Advertisement

Integer Programming of Biclustering Based on Graph Models

  • Neng FanEmail author
  • Altannar Chinchuluun
  • Panos M. Pardalos
Chapter
Part of the Springer Optimization and Its Applications book series (SOIA, volume 39)

Summary

In this chapter, biclustering is studied in a mathematical prospective, including bipartite graphs and optimization models via integer programming. A correspondence between biclustering and graph partitioning is established. In the optimization models, different cuts are used and the integer programming models are presented. We prove that the spectral biclustering for Ratio cut and Normalized cut are the relaxation forms of these integer programming models, and also the Minmax cut for biclustering is equivalent to Normalized cut for biclustering.

Keywords

biclustering integer programming spectral clustering graph partitioning ratio cut normalized cut minmax cut 

References

  1. 1.
    Busygin, S., Prokopyev, O., Pardalos, P.M.: Biclustering in data mining. Comp. Oper. Res. 35, 2964–2987 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Chaovalitwongse, W.A., Butenko, S., Pardalos, P.M.: Clustering Challenges in Biological Networks, World Scientific, Singapore (2009)Google Scholar
  3. 3.
    Chung, F.R.K.: Spectral graph theory, Conference Board of the Mathematical Sciences (Vol. 92), American Mathematical Society, Washington, DC (1997)Google Scholar
  4. 4.
    Cheng, Y., Church, G.M.: Biclustering of expression data. Proceedings of the 8th International Conference on Intelligent Systems for Molecular Biology 93–103 (2000)Google Scholar
  5. 5.
    Dhillon, I.S.: Co-clustering documents and words using bipartite spectral graph partitioning. Proceedings of the 7th ACM SIGKDD International Conference on Knowledging Discovery and Data Mining (KDD), 26–29 (2001)Google Scholar
  6. 6.
    Ding, C.H.Q., He, X., Zha, H., Gu, M., Simon, H.D.: A min-max cut algorithm for graph partitioning and data clustering. Proc. ICDM, 107–114 (2001)Google Scholar
  7. 7.
    Fan, N., Boyko, N., Pardalos, P.M.: Recent Advances of Data Biclustering with Application in Computational Neuroscience. In: W.A. Chaovalitwongse, P.M. Pardalos, P. Xanthopoulos (Eds.), Computational Neuroscience, Springer Optimization and Its Applications (Vol. 38), Springer, Berlin (2010)Google Scholar
  8. 8.
    Hagen, L., Kahng, A.B.: New spectral methods for ratio cut partitioning and clustering. IEEE Trans. Comput-Aided Des. 11(9), 1074–1085 (1992).CrossRefGoogle Scholar
  9. 9.
    Lee, C.-H., Zaine, O.R., Park, H.-H., Huang, J., Greiner, R.: Clustering high dimensional data: A graph-based relaxed optimization approach. Inf. Sci. 178(23), 4501–4511 (2008)CrossRefGoogle Scholar
  10. 10.
    Li, D., Sun, X.: Nonlinear integer programming, series. Int. Ser. Operat. Res. Manage Sci. 84 (2006)Google Scholar
  11. 11.
    Madeira, S.C., Oliveira, A.L.: Biclustering algorithms for biological data analysis: a survey. IEEE Trans. Comput. Biol. Bioinform. 1(1), 24–45 (2004)CrossRefGoogle Scholar
  12. 12.
    Mirkin, B.: Mathematical Classification and Clustering, Kluwer, Dordrecht (1996)Google Scholar
  13. 13.
    Rege, M., Dong, M., Fotouhi, F.: Bipartite isoperimetric graph partitioning for data co-clustering. Data Min. Know. Disc, 16, 276–312 (2008)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intelli 22(8), 888–905 (2000)CrossRefGoogle Scholar
  15. 15.
    Xu, R., Wunsch II, D.: Survey of clustering algorithms. IEEE Trans. Neural Netw., 16(3), 645–678 (2005)CrossRefGoogle Scholar
  16. 16.
    Zha, H., He, X., Ding, C., Simon, H., Gu, M.: Bipartite graph partitioning and data clustering. Proceedings of the 10th International Conference on Information and Knowledge Mmanagement, 25–32 (2001)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Neng Fan
    • 1
    Email author
  • Altannar Chinchuluun
    • 2
  • Panos M. Pardalos
    • 1
  1. 1.Center for Applied Optimization, Department of Industrial and Systems EngineeringUniversity of FloridaGainesvilleUSA
  2. 2.Centre for Process Systems EngineeringImperial College LondonLondonUK

Personalised recommendations