Skip to main content

MicroRNAs in Stem Cells and Cancer Stem Cells

  • Chapter
  • First Online:
Stem Cells and Cancer

Abstract

MicroRNAs (miRNAs) have been shown to play a role in the development, cell division, proliferation, maintenance, and differentiation of stem cells (embryonic and adult) and in tumorigenesis, cancer cell migration, and metastasis, and this list continues to grow. In this chapter, we review various aspects of miRNA biology, including its biogenesis and miRNA–protein complexes. We will look at the recent development into the mechanism of its functions and the role of miRNA in stem cells and various cancers. We discuss some of the open questions in the field and the prospect of a potential role of miRNAs in cancer or tumor-initiating stem cells. We also comment on budding but promising therapeutic application of miRNAs in pathological scenario. Understanding this layer of regulation by miRNA will uncover many interesting avenues in future in learning the biology of life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akao, Y., Nakagawa, Y., and Naoe, T. (2006). let-7 microRNA functions as a potential growth suppressor in human colon cancer cells. Biological & Pharmaceutical Bulletin 29, 903–906.

    CAS  Google Scholar 

  • Ashraf, S.I., McLoon, A.L., Sclarsic, S.M., and Kunes, S. (2006). Synaptic protein synthesis associated with memory is regulated by the RISC pathway in Drosophila. Cell 24, 191–205.

    Google Scholar 

  • Ballas, N., Grunseich, C., Lu, D.D., Speh, J.C., and Mandel, G. (2005). REST and its corepressors mediate plasticity of neuronal gene chromatin throughout neurogenesis. Cell 121, 645–657.

    PubMed  CAS  Google Scholar 

  • Bao, S., Wu, Q., McLendon, R.E., Hao, Y., Shi, Q., Hjelmeland, A.B., Dewhirst, M.W., Bigner, D.D., and Rich, J.N. (2006a). Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444, 756–760.

    PubMed  CAS  Google Scholar 

  • Bao, S., Wu, Q., Sathornsumetee, S., Hao, Y., Li, Z., Hjelmeland, A.B., Shi, Q., McLendon, R.E., Bigner, D.D., and Rich, J.N. (2006b). Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Research 66, 7843–7848.

    PubMed  CAS  Google Scholar 

  • Behm-Ansmant, I., Rehwinkel, J., Doerks, T., Stark, A., Bork, P., and Izaurralde, E. (2006). mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes. Genes & Development 20, 1885–1898.

    CAS  Google Scholar 

  • Bernstein, E., Caudy, A.A., Hammond, S.M., and Hannon, G.J. (2001). Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409, 363–366.

    PubMed  CAS  Google Scholar 

  • Bernstein, E., Kim, S.Y., Carmell, M.A., Murchison, E.P., Alcorn, H., Li, M.Z., Mills, A.A., Elledge, S.J., Anderson, K.V., and Hannon, G.J. (2003). Dicer is essential for mouse development. Nature Genetics 35, 215–217.

    PubMed  CAS  Google Scholar 

  • Bhattacharyya, S.N., Habermacher, R., Martine, U., Closs, E.I., and Filipowicz, W. (2006). Relief of microRNA-mediated translational repression in human cells subjected to stress. Cell 125, 1111–1124.

    PubMed  CAS  Google Scholar 

  • Bohnsack, M.T., Czaplinski, K., and Gorlich, D. (2004). Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA 10, 185–191.

    PubMed  CAS  Google Scholar 

  • Bommer, G.T., Gerin, I., Feng, Y., Kaczorowski, A.J., Kuick, R., Love, R.E., Zhai, Y., Giordano, T.J., Qin, Z.S., Moore, B.B. , et al. (2007). p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Current Biology 17, 1298–1307.

    PubMed  CAS  Google Scholar 

  • Boyer, L.A., Lee, T.I., Cole, M.F., Johnstone, S.E., Levine, S.S., Zucker, J.P., Guenther, M.G., Kumar, R.M., Murray, H.L., Jenner, R.G. , et al. (2005). Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122, 947–956.

    PubMed  CAS  Google Scholar 

  • Boyer, L.A., Plath, K., Zeitlinger, J., Brambrink, T., Medeiros, L.A., Lee, T.I., Levine, S.S., Wernig, M., Tajonar, A., Ray, M.K., et al. (2006). Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 441, 349–353.

    PubMed  CAS  Google Scholar 

  • Brennecke, J., Stark, A., Russell, R.B., and Cohen, S.M. (2005). Principles of microRNA-target recognition. PLoS Biology 3, e85.

    PubMed  Google Scholar 

  • Buck, M.J., and Lieb, J.D. (2006). A chromatin-mediated mechanism for specification of conditional transcription factor targets. Nature Genetics 38, 1446–1451.

    PubMed  CAS  Google Scholar 

  • Buckley, N.J., Johnson, R., Sun, Y., and Stanton, L.W. (2009). Is REST a regulator of pluripotency? Nature DOI 10.1038/Nature07784.

    Google Scholar 

  • Cai, X., Hagedorn, C.H., and Cullen, B.R. (2004). Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA 10, 1957–1966.

    PubMed  CAS  Google Scholar 

  • Calin, G.A., and Croce, C.M. (2006). MicroRNA signatures in human cancers. Nature Reviews 6, 857–866.

    PubMed  CAS  Google Scholar 

  • Calin, G.A., Dumitru, C.D., Shimizu, M., Bichi, R., Zupo, S., Noch, E., Aldler, H., Rattan, S., Keating, M., Rai, K., et al. (2002). Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proceedings of the National Academy of Sciences of the United States of America 99, 15524–15529.

    PubMed  CAS  Google Scholar 

  • Calin, G.A., Ferracin, M., Cimmino, A., Di Leva, G., Shimizu, M., Wojcik, S.E., Iorio, M.V., Visone, R., Sever, N.I., Fabbri, M., et al. (2005). A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. The New England Journal of Medicine 353, 1793–1801.

    PubMed  CAS  Google Scholar 

  • Calin, G.A., Sevignani, C., Dumitru, C.D., Hyslop, T., Noch, E., Yendamuri, S., Shimizu, M., Rattan, S., Bullrich, F., Negrini, M., et al. (2004). Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proceedings of the National Academy of Sciences of the United States of America 101, 2999–3004.

