Skip to main content

Canonical Dual Solutions for Fixed Cost Quadratic Programs

  • Chapter
  • First Online:
Optimization and Optimal Control

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 39))

Summary

This chapter presents a canonical dual approach for solving a mixed-integer quadratic minimization problem with fixed cost terms. We show that this well-known NP-hard problem in \(\mathbb{R}^{2n}\) can be transformed into a continuous concave maximization dual problem over a convex feasible subset of \(\mathbb{R}^{2n}\) with zero duality gap. The resulting canonical dual problem can be solved easily, under certain conditions, by traditional convex programming methods. Both existence and uniqueness of global optimal solutions are discussed. Application to a decoupled mixed-integer problem is illustrated and analytic solutions for both a global minimizer and a global maximizer are obtained. Examples for both decoupled and general nonconvex problems are presented. Furthermore, we discuss connections between the proposed canonical duality theory approach and the classical Lagrangian duality approach. An open problem is proposed for future study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aardal, K.: Capacitated facility location: separation algorithms and computational experience. Math. Program. 81(2, Ser. B), 149–175 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Akrotirianakis, I.G., Floudas, C.A.: Computational experience with a new class of convex underestimators: Box-constrained NLP problems, J. Global Optim. 29, 249–264 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Akrotirianakis, I.G., Floudas, C.A.: A new class of improved convex underestimators for twice continuously differentiable constrained NLPs. J. Global Optim. 30, 367–390 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Atamtürk, A.: Flow pack facets of the single node fixed-charge flow polytope. Oper. Res. Lett. 29(3), 107–114 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Barany, I., Van Roy, T.J., Wolsey, L.A.: Strong formulations for multi-item capacitated lot sizing. Manage. Sci. 30, 1255–1261 (1984)

    Article  MATH  Google Scholar 

  6. Contesse, L.: Une caractérisation compléte des minima locaux en programmation quadratique. Numer. Math. 34, 315–332 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fang, S.-C., Gao, D.Y., Shue, R.L., Wu, S.Y.: Canonical dual approach to solving 0-1 quadratic programming problems. J. Ind. Manage. Optim. 4(1), 125–142 (2008)

    Article  Google Scholar 

  8. Fang, S.-C., Gao, D.Y., Sheu, R.-L., Xing, W.X.: Global optimization for a class of fractional programming problems. J. Global Optim. 45, 337–353 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Floudas, C.A.: Deterministic Optimization. Theory, Methods, and Applications, Kluwer, Dordrecht (2000)

    Google Scholar 

  10. Floudas, C.A., Akrotirianakis, I.G., Caratzoulas, S., Meyer, C.A., Kallrath, J.: Global optimization in the 21st century: advances and challenges. Comput. Chem. Eng. 29, 1185–1202 (2005)

    Article  Google Scholar 

  11. Floudas, C.A., Visweswaran, V.: A primal-relaxed dual global optimization approach. J. Optim. Theory Appl., 78(2), 187–225 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  12. Floudas, C.A., Visweswaran, V.: Quadratic optimization. In: R. Horst, P.M. Pardalos (Eds.) Handbook of Global Optimization Kluwer, Dordrecht 217–270 (1995)

    Google Scholar 

  13. Gao, D.Y.: Duality, triality and complementary extremum principles in nonconvex parametric variational problems with applications. IMA J. Appl. Math. 61, 199–235 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gao, D.Y.: Analytic solution and triality theory for nonconvex and nonsmooth variational problems with applications. Nonlinear Anal. 42(7), 1161–1193 (2000a)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gao, D.Y.: Duality Principles in Nonconvex Systems: Theory, Methods and Applications, Kluwer, Dordrecht (2000b)

    MATH  Google Scholar 

  16. Gao, D.Y.: Canonical dual transformation method and generalized triality theory in nonsmooth global optimization. J. Global Optim. 17(1/4), 127–160 (2000c)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gao, D.Y.: Perfect duality theory and complete solutions to a class of global optimization problems. Optimization 52(4–5), 467–493 (2003a)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gao, D.Y.: Nonconvex semi-linear problems and canonical dual solutions. In: D.Y. Gao, R.W. Ogden (Ed.) Advances in Mechanics and Mathematics (Vol. II, pp. 261–312), Kluwer, Dordrecht (2003b)

    Chapter  Google Scholar 

  19. Gao, D.Y.: Canonical duality theory and solutions to constrained nonconvex quadratic programming. J. Global Optim. 29, 377–399 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gao, D.Y.: Complete solutions and extremality criteria to polynomial optimization problems. J. Global Optim. 35, 131–143 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gao, D.Y.: Solutions and optimality to box constrained nonconvex minimization problems. J. Ind. Manage Optim. 3(2), 293–304 (2007a)

    Article  MATH  Google Scholar 

  22. Gao, D.Y.: Duality-Mathematics. Wiley Encyclopedia of Electrical and Electronics Engineering (Vol. 6, pp. 68–77 (1st ed., 1999), Electronic edition, Wiley, New York (2007b)

