CAS  Google Scholar 

  177. DiLella AG, Kwok SC, Ledley FD, et al. Molecular structure and polymorphic map of the human phenylalanine hydroxylase gene. Biochemistry. 1986;25:743-749.

    Article  PubMed  CAS  Google Scholar 

  178. Konecki DS, Wang Y, Trefz FK, et al. Structural characterization of the 5′ regions of the human phenylalanine hydroxylase gene. Biochemistry. 1992;31:8363-8368.

    Article  PubMed  CAS  Google Scholar 

  179. Farrell PM, Rosenstein BJ, White TB, et al. Guidelines for diagnosis of cystic fibrosis in newborns through older adults: Cystic Fibrosis Foundation consensus report. J Pediatr. 2008;153:S4-S14.

    Article  PubMed  Google Scholar 

  180. Davis PB. Cystic fibrosis: new perceptions, new strategies. Hosp Pract (Off Ed). 1992;27:79-83, 87-78, 93-74 passim.

    CAS  Google Scholar 

  181. Davies JC, Alton EW, Bush A. Cystic fibrosis. BMJ. 2007;335:1255-1259.

    Article  PubMed  Google Scholar 

  182. Riordan JR, Rommens JM, Kerem B, et al. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science. 1989;245:1066-1073.

    Article  PubMed  CAS  Google Scholar 

  183. Gadsby DC, Vergani P, Csanady L. The ABC protein turned chloride channel whose failure causes cystic fibrosis. Nature. 2006;440:477-483.

    Article  PubMed  CAS  Google Scholar 

  184. Rosenstein BJ, Cutting GR. The diagnosis of cystic fibrosis: a consensus statement. Cystic Fibrosis Foundation Consensus Panel. J Pediatr. 1998;132:589-595.

    Article  PubMed  CAS  Google Scholar 

  185. Zielenski J, Tsui LC. Cystic fibrosis: genotypic and phenotypic variations. Annu Rev Genet. 1995;29:777-807.

    Article  PubMed  CAS  Google Scholar 

  186. Mickle JE, Cutting GR. Genotype-phenotype relationships in cystic fibrosis. Med Clin North Am. 2000;84:597-607.

    Article  PubMed  CAS  Google Scholar 

  187. Zielenski J. Genotype and phenotype in cystic fibrosis. Respiration. 2000;67:117-133.

    Article  PubMed  CAS  Google Scholar 

  188. Quinton PM. Chloride impermeability in cystic fibrosis. Nature. 1983;301:421-422.

    Article  PubMed  CAS  Google Scholar 

  189. Du K, Sharma M, Lukacs GL. The DeltaF508 cystic fibrosis mutation impairs domain–domain interactions and arrests post-translational folding of CFTR. Nat Struct Mol Biol. 2005;12:17-25.

    Article  PubMed  CAS  Google Scholar 

  190. Tomashefski JF Jr, Crystal RG, Wiedemann HP, et al. The bronchopulmonary pathology of alpha-1 antitrypsin (AAT) deficiency: findings of the Death Review Committee of the national registry for individuals with Severe Deficiency of Alpha-1 Antitrypsin. Hum Pathol. 2004;35:1452-1461.

    Article  PubMed  CAS  Google Scholar 

  191. Lieberman J, Winter B, Sastre A. Alpha 1-antitrypsin Pi-types in 965 COPD patients. Chest. 1986;89:370-373.

    Article  PubMed  CAS  Google Scholar 

  192. Stoller JK, Aboussouan LS. Alpha 1-antitrypsin deficiency. Lancet. 2005;365:2225-2236.

    Article  PubMed  CAS  Google Scholar 

  193. Lomas DA, Mahadeva R. Alpha 1-antitrypsin polymerization and the serpinopathies: pathobiology and prospects for therapy. J Clin Invest. 2002;110:1585-1590.

    PubMed  CAS  Google Scholar 

  194. DeMeo DL, Silverman EK. Alpha 1-antitrypsin deficiency. 2: Genetic aspects of alpha(1)-antitrypsin deficiency: phenotypes and genetic modifiers of emphysema risk. Thorax. 2004;59:259-264.

    Article  PubMed  CAS  Google Scholar 

  195. Lomas DA, Evans DL, Finch JT, et al. The mechanism of Z alpha 1-antitrypsin accumulation in the liver. Nature. 1992;357:605-607.

    Article  PubMed  CAS  Google Scholar 

  196. Ogushi F, Fells GA, Hubbard RC, et al. Z-type alpha 1-antitrypsin is less competent than M1-type alpha 1-antitrypsin as an inhibitor of neutrophil elastase. J Clin Invest. 1987;80:1366-1374.

    Article  PubMed  CAS  Google Scholar 

  197. Herman JG, Baylin SB. Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med. 2003;349:2042-2054.

    Article  PubMed  CAS  Google Scholar 

  198. Baylin S. DNA methylation and epigenetic mechanisms of carcinogenesis. Dev Biol. 2001;106:85-87.

    CAS  Google Scholar 

  199. Baylin SB, Herman JG, Graff JR, et al. Alterations in DNA methylation: a fundamental aspect of neoplasia. Adv Cancer Res. 1998;72:141-196.