    PubMed  CAS  Google Scholar 

  • Carmell, M.A., Xuan, Z., Zhang, M.Q., and Hannon, G.J. (2002). The Argonaute family: tentacles that reach into RNAi, developmental control, stem cell maintenance, and tumorigenesis. Genes & Development 16, 2733–2742.

    CAS  Google Scholar 

  • Chan, J.A., Krichevsky, A.M., and Kosik, K.S. (2005). MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Research 65, 6029–6033.

    PubMed  CAS  Google Scholar 

  • Chang, T.C., Wentzel, E.A., Kent, O.A., Ramachandran, K., Mullendore, M., Lee, K.H., Feldmann, G., Yamakuchi, M., Ferlito, M., Lowenstein, C.J., et al. (2007). Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Molecular Cell 26, 745–752.

    PubMed  CAS  Google Scholar 

  • Chen, C.Z. (2005). MicroRNAs as oncogenes and tumor suppressors. The New England Journal of Medicine 353, 1768–1771.

    PubMed  CAS  Google Scholar 

  • Chen, J.F., Murchison, E.P., Tang, R., Callis, T.E., Tatsuguchi, M., Deng, Z., Rojas, M., Hammond, S.M., Schneider, M.D., Selzman, C.H., et al. (2008). Targeted deletion of Dicer in the heart leads to dilated cardiomyopathy and heart failure. Proceedings of the National Academy of Sciences of the United States of America 105, 2111–2116.

    PubMed  CAS  Google Scholar 

  • Chendrimada, T.P., Finn, K.J., Ji, X., Baillat, D., Gregory, R.I., Liebhaber, S.A., Pasquinelli, A.E., and Shiekhattar, R. (2007). MicroRNA silencing through RISC recruitment of eIF6. Nature 447, 823–828.

    PubMed  CAS  Google Scholar 

  • Cheng, A.M., Byrom, M.W., Shelton, J., and Ford, L.P. (2005a). Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Research 33, 1290–1297.

    PubMed  CAS  Google Scholar 

  • Cheng, L.C., Tavazoie, M., and Doetsch, F. (2005b). Stem cells: from epigenetics to microRNAs. Neuron 46, 363–367.

    PubMed  CAS  Google Scholar 

  • Cillo, C., Faiella, A., Cantile, M., and Boncinelli, E. (1999). Homeobox genes and cancer. Experimental Cell Research 248, 1–9.

    PubMed  CAS  Google Scholar 

  • Cimmino, A., Calin, G.A., Fabbri, M., Iorio, M.V., Ferracin, M., Shimizu, M., Wojcik, S.E., Aqeilan, R.I., Zupo, S., Dono, M., et al. (2005). miR-15 and miR-16 induce apoptosis by targeting BCL2. Proceedings of the National Academy of Sciences of the United States of America 102, 13944–13949.

    PubMed  CAS  Google Scholar 

  • Cole, M.F., Johnstone, S.E., Newman, J.J., Kagey, M.H., and Young, R.A. (2008). Tcf3 is an integral component of the core regulatory circuitry of embryonic stem cells. Genes & Development 22, 746–755.

    CAS  Google Scholar 

  • Corsten, M.F., Miranda, R., Kasmieh, R., Krichevsky, A.M., Weissleder, R., and Shah, K. (2007). MicroRNA-21 knockdown disrupts glioma growth in vivo and displays synergistic cytotoxicity with neural precursor cell delivered S-TRAIL in human gliomas. Cancer Research 67, 8994–9000.

    PubMed  CAS  Google Scholar 

  • Costinean, S., Zanesi, N., Pekarsky, Y., Tili, E., Volinia, S., Heerema, N., and Croce, C.M. (2006). Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in E(mu)-miR155 transgenic mice. Proceedings of the National Academy of Sciences of the United States of America 103, 7024–7029.

    PubMed  CAS  Google Scholar 

  • Covello, K.L., Kehler, J., Yu, H., Gordan, J.D., Arsham, A.M., Hu, C.J., Labosky, P.A., Simon, M.C., and Keith, B. (2006). HIF-2alpha regulates Oct-4: effects of hypoxia on stem cell function, embryonic development, and tumor growth. Genes & Development 20, 557–570.

    CAS  Google Scholar 

  • Cowland, J.B., Hother, C., and Gronbaek, K. (2007). MicroRNAs and cancer. Apmis 115, 1090–1106.

    PubMed  CAS  Google Scholar 

  • Crick, F. (1970). Central dogma of molecular biology. Nature 227, 561–563.

    PubMed  CAS  Google Scholar 

  • Damiani, D., Alexander, J.J., O'Rourke, J.R., McManus, M., Jadhav, A.P., Cepko, C.L., Hauswirth, W.W., Harfe, B.D., and Strettoi, E. (2008). Dicer inactivation leads to progressive functional and structural degeneration of the mouse retina. Journal of Neuroscience 28, 4878–4887.

    PubMed  CAS  Google Scholar 

  • Davis, T.H., Cuellar, T.L., Koch, S.M., Barker, A.J., Harfe, B.D., McManus, M.T., and Ullian, E.M. (2008). Conditional loss of Dicer disrupts cellular and tissue morphogenesis in the cortex and hippocampus. Journal of Neuroscience 28, 4322–4330.

    PubMed  CAS  Google Scholar 

  • Dews, M., Homayouni, A., Yu, D., Murphy, D., Sevignani, C., Wentzel, E., Furth, E.E., Lee, W.M., Enders, G.H., Mendell, J.T., et al. (2006). Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nature Genetics 38, 1060–1065.

    PubMed  CAS  Google Scholar 

  • Doench, J.G., and Sharp, P.A. (2004). Specificity of microRNA target selection in translational repression. Genes & Development 18, 504–511.

    CAS  Google Scholar 

  • Eulalio, A., Behm-Ansmant, I., and Izaurralde, E. (2007a). P bodies: at the crossroads of post-transcriptional pathways. Nature Reviews 8, 9–22.

    PubMed  CAS  Google Scholar 

  • Eulalio, A., Rehwinkel, J., Stricker, M., Huntzinger, E., Yang, S.F., Doerks, T., Dorner, S., Bork, P., Boutros, M., and Izaurralde, E. (2007b). Target-specific requirements for enhancers of decapping in miRNA-mediated gene silencing. Genes & Development 21, 2558–2570.