    Google Scholar 

  23. Gao, D.Y.: Canonical duality theory: Unified understanding and generalized solution for global optimization problems. Comput. Chem. Eng. 33, 1964–1972 (2009) doi: 10.1016/j.compchemeng.2009.06.009

    Google Scholar 

  24. Gao, D.Y., Ogden, R.W.: Closed-form solutions, extremality and nonsmoothness criteria in a large deformation elasticity problem. Zeits. Angewandte Math. Phy. 59(3), 498–517 (2008a)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gao, D.Y., Ogden, R.W.: Multi-solutions to nonconvex variational problems with implications for phase transitions and numerical computation. Quart. J. Mech. Appl. Math. 61(4), 497–522 (2008b)

    Article  MathSciNet  MATH  Google Scholar 

  26. Gao, D.Y., Ruan, N.: Complete solutions and optimality criteria for nonconvex quadratic-exponential minimization problem. Math. Methods Oper. Res. 67(3), 479–496 (2008c)

    Article  MathSciNet  MATH  Google Scholar 

  27. Gao, D.Y., Ruan, N.: On the solutions to quadratic minimization problems with box and integer constraints. J. Global Optim. to appear (2009a)

    Google Scholar 

  28. (2009b)

    Google Scholar 

  29. Gao, D.Y., Sherali, H.D.: Canonical duality theory: connections between nonconvex mechanics and global optimization. In: D.Y. Gao, H.D. Sherali (Eds.), Advances in Applied Mathematics and Global Optimization, 257–326, Springer (2009)

    Chapter  Google Scholar 

  30. Gao, D.Y., Strang, G.: Geometric nonlinearity: potential energy, complementary energy, and the gap function. Quart. Appl. Math. 47(3), 487–504 (1989)

    MathSciNet  MATH  Google Scholar 

  31. Gao, D.Y., Yu, H.: Multi-scale modelling and canonical dual finite element method in phase transitions of solids. Int. J. Solids Struct. 45, 3660–3673 (2008)

    Article  MATH  Google Scholar 

  32. Glover, F., Sherali H.D.: Some classes of valid inequalities and convex hull characterizations for dynamic fixed-charge problems under nested constraints. Ann. Oper. Res. 40(1), 215–234 (2005)

    Article  MathSciNet  Google Scholar 

  33. Grippo, L., Lucidi, S.: A differentiable exact penalty function for bound constrained quadratic programming problems. Optimization 22(4), 557–578 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  34. Gu, Z., Nemhauser, G.L., Savelsbergh, M.W.P.: Lifted flow cover inequalities for mixed 0-1 integer programs. Math. Program. 85(3, Ser. A), 439–467 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  35. Han, C.G., Pardalos, P.M., Ye, Y.: An interior point algorithm for large-scale quadratic problems with box constraints. In: A. Bensoussan, J.L. Lions (Eds.), Springer-Verlag Lecture Notes in Control and Information (Vol. 144, pp. 413–422) (1990)

    Google Scholar 

  36. Hansen, P., Jaumard, B., Ruiz, M., Xiong, J.: Global minimization of indefinite quadratic functions subject to box constraints. Nav. Res. Logist. 40, 373–392 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  37. Li, S.F., Gupta, A.: On dual configuration forces. J. Elasticity 84, 13–31 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  38. Murty, K.G., Kabadi, S.N.: Some NP-hard problems in quadratic and nonlinear programming. Math. Program. 39, 117–129 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  39. Padberg, M.W., Van Roy, T.J., Wolsey, L.A.: Valid linear inequalities for fixed charge problems. Oper. Res. 33, 842-861 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  40. Pardalos, P.M., Schnitger, G.: Checking local optimality in constrained quadratic and nonlinear programming. Oper. Res. Lett. 7, 33–35 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  41. Sherali, H.D., Smith, J.C.: An improved linearization strategy for zero-one quadratic programming problems. Optim. Lett. 1(1), 33–47 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  42. Sherali, H.D., Tuncbilek, C.H.: A global optimization algorithm for polynomial programming problem using a reformulation-linearization technique. J. Global Optim. 2, 101–112 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  43. Sherali, H.D., Tuncbilek, C.H.: A reformulation-convexification approach for solving nonconvex quadratic programming problems. J. Global Optim. 7, 1–31 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  44. Sherali, H.D., Tuncbilek, C.H.: New reformulation-linearization technique based relaxation for univariate and multivariate polynominal programming problems. Oper. Res. Lett. 21(1), 1–10 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  45. Wang, Z.B., Fang, S.-C., Gao, D.Y., Xing, W.X.: Global extremal conditions for multi-integer quadratic programming. J. Ind. Manage. Optim. 4(2), 213–225 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Yang Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Gao, D.Y., Ruan, N., Sherali, H.D. (2010). Canonical Dual Solutions for Fixed Cost Quadratic Programs. In: Chinchuluun, ., Pardalos, P., Enkhbat, R., Tseveendorj, I. (eds) Optimization and Optimal Control. Springer Optimization and Its Applications(), vol 39. Springer, New York, NY. https://doi.org/10.1007/978-0-387-89496-6_7

Download citation

Publish with us

Policies and ethics