Gap Functions for Vector Equilibrium Problems via Conjugate Duality

  • Lkhamsuren AltangerelEmail author
  • Gert Wanka
Part of the Springer Optimization and Its Applications book series (SOIA, volume 39)


This chapter deals with the so-called perturbation approach in the conjugate duality for vector optimization on the basis of weak orderings. As applications, we investigate some new set-valued gap functions for vector equilibrium problems.


conjugate duality perturbation approach vector equilibrium problems set-valued gap functions 



The research of the first author has been supported partially by Deutsche Forschungsgemeinschaft. The authors are grateful to Dr. Radu Ioan Boţ for valuable discussions.


  1. 1.
    Altangerel, L., Boţ, R.I., Wanka, G.: On gap functions for equilibrium problems via Fenchel duality. Paci. J. Optim. 2(3), 667–678 (2006)zbMATHGoogle Scholar
  2. 2.
    Altangerel, L., Boţ, R.I., Wanka, G.: Conjugate duality in vector optimization and some applications to the vector variational inequality. J. Math. Anal. Appl. 329(2), 1010–1035 (2007a)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Altangerel, L., Boţ, R.I., Wanka, G. Variational principles for vector equilibrium problems related to conjugate duality. J. Nonlinear. Convex Anal. 8(2) 179–196 (2007b)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Ansari, Q.H., Konnov, I.V., Yao, J.C. Existence of a solution and variational principles for vector equilibrium problems. J. Optim. Theory Appl. 110(3), 481–492 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Ansari, Q.H., Konnov, I.V., Yao, J.C. Characterizations of solutions for vector equilibrium problems. J. Optimi. Theory Appl. 113(3), 435–447 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Blum, E., Oettli, W. Variational principles for equilibrium problems. In: J. Guddat, (Ed.) et al., Parametric Optimization and Related Topics. III. Proceedings of the 3rd conference held in Güstrow, Germany, Frankfurt am Main: Peter Lang Verlag. Approximation Optimization. 3, 79–88 (1993)Google Scholar
  7. 7.
    Chen, G.Y., Goh, C.J., Yang, X.Q. On gap functions for vector variational inequalities. In: F. Giannessi Vector Variational Inequalities and Vector Equilibria, Mathematical Theories (pp. 55-72), (Ed.), Kluwer, Dordrecht (2000)CrossRefGoogle Scholar
  8. 8.
    Goh, C.J., Yang, X.Q. Duality in Optimization and Variational Inequalities, Taylor and Francis, London (2002)zbMATHCrossRefGoogle Scholar
  9. 9.
    Sawaragi, Y., Nakayama, H., Tanino, T. Theory of Multiobjective Optimization, Mathematics in Science and Engineering, (Vol. 176), Academic, Orlando etc. (1985)Google Scholar
  10. 10.
    Song, W. Conjugate duality in set-valued vector optimization. J. Math. Anal. Appl. 216(1), 265–283 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Song, W. A generalization of Fenchel duality in set-valued vector optimization. Mathe Methods Oper. Res. 48(2) 259–272 (1998)zbMATHCrossRefGoogle Scholar
  12. 12.
    Tanino, T., Sawaragi, Y. Conjugate maps and duality in multiobjective optimization. J. Optim. Theory Appl. 31, 473–499 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Tanino, T. On supremum of a set in a multidimensional space. J. Math. Anal. Appl. 130(2), 386–397 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Tanino, T. Conjugate duality in vector optimization. J. Math. Anal. Appl. 167(1), 84–97 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Wanka, G., Boţ, R.I. On the relations between different dual problems in convex mathematical programming. In: P. Chamoni, R. Leisten, A. Martin, J. Minnemann, H. Stadler (Eds.), Operations Research Proceedings 2001 (pp. 255–262), Springer, Berlin, (2002)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.School of Mathematics and Computer ScienceNational University of MongoliaUlan BatorMongolia
  2. 2.Faculty of MathematicsChemnitz University of TechnologyChemnitzGermany

Personalised recommendations