    CAS  Google Scholar 

  • Felli, N., Fontana, L., Pelosi, E., Botta, R., Bonci, D., Facchiano, F., Liuzzi, F., Lulli, V., Morsilli, O., Santoro, S., et al. (2005). MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation. Proceedings of the National Academy of Sciences of the United States of America 102, 18081–18086.

    PubMed  CAS  Google Scholar 

  • Filipowicz, W., Bhattacharyya, S.N., and Sonenberg, N. (2008). Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nature Reviews Genetics 9, 102–114.

    PubMed  CAS  Google Scholar 

  • Forstemann, K., Tomari, Y., Du, T., Vagin, V.V., Denli, A.M., Bratu, D.P., Klattenhoff, C., Theurkauf, W.E., and Zamore, P.D. (2005). Normal microRNA maturation and germ-line stem cell maintenance requires Loquacious, a double-stranded RNA-binding domain protein. PLoS Biology 3, e236.

    PubMed  Google Scholar 

  • Galardi, S., Mercatelli, N., Giorda, E., Massalini, S., Frajese, G.V., Ciafre, S.A., and Farace, M.G. (2007). miR-221 and miR-222 expression affects the proliferation potential of human prostate carcinoma cell lines by targeting p27Kip1. The Journal of Biological Chemistry 282, 23716–23724.

    PubMed  CAS  Google Scholar 

  • Garofalo, M., Quintavalle, C., Di Leva, G., Zanca, C., Romano, G., Taccioli, C., Liu, C.G., Croce, C.M., and Condorelli, G. (2008). MicroRNA signatures of TRAIL resistance in human non-small cell lung cancer. Oncogene 27, 3845–3855.

    PubMed  CAS  Google Scholar 

  • Gaur, A., Jewell, D.A., Liang, Y., Ridzon, D., Moore, J.H., Chen, C., Ambros, V.R., and Israel, M.A. (2007). Characterization of microRNA expression levels and their biological correlates in human cancer cell lines. Cancer Research 67, 2456–2468.

    PubMed  CAS  Google Scholar 

  • Gilbertson, R.J., and Rich, J.N. (2007). Making a tumour's bed: glioblastoma stem cells and the vascular niche. Nature Reviews Cancer 7, 733–736.

    PubMed  CAS  Google Scholar 

  • Gironella, M., Seux, M., Xie, M.J., Cano, C., Tomasini, R., Gommeaux, J., Garcia, S., Nowak, J., Yeung, M.L., Jeang, K.T., et al. (2007). Tumor protein 53-induced nuclear protein 1 expression is repressed by miR-155, and its restoration inhibits pancreatic tumor development. Proceedings of the National Academy of Sciences of the United States of America 104, 16170–16175.

    PubMed  CAS  Google Scholar 

  • Greshock, J., Naylor, T.L., Margolin, A., Diskin, S., Cleaver, S.H., Futreal, P.A., deJong, P.J., Zhao, S., Liebman, M., and Weber, B.L. (2004). 1-Mb resolution array-based comparative genomic hybridization using a BAC clone set optimized for cancer gene analysis. Genome Research 14, 179–187.

    PubMed  CAS  Google Scholar 

  • Grimson, A., Farh, K.K., Johnston, W.K., Garrett-Engele, P., Lim, L.P., and Bartel, D.P. (2007). MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Molecular Cel 127, 91–105.

    CAS  Google Scholar 

  • Gumireddy, K., Young, D.D., Xiong, X., Hogenesch, J.B., Huang, Q., and Deiters, A. (2008). Small-Molecule Inhibitors of MicroRNA miR-21 Function. Angewandte Chemie International Edition 47(39), 7482–7484.

    Google Scholar 

  • Hatfield, S.D., Shcherbata, H.R., Fischer, K.A., Nakahara, K., Carthew, R.W., and Ruohola-Baker, H. (2005). Stem cell division is regulated by the microRNA pathway. Nature 435, 974–978.

    PubMed  CAS  Google Scholar 

  • Hayashi, K., Chuva de Sousa Lopes, S.M., Kaneda, M., Tang, F., Hajkova, P., Lao, K., O'Carroll, D., Das, P.P., Tarakhovsky, A., Miska, E.A., et al. (2008). MicroRNA biogenesis is required for mouse primordial germ cell development and spermatogenesis. PLoS ONE 3, e1738.

    PubMed  Google Scholar 

  • Hayashita, Y., Osada, H., Tatematsu, Y., Yamada, H., Yanagisawa, K., Tomida, S., Yatabe, Y., Kawahara, K., Sekido, Y., and Takahashi, T. (2005). A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Research 65, 9628–9632.

    PubMed  CAS  Google Scholar 

  • He, L., Thomson, J.M., Hemann, M.T., Hernando-Monge, E., Mu, D., Goodson, S., Powers, S., Cordon-Cardo, C., Lowe, S.W., Hannon, G.J., et al. (2005). A microRNA polycistron as a potential human oncogene. Nature 435, 828–833.

    PubMed  CAS  Google Scholar 

  • Hobert, O. (2008). Gene regulation by transcription factors and microRNAs. Science 319, 1785–1786.

    PubMed  CAS  Google Scholar 

  • Hossain, A., Kuo, M.T., and Saunders, G.F. (2006). Mir-17-5p regulates breast cancer cell proliferation by inhibiting translation of AIB1 mRNA. Molecular and Cellular Biology 26, 8191–8201.

    PubMed  CAS  Google Scholar 

  • Houbaviy, H.B., Murray, M.F., and Sharp, P.A. (2003). Embryonic stem cell-specific MicroRNAs. Developmental Cell 5, 351–358.

    PubMed  CAS  Google Scholar 

  • Huang, J., Liang, Z., Yang, B., Tian, H., Ma, J., and Zhang, H. (2007). Derepression of microRNA-mediated protein translation inhibition by apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3G (APOBEC3G) and its family members. The Journal of Biological Chemistry 282, 33632–33640.

    PubMed  CAS  Google Scholar 

  • Humphreys, D.T., Westman, B.J., Martin, D.I., and Preiss, T. (2005). MicroRNAs control translation initiation by inhibiting eukaryotic initiation factor 4E/cap and poly(A) tail function. Proceedings of the National Academy of Sciences of the United States of America 102, 16961–16966.

    PubMed  CAS  Google Scholar 

  • Hutvagner, G., and Zamore, P.D. (2002). A microRNA in a multiple-turnover RNAi enzyme complex. Science 297, 2056–2060.

    PubMed  CAS  Google Scholar 

  • Hwang, H.W., and Mendell, J.T. (2006). MicroRNAs in cell proliferation, cell death, and tumorigenesis. British Journal of Cancer 94, 776–780.

    PubMed  CAS  Google Scholar 

  • Iorio, M.V., Ferracin, M., Liu, C.G., Veronese, A., Spizzo, R., Sabbioni, S., Magri, E., Pedriali, M., Fabbri, M., Campiglio, M., et al. (2005). MicroRNA gene expression deregulation in human breast cancer. Cancer Research 65, 7065–7070.

    PubMed  CAS  Google Scholar 

  • Jacob, F., and Monod, J. (1961). Genetic regulatory mechanisms in the synthesis of proteins. Journal of Molecular Biology 3, 318–356.

    PubMed  CAS  Google Scholar 

  • Johnson, C.D., Esquela-Kerscher, A., Stefani, G., Byrom, M., Kelnar, K., Ovcharenko, D., Wilson, M., Wang, X., Shelton, J., Shingara, J., et al. (2007). The let-7 microRNA represses cell proliferation pathways in human cells. Cancer Research 67, 7713–7722.

    PubMed  CAS  Google Scholar 

  • Johnson, S.M., Grosshans, H., Shingara, J., Byrom, M., Jarvis, R., Cheng, A., Labourier, E., Reinert, K.L., Brown, D., and Slack, F.J. (2005). RAS is regulated by the let-7 microRNA family. Cell 120, 635–647.

    PubMed  CAS  Google Scholar 

  • Johnston, R.J., Jr., Chang, S., Etchberger, J.F., Ortiz, C.O., and Hobert, O. (2005). MicroRNAs acting in a double-negative feedback loop to control a neuronal cell fate decision. Proceedings of the National Academy of Sciences of the United States of America 102, 12449–12454.

    PubMed  CAS  Google Scholar 

  • Jorgenson, H.F., Chen, Z.F., Merkenschlager, M., and Fisher, A.G. (2009). Is REST required for ES cell pluripotency? Nature DOI 10.1038/Nature07783.

    Google Scholar 

  • Kanellopoulou, C., Muljo, S.A., Kung, A.L., Ganesan, S., Drapkin, R., Jenuwein, T., Livingston, D.M., and Rajewsky, K. (2005). Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes & Development 19, 489–501.

    CAS  Google Scholar 

  • Karube, Y., Tanaka, H., Osada, H., Tomida, S., Tatematsu, Y., Yanagisawa, K., Yatabe, Y., Takamizawa, J., Miyoshi, S., Mitsudomi, T., et al. (2005). Reduced expression of Dicer associated with poor prognosis in lung cancer patients. Cancer Science 96, 111–115.

    PubMed  CAS  Google Scholar 

  • Kawahara, Y., Zinshteyn, B., Sethupathy, P., Iizasa, H., Hatzigeorgiou, A.G., and Nishikura, K. (2007). Redirection of silencing targets by adenosine-to-inosine editing of miRNAs. Science 315, 1137–1140.

    PubMed  CAS  Google Scholar 

  • Kedde, M., Strasser, M.J., Boldajipour, B., Vrielink, J.A., Slanchev, K., le Sage, C., Nagel, R., Voorhoeve, P.M., van Duijse, J., Orom, U.A., et al. (2007). RNA-binding protein Dnd1 inhibits microRNA access to target mRNA. Cell 131, 1273–1286.

    PubMed  CAS  Google Scholar 

  • Keith, B., and Simon, M.C. (2007). Hypoxia-inducible factors, stem cells, and cancer. Cell 129, 465–472.

    PubMed  CAS  Google Scholar 

  • Kim, J., Inoue, K., Ishii, J., Vanti, W.B., Voronov, S.V., Murchison, E., Hannon, G., and Abeliovich, A. (2007). A MicroRNA feedback circuit in midbrain dopamine neurons. Science 317, 1220–1224.

    PubMed  CAS  Google Scholar 

  • Kiriakidou, M., Tan, G.S., Lamprinaki, S., De Planell-Saguer, M., Nelson, P.T., and Mourelatos, Z. (2007). An mRNA m7G cap binding-like motif within human Ago2 represses translation. Cell 129, 1141–1151.

    PubMed  CAS  Google Scholar 

  • Kloosterman, W.P., and Plasterk, R.H. (2006). The diverse functions of microRNAs in animal development and disease. Developmental Cell 11, 441–450.

    PubMed  CAS  Google Scholar 

  • Koralov, S.B., Muljo, S.A., Galler, G.R., Krek, A., Chakraborty, T., Kanellopoulou, C., Jensen, K., Cobb, B.S., Merkenschlager, M., Rajewsky, N., et al. (2008). Dicer ablation affects antibody diversity and cell survival in the B lymphocyte lineage. Cell 132, 860–874.

    PubMed  CAS  Google Scholar 

  • Kulshreshtha, R., Ferracin, M., Wojcik, S.E., Garzon, R., Alder, H., Agosto-Perez, F.J., Davuluri, R., Liu, C.G., Croce, C.M., Negrini, M., et al. (2007). A microRNA signature of hypoxia. Molecular and Cellular Biology 27, 1859–1867.

    PubMed  CAS  Google Scholar 

  • Kuwabara, T., Hsieh, J., Nakashima, K., Taira, K., and Gage, F.H. (2004). A small modulatory dsRNA specifies the fate of adult neural stem cells. Cell 116, 779–793.

    PubMed  CAS  Google Scholar 

  • le Sage, C., Nagel, R., Egan, D.A., Schrier, M., Mesman, E., Mangiola, A., Anile, C., Maira, G., Mercatelli, N., Ciafre, S.A., et al. (2007). Regulation of the p27(Kip1) tumor suppressor by miR-221 and miR-222 promotes cancer cell proliferation. The EMBO Journal 26, 3699–3708.