    Article  PubMed  CAS  Google Scholar 

  200. Momparler RL. Cancer epigenetics. Oncogene. 2003;22:6479-6483.

    Article  PubMed  CAS  Google Scholar 

  201. Jones PA, Laird PW. Cancer epigenetics comes of age. Nat Genet. 1999;21:163-167.

    Article  PubMed  CAS  Google Scholar 

  202. Tsou JA, Hagen JA, Carpenter CL, et al. DNA methylation analysis: a powerful new tool for lung cancer diagnosis. Oncogene. 2002;21:5450-5461.

    Article  PubMed  CAS  Google Scholar 

  203. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100:57-70.

    Article  PubMed  CAS  Google Scholar 

  204. Baylin SB, Ohm JE. Epigenetic gene silencing in cancer: a mechanism for early oncogenic pathway addiction. Nat Rev Cancer. 2006;6:107-116.

    Article  PubMed  CAS  Google Scholar 

  205. Toyooka S, Toyooka KO, Maruyama R, et al. DNA methylation profiles of lung tumors. Mol Cancer Ther. 2001;1:61-67.

    PubMed  CAS  Google Scholar 

  206. Tanaka R, Wang D, Morishita Y, et al. Loss of function of p16 gene and prognosis of pulmonary adenocarcinoma. Cancer. 2005;103:608-615.

    Article  PubMed  CAS  Google Scholar 

  207. Shapiro GI, Park JE, Edwards CD, et al. Multiple mechanisms of p16INK4A inactivation in non-small cell lung cancer cell lines. Cancer Res. 1995;55:6200-6209.

    PubMed  CAS  Google Scholar 

  208. Sanchez-Cespedes M, Decker PA, Doffek KM, et al. Increased loss of chromosome 9p21 but not p16 inactivation in primary non-small cell lung cancer from smokers. Cancer Res. 2001;61:2092-2096.

    PubMed  CAS  Google Scholar 

  209. Liu Y, Lan Q, Siegfried JM, et al. Aberrant promoter methylation of p16 and MGMT genes in lung tumors from smoking and never-smoking lung cancer patients. Neoplasia. 2006;8:46-51.

    Article  PubMed  CAS  Google Scholar 

  210. Tsou JA, Shen LY, Siegmund KD, et al. Distinct DNA methylation profiles in malignant mesothelioma, lung adenocarcinoma, and non-tumor lung. Lung Cancer. 2005;47:193-204.

    Article  PubMed  Google Scholar 

  211. Zhu WG, Srinivasan K, Dai Z, et al. Methylation of adjacent CpG sites affects Sp1/Sp3 binding and activity in the p21(Cip1) promoter. Mol Cell Biol. 2003;23:4056-4065.

    Article  PubMed  CAS  Google Scholar 

  212. Soria JC, Rodriguez M, Liu DD, et al. Aberrant promoter methylation of multiple genes in bronchial brush samples from former cigarette smokers. Cancer Res. 2002;62:351-355.

    PubMed  CAS  Google Scholar 

  213. Lai JC, Cheng YW, Chiou HL, et al. Gender difference in estrogen receptor alpha promoter hypermethylation and its prognostic value in non-small cell lung cancer. Int J Cancer. 2005;117:974-980.

    Article  PubMed  CAS  Google Scholar 

  214. Chen Y, Huhn D, Knosel T, et al. Downregulation of connexin 26 in human lung cancer is related to promoter methylation. Int J Cancer. 2005;113:14-21.

    Article  PubMed  CAS  Google Scholar 

  215. Wistuba II, Gazdar AF, Minna JD. Molecular genetics of small cell lung carcinoma. Semin Oncol. 2001;28:3-13.

    Article  PubMed  CAS  Google Scholar 

  216. Miyamoto K, Asada K, Fukutomi T, et al. Methylation-associated silencing of heparan sulfate d-glucosaminyl 3-O-sulfotransferase-2 (3-OST-2) in human breast, colon, lung and pancreatic cancers. Oncogene. 2003;22:274-280.

    Article  PubMed  CAS  Google Scholar 

  217. Du Y, Carling T, Fang W, et al. Hypermethylation in human cancers of the RIZ1 tumor suppressor gene, a member of a histone/protein methyltransferase superfamily. Cancer Res. 2001;61:8094-8099.

    PubMed  CAS  Google Scholar 

  218. Xu XL, Wu LC, Du F, et al. Inactivation of human SRBC, located within the 11p15.5-p15.4 tumor suppressor region, in breast and lung cancers. Cancer Res. 2001;61:7943-7949.

    PubMed  CAS  Google Scholar 

  219. Dammann R, Takahashi T, Pfeifer GP. The CpG island of the novel tumor suppressor gene RASSF1A is intensely methylated in primary small cell lung carcinomas. Oncogene. 2001;20:3563-3567.

    Article  PubMed  CAS  Google Scholar 

  220. Osada H, Tatematsu Y, Yatabe Y, et al. Frequent and histological type-specific inactivation of 14-3-3sigma in human lung cancers. Oncogene. 2002;21:2418-2424.

