Advertisement

Sensibility Function as Convolution of System of Optimization Problems

  • Anatoly AntipinEmail author
Chapter
Part of the Springer Optimization and Its Applications book series (SOIA, volume 39)

Summary

The sensibility function generated by a convex programming problem is viewed as an element of a complex system of optimization problems. Its role in this system is clarified. The optimization problems generated by the sensibility function are considered. Methods for their solution are proposed.

Keywords

sensibility function system of optimization problems extraproximal method 

References

  1. 1.
    Gale, D.: The Theory of Linear Economic Models, McGraw-Gill, New York, NY (1960)Google Scholar
  2. 2.
    Williams, A.C.: Marginal values in linear programming. J. Soc. Indust. Appl. Math. 11, 82–94 (1963)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Zlobec, S.: Stable Parametric Programming, Kluwer, Dordrecht (2001)Google Scholar
  4. 4.
    Eremin, I.I., Astafiev, N.N.: Introduction to Linear and Convex Programming Theory, Nauka, Moscow (1976)Google Scholar
  5. 5.
    Elster, K.-H., Reinhardt, R., Schaubel, M., Donath, G.: Einfuhrung in die nichtlineare optimierung, BSB B.G. Teubner, Leipzig (1977)Google Scholar
  6. 6.
    Rzhevskii, S.V.: Monotone Methods of Convex Programming, Naukova Dumka, Kiev (1993)Google Scholar
  7. 7.
    Golikov, A.I.: Characterization of optimal estimates set for multicriterial optimization problems. U.S.S.R. Comput. Math. Math. Phys. 28(10), 1285–1296 (1988)MathSciNetGoogle Scholar
  8. 8.
    Zhadan, V.G.: Modified Lagrangian method for multicriterial optimization. U.S.S.R. Comput. Math. Math. Phys. 28(11), 1603–1617 (1988)MathSciNetGoogle Scholar
  9. 9.
    Rockafellar, R.T., Wets, R.J-B.: Variational Analysis, Springer, Berlin (1998)Google Scholar
  10. 10.
    Vasil’ev, F.P.: Optimization Methods, Factorial Press, Moscow (2002)Google Scholar
  11. 11.
    Antipin, A.S.: Methods of solving systems of convex programming problems. Zhurnal Vychisl. Mat. Mat. Phiziki. 27(3), 368–376 (1987) English transl. U.S.S.R. Comput. Math. Math. Phys. 27(2), 30–35 (1987)Google Scholar
  12. 12.
    Antipin, A.S.: Models of interaction between manufacturers,consumers, and the transportation system. Avtomatika i telemechanika. 10, 105–113 (1989). English transl. Autom Remote Control., 1391–1398 (1990)Google Scholar
  13. 13.
    Karlin, S.: Mathematical Methods and Theory in Games, Programming, and Economics, Pergamon Press, London (1959)Google Scholar
  14. 14.
    Antipin, A.S.: Inverse optimization problem. Economic-mathematical cyclopaedic dictionary. “Large Russian Encyclopaedia”. “Infra-M”, 346–347 (2003)Google Scholar
  15. 15.
    Antipin, A.S.: An extraproximal method for solving equilibrium programming problems and games. Comput. Math. Math. Phys. 45(11), 1893–1914 (2005)MathSciNetGoogle Scholar
  16. 16.
    Antipin, A.S.: An extraproximal method for solving equilibrium programming problems and games with coupled constraints. Comput. Math. Math. Phys. 45(12), 2020–2022 (2005)MathSciNetGoogle Scholar
  17. 17.
    Antipin, A.S.: Controlled proximal differential systems for saddle problems. The Differentsial’nye Uravneniya. 28(11), 1846–1861 (1992). English transl.: Differ. Equ. 28(11), 1498–1510 (1992)Google Scholar
  18. 18.
    Antipin, A.S.: The convergence of proximal methods to fixed points of extremal mappings and estimates of their rate of convergence. Zhurnal Vychisl. Mat. Mat. Fiz. 35(5), 688–704 (1995) English transl. Comput. Math. Math. Phys. 35(5), 539–551 (1995)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Computing Center of Russian Academy of SciencesVavilov str., 40Russia

Personalised recommendations