    PubMed  Google Scholar 

  • Lee, E.J., Baek, M., Gusev, Y., Brackett, D.J., Nuovo, G.J., and Schmittgen, T.D. (2008). Systematic evaluation of microRNA processing patterns in tissues, cell lines, and tumors. RNA 14, 35–42.

    PubMed  CAS  Google Scholar 

  • Lee, R.C., Feinbaum, R.L., and Ambros, V. (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843–854.

    PubMed  CAS  Google Scholar 

  • Lee, Y., Jeon, K., Lee, J.T., Kim, S., and Kim, V.N. (2002). MicroRNA maturation: stepwise processing and subcellular localization. The EMBO Journal 21, 4663–4670.

    PubMed  CAS  Google Scholar 

  • Lee, Y., Kim, M., Han, J., Yeom, K.H., Lee, S., Baek, S.H., and Kim, V.N. (2004). MicroRNA genes are transcribed by RNA polymerase II. The EMBO Journal 23, 4051–4060.

    PubMed  CAS  Google Scholar 

  • Lee, Y.S., and Dutta, A. (2007). The tumor suppressor microRNA let-7 represses the HMGA2 oncogene. Genes & Development 21, 1025–1030.

    CAS  Google Scholar 

  • Lee, Y.S., Kim, H.K., Chung, S., Kim, K.S., and Dutta, A. (2005). Depletion of human micro-RNA miR-125b reveals that it is critical for the proliferation of differentiated cells but not for the down-regulation of putative targets during differentiation. The Journal of Biological Chemistry 280, 16635–16641.

    PubMed  CAS  Google Scholar 

  • Lewis, B.P., Burge, C.B., and Bartel, D.P. (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15–20.

    PubMed  CAS  Google Scholar 

  • Li, Z., Zhan, W., Wang, Z., Zhu, B., He, Y., Peng, J., Cai, S., and Ma, J. (2006). Inhibition of PRL-3 gene expression in gastric cancer cell line SGC7901 via microRNA suppressed reduces peritoneal metastasis. Biochemical and Biophysical Research Communications 348, 229–237.

    PubMed  CAS  Google Scholar 

  • Lin, S.L., Miller, J.D., and Ying, S.Y. (2006). Intronic MicroRNA (miRNA). Journal of Biomedicine & Biotechnology 2006, 26818.

    Google Scholar 

  • Liu, J., Carmell, M.A., Rivas, F.V., Marsden, C.G., Thomson, J.M., Song, J.J., Hammond, S.M., Joshua-Tor, L., and Hannon, G.J. (2004). Argonaute2 is the catalytic engine of mammalian RNAi. Science 305, 1437–1441.

    PubMed  CAS  Google Scholar 

  • Lu, J., Getz, G., Miska, E.A., Alvarez-Saavedra, E., Lamb, J., Peck, D., Sweet-Cordero, A., Ebert, B.L., Mak, R.H., Ferrando, A.A., et al. (2005). MicroRNA expression profiles classify human cancers. Nature 435, 834–838.

    PubMed  CAS  Google Scholar 

  • Lui, W.O., Pourmand, N., Patterson, B.K., and Fire, A. (2007). Patterns of known and novel small RNAs in human cervical cancer. Cancer Research 67, 6031–6043.

    PubMed  CAS  Google Scholar 

  • Lujambio, A., Ropero, S., Ballestar, E., Fraga, M.F., Cerrato, C., Setien, F., Casado, S., Suarez-Gauthier, A., Sanchez-Cespedes, M., Git, A., et al. (2007). Genetic unmasking of an epigenetically silenced microRNA in human cancer cells. Cancer Research 67, 1424–1429.

    PubMed  CAS  Google Scholar 

  • Lund, E., Guttinger, S., Calado, A., Dahlberg, J.E., and Kutay, U. (2004). Nuclear export of microRNA precursors. Science 303, 95–98.

    PubMed  CAS  Google Scholar 

  • Marson, A., Levine, S.S., Cole, M.F., Frampton, G.M., Brambrink, T., Johnstone, S., Guenther, M.G., Johnston, W.K., Wernig, M., Newman, J., et al. (2008). Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells. Cell 134, 521–533.

    PubMed  CAS  Google Scholar 

  • Martin, K.C., Barad, M., and Kandel, E.R. (2000). Local protein synthesis and its role in synapse-specific plasticity. Current Opinion in Neurobiology 10, 587–592.

    PubMed  CAS  Google Scholar 

  • Mayr, C., Hemann, M.T., and Bartel, D.P. (2007). Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation. Science 315, 1576–1579.

    PubMed  CAS  Google Scholar 

  • Meister, G., Landthaler, M., Dorsett, Y., and Tuschl, T. (2004a). Sequence-specific inhibition of microRNA- and siRNA-induced RNA silencing. RNA 10, 544–550.

    PubMed  CAS  Google Scholar 

  • Meister, G., Landthaler, M., Patkaniowska, A., Dorsett, Y., Teng, G., and Tuschl, T. (2004b). Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Molecular Cell 15, 185–197.

    PubMed  CAS  Google Scholar 

  • Meng, F., Henson, R., Lang, M., Wehbe, H., Maheshwari, S., Mendell, J.T., Jiang, J., Schmittgen, T.D., and Patel, T. (2006). Involvement of human micro-RNA in growth and response to chemotherapy in human cholangiocarcinoma cell lines. Gastroenterology 130, 2113–2129.

    PubMed  CAS  Google Scholar 

  • Meng, F., Henson, R., Wehbe-Janek, H., Ghoshal, K., Jacob, S.T., and Patel, T. (2007). MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology 133, 647–658.

    PubMed  CAS  Google Scholar 

  • Mourelatos, Z., Dostie, J., Paushkin, S., Sharma, A., Charroux, B., Abel, L., Rappsilber, J., Mann, M., and Dreyfuss, G. (2002). miRNPs: a novel class of ribonucleoproteins containing numerous microRNAs. Genes & Development 16, 720–728.

    CAS  Google Scholar 

  • Murchison, E.P., Partridge, J.F., Tam, O.H., Cheloufi, S., and Hannon, G.J. (2005). Characterization of Dicer-deficient murine embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America 102, 12135–12140.

    PubMed  CAS  Google Scholar 

  • Nagaraja, A.K., andreu-Vieyra, C., Franco, H.L., Ma, L., Chen, R., Han, D.Y., Zhu, H., Agno, J.E., Gunaratne, P.H., Demayo, F.J., et al. (2008). Deletion of Dicer in somatic cells of the female reproductive tract causes sterility. Molecular Endocrinology

    Google Scholar 

  • Nakamura, T., Canaani, E., and Croce, C.M. (2007). Oncogenic All1 fusion proteins target Drosha-mediated microRNA processing. Proceedings of the National Academy of Sciences of the United States of America 104, 10980–10985.

    PubMed  CAS  Google Scholar 

  • Nielsen, C.B., Shomron, N., Sandberg, R., Hornstein, E., Kitzman, J., and Burge, C.B. (2007). Determinants of targeting by endogenous and exogenous microRNAs and siRNAs. RNA 13, 1894–1910.

    PubMed  CAS  Google Scholar 

  • Okamura, K., Hagen, J.W., Duan, H., Tyler, D.M., and Lai, E.C. (2007). The mirtron pathway generates microRNA-class regulatory RNAs in Drosophila. Cell 130, 89–100.

    PubMed  CAS  Google Scholar 

  • Olsen, P.H., and Ambros, V. (1999). The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Developmental Biology 216, 671–680.

    PubMed  CAS  Google Scholar 

  • Owens, B.M., and Hawley, R.G. (2002). HOX and non-HOX homeobox genes in leukemic hematopoiesis. Stem Cells 20, 364–379.

    PubMed  CAS  Google Scholar 

  • Ozen, M., Creighton, C.J., Ozdemir, M., and Ittmann, M. (2008). Widespread deregulation of microRNA expression in human prostate cancer. Oncogene 27, 1788–1793.

    PubMed  CAS  Google Scholar 

  • Palmieri, S.L., Peter, W., Hess, H., and Scholer, H.R. (1994). Oct-4 transcription factor is differentially expressed in the mouse embryo during establishment of the first two extraembryonic cell lineages involved in implantation. Developmental Biology 166, 259–267.

    PubMed  CAS  Google Scholar 

  • Park, S.M., Shell, S., Radjabi, A.R., Schickel, R., Feig, C., Boyerinas, B., Dinulescu, D.M., Lengyel, E., and Peter, M.E. (2007). Let-7 prevents early cancer progression by suppressing expression of the embryonic gene HMGA2. Cell Cycle 6, 2585–2590.

    PubMed  CAS  Google Scholar 

  • Parker, R., and Song, H. (2004). The enzymes and control of eukaryotic mRNA turnover. Nature Structural & Molecular Biology 11, 121–127.

    CAS  Google Scholar 

  • Peters, L., and Meister, G. (2007). Argonaute proteins: mediators of RNA silencing. Molecular Cell 26, 611–623.

    PubMed  CAS  Google Scholar 

  • Pillai, R.S., Artus, C.G., and Filipowicz, W. (2004). Tethering of human Ago proteins to mRNA mimics the miRNA-mediated repression of protein synthesis. RNA 10, 1518–1525.

    PubMed  CAS  Google Scholar 

  • Pillai, R.S., Bhattacharyya, S.N., Artus, C.G., Zoller, T., Cougot, N., Basyuk, E., Bertrand, E., and Filipowicz, W. (2005). Inhibition of translational initiation by Let-7 MicroRNA in human cells. Science 309, 1573–1576.

    PubMed  CAS  Google Scholar 

  • Pollard, S.L., and Holland, P.W. (2000). Evidence for 14 homeobox gene clusters in human genome ancestry. Current Biology 10, 1059–1062.

    PubMed  CAS  Google Scholar 

  • Polyak, K., and Hahn, W.C. (2006). Roots and stems: stem cells in cancer. Nature Medicine 12, 296–300.

    PubMed  CAS  Google Scholar 

  • Reinhart, B.J., Slack, F.J., Basson, M., Pasquinelli, A.E., Bettinger, J.C., Rougvie, A.E., Horvitz, H.R., and Ruvkun, G. (2000). The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403, 901–906.

    PubMed  CAS  Google Scholar 

  • Reya, T., Morrison, S.J., Clarke, M.F., and Weissman, I.L. (2001). Stem cells, cancer, and cancer stem cells. Nature 414, 105–111.

    PubMed  CAS  Google Scholar 

  • Robins, H., Li, Y., and Padgett, R.W. (2005). Incorporating structure to predict microRNA targets. Proceedings of the National Academy of Sciences of the United States of America 102, 4006–4009.

    PubMed  CAS  Google Scholar 

  • Rodriguez, A., Griffiths-Jones, S., Ashurst, J.L., and Bradley, A. (2004). Identification of mammalian microRNA host genes and transcription units. Genome Research 14, 1902–1910.

    PubMed  CAS  Google Scholar 

  • Rossi, S., Sevignani, C., Nnadi, S.C., Siracusa, L.D., and Calin, G.A. (2008). Cancer-associated genomic regions (CAGRs) and noncoding RNAs: bioinformatics and therapeutic implications. Mammalian Genome.

    Google Scholar 

  • Ruby, J.G., Jan, C.H., and Bartel, D.P. (2007). Intronic microRNA precursors that bypass Drosha processing. Nature 448, 83–86, Aug; 19(7–8), 526–540.

    PubMed  CAS  Google Scholar 

  • Saetrom, P., Heale, B.S., Snove, O., Jr., Aagaard, L., Alluin, J., and Rossi, J.J. (2007). Distance constraints between microRNA target sites dictate efficacy and cooperativity. Nucleic Acids Research 35, 2333–2342.

    PubMed  CAS  Google Scholar 

  • Saito, Y., Liang, G., Egger, G., Friedman, J.M., Chuang, J.C., Coetzee, G.A., and Jones, P.A. (2006). Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell 9, 435–443.

    PubMed  CAS  Google Scholar 

  • Schratt, G.M., Tuebing, F., Nigh, E.A., Kane, C.G., Sabatini, M.E., Kiebler, M., and Greenberg, M.E. (2006). A brain-specific microRNA regulates dendritic spine development. Nature 439, 283–289.