    Article  PubMed  CAS  Google Scholar 

  221. Fukasawa M, Kimura M, Morita S, et al. Microarray analysis of promoter methylation in lung cancers. J Hum Genet. 2006;51:368-374.

    Article  PubMed  CAS  Google Scholar 

  222. Bai AH, Tong JH, To KF, et al. Promoter hypermethylation of tumor-related genes in the progression of colorectal neoplasia. Int J Cancer. 2004;112:846-853.

    Article  PubMed  CAS  Google Scholar 

  223. Petko Z, Ghiassi M, Shuber A, et al. Aberrantly methylated CDKN2A, MGMT, and MLH1 in colon polyps and in fecal DNA from patients with colorectal polyps. Clin Cancer Res. 2005;11:1203-1209.

    PubMed  CAS  Google Scholar 

  224. Sharma G, Mirza S, Prasad CP, et al. Promoter hypermethylation of p16(INK4A), p14(ARF), CyclinD2 and Slit2 in serum and tumor DNA from breast cancer patients. Life Sci. 2007;80:1873-1881.

    Article  PubMed  CAS  Google Scholar 

  225. Krassenstein R, Sauter E, Dulaimi E, et al. Detection of breast cancer in nipple aspirate fluid by CpG island hypermethylation. Clin Cancer Res. 2004;10:28-32.

    Article  PubMed  CAS  Google Scholar 

  226. Perry AS, Foley R, Woodson K, et al. The emerging roles of DNA methylation in the clinical management of prostate cancer. Endocr Relat Cancer. 2006;13:357-377.

    Article  PubMed  CAS  Google Scholar 

  227. Hoque MO, Topaloglu O, Begum S, et al. Quantitative methylation-specific polymerase chain reaction gene patterns in urine sediment distinguish prostate cancer patients from control subjects. J Clin Oncol. 2005;23:6569-6575.

    Article  PubMed  CAS  Google Scholar 

  228. Ha PK, Califano JA. Promoter methylation and inactivation of tumour-suppressor genes in oral squamous-cell carcinoma. Lancet Oncol. 2006;7:77-82.

    Article  PubMed  CAS  Google Scholar 

  229. Duenas-Gonzalez A, Lizano M, Candelaria M, et al. Epigenetics of cervical cancer. An overview and therapeutic perspectives. Mol Cancer. 2005;4:38.

    Article  PubMed  CAS  Google Scholar 

  230. Balch C, Huang TH, Brown R, et al. The epigenetics of ovarian cancer drug resistance and resensitization. Am J Obstet Gynecol. 2004;191:1552-1572.

    Article  PubMed  CAS  Google Scholar 

  231. van Doorn R, Gruis NA, Willemze R, et al. Aberrant DNA methylation in cutaneous malignancies. Semin Oncol. 2005;32:479-487.

    Article  PubMed  CAS  Google Scholar 

  232. Kuroki T, Tajima Y, Kanematsu T. Role of hypermethylation on carcinogenesis in the pancreas. Surg Today. 2004;34:981-986.

    Article  PubMed  CAS  Google Scholar 

  233. Debinski W, Gibo D, Mintz A. Epigenetics in high-grade astrocytomas: opportunities for prevention and detection of brain tumors. Ann N Y Acad Sci. 2003;983:232-242.

    Article  PubMed  CAS  Google Scholar 

  234. Claus R, Almstedt M, Lubbert M. Epigenetic treatment of hematopoietic malignancies: in vivo targets of demethylating agents. Semin Oncol. 2005;32:511-520.

    Article  PubMed  CAS  Google Scholar 

  235. Kay PH, Spagnolo DV, Taylor J, et al. DNA methylation and developmental genes in lymphomagenesis – more questions than answers? Leuk Lymphoma. 1997;24:211-220.

    PubMed  CAS  Google Scholar 

  236. Chou JL, Rozmahel R, Tsui LC. Characterization of the promoter region of the cystic fibrosis transmembrane conductance regulator gene. J Biol Chem. 1991;266:24471-24476.

    PubMed  CAS  Google Scholar 

  237. Yoshimura K, Nakamura H, Trapnell BC, et al. The cystic fibrosis gene has a “housekeeping”-type promoter and is expressed at low levels in cells of epithelial origin. J Biol Chem. 1991;266:9140-9144.

    PubMed  CAS  Google Scholar 

  238. Denamur E, Chehab FF. Methylation status of CpG sites in the mouse and human CFTR promoters. DNA Cell Biol. 1995;14:811-815.

    Article  PubMed  CAS  Google Scholar 

  239. Koh J, Sferra TJ, Collins FS. Characterization of the cystic fibrosis transmembrane conductance regulator promoter region. Chromatin context and tissue-specificity. J Biol Chem. 1993;268:15912-15921.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Rivenbark, A.G., Coleman, W.B. (2009). The Role of Mutation and Epimutation in the Development of Human Disease. In: Allen, T., Cagle, P.T. (eds) Basic Concepts of Molecular Pathology. Molecular Pathology Library, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-89626-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-89626-7_5

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-89625-0

  • Online ISBN: 978-0-387-89626-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics