Optimal Feedback Control for Stochastic Impulsive Linear Systems Subject to Poisson Processes

  • Zhi Guo FengEmail author
  • Kok Lay TeoEmail author
Part of the Springer Optimization and Its Applications book series (SOIA, volume 39)


This chapter considers a class of optimal feedback control problems, where its dynamical system is described by stochastic linear systems subject to Poisson processes and with state jumps. We show that this stochastic impulsive optimal parameter selection problem is equivalent to a deterministic impulsive optimal parameter selection problem, where the times at which the jumps occurred as well as their heights are decision variables. Then, by introducing a time scaling transform, we show that this deterministic impulsive optimal parameter selection problem is transformed into an equivalent deterministic impulsive optimal parameter selection problem with fixed jump times. For the numerical computation, we derive the gradient formulae of the cost function and the constraint functions. On this basis, an efficient computational method is developed and an example is solved for illustration.


stochastic impulsive optimal parameter selection problem Poisson process time scaling transformation 



This project is supported by a research grant from the Australian Research Council and Chongqing Key Laboratory of Operations Research and System Engineering.


  1. 1.
    Ahmed, N.U., Georgenas, N.D.: On optimal parameter selection. IEEE Trans. Automat. Contr. 18, 313–314 (1973)zbMATHCrossRefGoogle Scholar
  2. 2.
    Dolezal, J.: On the solution of optimal control problems involving parameters and general boundary conditions. Kybernetika 17, 71–81 (1981)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Feng, Z.G., Teo, K.L., Ahmed, N.U., Zhao, Y., Yan, W.Y.: Optimal fusion of sensor data for Kalman filtering. Discrete Contin. Dyn. Syst., 14, 483–503 (2006)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Feng, Z.G., Teo, K.L., Ahmed, N.U., Zhao, Y., Yan, W.Y.: Optimal fusion of sensor data for discrete Kalman filtering. Dyna. Syst. Appl. 16, 393–406 (2007)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Feng, Z.G., Teo, K.L., Rehbock, V.: Hybrid method for a general optimal sensor scheduling problem in discrete time. Automatica 44, 1295–1303 (2008)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Feng, Z.G., Teo, K.L., Rehbock, V.: Optimal sensor scheduling in continuous time. Dyn. Syst. Appl. 17, 331–350 (2008)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Feng, Z.G., Teo, K.L., Zhao, Y.: Branch and bound method for sensor scheduling in discrete time. J. Ind. Manage. Optim. 1, 499–512 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Goh, C.J., Teo, K.L.: On constrained stochastic optimal parameter selection problems. Bull. Aust. Math. Soc. 41, 393–405 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Jennings, L.S., Fisher, M.E., Teo, K.L., Goh, C.J.: MISER3, Optimal Control Software, Version 3.0, Theory and User Manual. On the website (2004)
  10. 10.
    Jennings, L.S., Teo, K.L.: A computational algorithm for functional inequality constrained optimization problems. Automatica 26, 371–375 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Liu, C.M., Feng, Z.G., Teo, K.L.: On a class of stochastic impulsive optimal parameter selection problems. Int. J. Innov. Comput., Info. Control 5, 1043–1054 (2009)Google Scholar
  12. 12.
    Lee, H.W.J., Teo, K.L., Rehbock, V., Jennings, L.S.: Control parametrization enhancing technique for time optimal control problems. Dyn Syst Appl. 6, 243–262 (1997)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Situ, R.: Theory of Stochastic Differential Equations with Jumps and Applications: Mathematical and Analytical Techniques with Applications to Engineering. Springer, New York (2005)Google Scholar
  14. 14.
    Teo, K.L., Ahmed, N.U.: Optimal feedback control for a class of stochastic systems. Internat. J. Systems Sci. 5, 357–365 (1974)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Teo, K.L., Ahmed, N.U., Fisher, M.E.: Optimal feedback control for linear stochastic systems driven by counting processes. Eng. Optim. 15, 1–16 (1989)CrossRefGoogle Scholar
  16. 16.
    Teo, K.L., Goh, C.J., Wong, K.H.: A Unified Computational Approach to Optimal Control Problems. Longman Scientific and Technical (1991)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.College of Mathematics and Computer ScienceChongqing Normal UniversityChongqingPeople’s Republic of China
  2. 2.Department of Mathematics and StatisticsCurtin University of TechnologyPerthAustralia

Personalised recommendations