    PubMed  CAS  Google Scholar 

  • Scott, G.K., Goga, A., Bhaumik, D., Berger, C.E., Sullivan, C.S., and Benz, C.C. (2007). Coordinate suppression of ERBB2 and ERBB3 by enforced expression of micro-RNA miR-125a or miR-125b. The Journal of Biological Chemistry 282, 1479–1486.

    PubMed  CAS  Google Scholar 

  • Seggerson, K., Tang, L., and Moss, E.G. (2002). Two genetic circuits repress the Caenorhabditis elegans heterochronic gene lin-28 after translation initiation. Developmental Biology 243, 215–225.

    PubMed  CAS  Google Scholar 

  • Seitz, H., Youngson, N., Lin, S.P., Dalbert, S., Paulsen, M., Bachellerie, J.P., Ferguson-Smith, A.C., and Cavaille, J. (2003). Imprinted microRNA genes transcribed antisense to a reciprocally imprinted retrotransposon-like gene. Nature Genetics 34, 261–262.

    PubMed  CAS  Google Scholar 

  • Shell, S., Park, S.M., Radjabi, A.R., Schickel, R., Kistner, E.O., Jewell, D.A., Feig, C., Lengyel, E., and Peter, M.E. (2007). Let-7 expression defines two differentiation stages of cancer. Proceedings of the National Academy of Sciences of the United States of America 104, 11400–11405.

    PubMed  CAS  Google Scholar 

  • Shi, X.B., Xue, L., Yang, J., Ma, A.H., Zhao, J., Xu, M., Tepper, C.G., Evans, C.P., Kung, H.J., and deVere White, R.W. (2007). An androgen-regulated miRNA suppresses Bak1 expression and induces androgen-independent growth of prostate cancer cells. Proceedings of the National Academy of Sciences of the United States of America 104, 19983–19988.

    PubMed  CAS  Google Scholar 

  • Si, M.L., Zhu, S., Wu, H., Lu, Z., Wu, F., and Mo, Y.Y. (2007). miR-21-mediated tumor growth. Oncogene 26, 2799–2803.

    PubMed  CAS  Google Scholar 

  • Singh, S.K., Kagalwala, M.N., Parker-Thornburg, J., Adams, H., and Majumder, S. (2009). Nature DOI 10.1038/Nature07785.

    Google Scholar 

  • Singh, S.K., Kagalwala, M.N., Parker-Thornburg, J., Adams, H., and Majumder, S. (2008). REST maintains self-renewal and pluripotency of embryonic stem cells. Nature 453, 223–227.

    PubMed  CAS  Google Scholar 

  • Stiles, C.D., and Rowitch, D.H. (2008). Glioma stem cells: a midterm exam. Neuron 58, 832–846.

    PubMed  CAS  Google Scholar 

  • Strauss, W.M., Chen, C., Lee, C.T., and Ridzon, D. (2006). Nonrestrictive developmental regulation of microRNA gene expression. Mammalian Genome 17, 833–840.

    PubMed  CAS  Google Scholar 

  • Suh, M.R., Lee, Y., Kim, J.Y., Kim, S.K., Moon, S.H., Lee, J.Y., Cha, K.Y., Chung, H.M., Yoon, H.S., Moon, S.Y., et al. (2004). Human embryonic stem cells express a unique set of microRNAs. Developmental Biology 270, 488–498.

    PubMed  CAS  Google Scholar 

  • Sylvestre, Y., De Guire, V., Querido, E., Mukhopadhyay, U.K., Bourdeau, V., Major, F., Ferbeyre, G., and Chartrand, P. (2007). An E2F/miR-20a autoregulatory feedback loop. The Journal of Biological Chemistry 282, 2135–2143.

    PubMed  CAS  Google Scholar 

  • Takamizawa, J., Konishi, H., Yanagisawa, K., Tomida, S., Osada, H., Endoh, H., Harano, T., Yatabe, Y., Nagino, M., Nimura, Y., et al. (2004). Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Research 64, 3753–3756.

    PubMed  CAS  Google Scholar 

  • Tang, F., Hajkova, P., Barton, S.C., Lao, K., and Surani, M.A. (2006). MicroRNA expression profiling of single whole embryonic stem cells. Nucleic Acids Research 34, e9.

    PubMed  Google Scholar 

  • Tay, Y.M., Tam, W.L., Ang, Y.S., Gaughwin, P.M., Yang, H., Wang, W., Liu, R., George, J., Ng, H.H., Perera, R.J., et al. (2008). MicroRNA-134 modulates the differentiation of mouse embryonic stem cells, where it causes post-transcriptional attenuation of Nanog and LRH1. Stem Cells 26, 17–29.

    PubMed  CAS  Google Scholar 

  • Tazawa, H., Tsuchiya, N., Izumiya, M., and Nakagama, H. (2007). Tumor-suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells. Proceedings of the National Academy of Sciences of the United States of America 104, 15472–15477.

    PubMed  CAS  Google Scholar 

  • Thomson, J.M., Newman, M., Parker, J.S., Morin-Kensicki, E.M., Wright, T., and Hammond, S.M. (2006). Extensive post-transcriptional regulation of microRNAs and its implications for cancer. Genes & Development 20, 2202–2207.

    CAS  Google Scholar 

  • Tomari, Y., Matranga, C., Haley, B., Martinez, N., and Zamore, P.D. (2004). A protein sensor for siRNA asymmetry. Science 306, 1377–1380.

    PubMed  CAS  Google Scholar 

  • Tomari, Y., and Zamore, P.D. (2005). Perspective: machines for RNAi. Genes & Development 19, 517–529.

    CAS  Google Scholar 

  • Tsang, J., Zhu, J., and van Oudenaarden, A. (2007). MicroRNA-mediated feedback and feedforward loops are recurrent network motifs in mammals. Molecular Cell 26, 753–767.

    PubMed  CAS  Google Scholar 

  • Vasudevan, S., and Steitz, J.A. (2007). AU-rich-element-mediated upregulation of translation by FXR1 and Argonaute 2. Cell 128, 1105–1118.

    PubMed  CAS  Google Scholar 

  • Versteeg, R., Caron, H., Cheng, N.C., van der Drift, P., Slater, R., Westerveld, A., Voute, P.A., Delattre, O., Laureys, G., Van Roy, N., et al. (1995). 1p36: every subband a suppressor? European Journal of Cancer 31A, 538–541.

    PubMed  CAS  Google Scholar 

  • Vigorito, E., Perks, K.L., Abreu-Goodger, C., Bunting, S., Xiang, Z., Kohlhaas, S., Das, P.P., Miska, E.A., Rodriguez, A., Bradley, A., et al. (2007). microRNA-155 regulates the generation of immunoglobulin class-switched plasma cells. Immunity 27, 847–859.

    PubMed  CAS  Google Scholar 

  • Visone, R., Pallante, P., Vecchione, A., Cirombella, R., Ferracin, M., Ferraro, A., Volinia, S., Coluzzi, S., Leone, V., Borbone, E., et al. (2007a). Specific microRNAs are downregulated in human thyroid anaplastic carcinomas. Oncogene 26, 7590–7595.

    PubMed  CAS  Google Scholar 

  • Visone, R., Russo, L., Pallante, P., De Martino, I., Ferraro, A., Leone, V., Borbone, E., Petrocca, F., Alder, H., Croce, C.M., et al. (2007b). MicroRNAs (miR)-221 and miR-222, both overexpressed in human thyroid papillary carcinomas, regulate p27Kip1 protein levels and cell cycle. Endocrine-Related Cancer 14, 791–798.

    PubMed  CAS  Google Scholar 

  • Viswanathan, S.R., Daley, G.Q., and Gregory, R.I. (2008). Selective blockade of microRNA processing by Lin28. Science 320, 97–100.

    PubMed  CAS  Google Scholar 

  • Volinia, S., Calin, G.A., Liu, C.G., Ambs, S., Cimmino, A., Petrocca, F., Visone, R., Iorio, M., Roldo, C., Ferracin, M., et al. (2006). A microRNA expression signature of human solid tumors defines cancer gene targets. Proceedings of the National Academy of Sciences of the United States of America 103, 2257–2261.

    PubMed  CAS  Google Scholar 

  • Wakiyama, M., Takimoto, K., Ohara, O., and Yokoyama, S. (2007). Let-7 microRNA-mediated mRNA deadenylation and translational repression in a mammalian cell-free system. Genes & Development 21, 1857–1862.

    CAS  Google Scholar 

  • Wang, Y., Medvid, R., Melton, C., Jaenisch, R., and Blelloch, R. (2007). DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal. Nature Genetics 39, 380–385.

    PubMed  CAS  Google Scholar 

  • Weidhaas, J.B., Babar, I., Nallur, S.M., Trang, P., Roush, S., Boehm, M., Gillespie, E., and Slack, F.J. (2007). MicroRNAs as potential agents to alter resistance to cytotoxic anticancer therapy. Cancer Research 67, 11111–11116.

    PubMed  CAS  Google Scholar 

  • Weiler, J., Hunziker, J., and Hall, J. (2006). Anti-miRNA oligonucleotides (AMOs): ammunition to target miRNAs implicated in human disease? Gene Therapy 13, 496–502.

    PubMed  CAS  Google Scholar 

  • Wienholds, E., and Plasterk, R.H. (2005). MicroRNA function in animal development. FEBS Letters 579, 5911–5922.

    PubMed  CAS  Google Scholar 

  • Wightman, B., Ha, I., and Ruvkun, G. (1993). Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75, 855–862.

    PubMed  CAS  Google Scholar 

  • Yanaihara, N., Caplen, N., Bowman, E., Seike, M., Kumamoto, K., Yi, M., Stephens, R.M., Okamoto, A., Yokota, J., Tanaka, T., et al. (2006). Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 9, 189–198.

    PubMed  CAS  Google Scholar 

  • Yang, S., Tutton, S., Pierce, E., and Yoon, K. (2001). Specific double-stranded RNA interference in undifferentiated mouse embryonic stem cells. Molecular and Cellular Biology 21, 7807–7816.

    PubMed  CAS  Google Scholar 

  • Yang, W.J., Yang, D.D., Na, S., Sandusky, G.E., Zhang, Q., and Zhao, G. (2005). Dicer is required for embryonic angiogenesis during mouse development. The Journal of Biological Chemistry 280, 9330–9335.

    PubMed  CAS  Google Scholar 

  • Yeom, K.H., Lee, Y., Han, J., Suh, M.R., and Kim, V.N. (2006). Characterization of DGCR8/Pasha, the essential cofactor for Drosha in primary miRNA processing. Nucleic Acids Research 34, 4622–4629.

    PubMed  CAS  Google Scholar 

  • Yi, R., Qin, Y., Macara, I.G., and Cullen, B.R. (2003). Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes & Development 17, 3011–3016.

    CAS  Google Scholar 

  • Yu, F., Yao, H., Zhu, P., Zhang, X., Pan, Q., Gong, C., Huang, Y., Hu, X., Su, F., Lieberman, J., et al. (2007). let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 131, 1109–1123.

    PubMed  CAS  Google Scholar 

  • Zhang, H., Kolb, F.A., Jaskiewicz, L., Westhof, E., and Filipowicz, W. (2004). Single processing center models for human Dicer and bacterial RNase III. Cell 118, 57–68.

    PubMed  CAS  Google Scholar 

  • Zhang, L., Huang, J., Yang, N., Greshock, J., Megraw, M.S., Giannakakis, A., Liang, S., Naylor, T.L., Barchetti, A., Ward, M.R., et al. (2006). microRNAs exhibit high frequency genomic alterations in human cancer. Proceedings of the National Academy of Sciences of the United States of America 103, 9136–9141.

    PubMed  CAS  Google Scholar 

  • Zhu, S., Wu, H., Wu, F., Nie, D., Sheng, S., and Mo, Y.Y. (2008). MicroRNA-21 targets tumor suppressor genes in invasion and metastasis. Cell Research 18, 350–359.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay K. Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Singh, S.K., Kagalwala, M.N., Majumder, S. (2009). MicroRNAs in Stem Cells and Cancer Stem Cells. In: Majumder, S. (eds) Stem Cells and Cancer. Springer, New York, NY. https://doi.org/10.1007/978-0-387-89611-3_3

Download citation

Publish with us

Policies and ethics